Skip to main content

Recent Advances in Targeting Dengue and West Nile Virus Proteases Using Small Molecule Inhibitors

  • Chapter
  • First Online:
Therapy of Viral Infections

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 15))

Abstract

Targeting viral proteases represents an attractive concept in the field of anti-infective lead discovery and has been exploited successfully yielding a number of drugs on the market. Next to their essential role in degrading the virus-encoded polyprotein to functionally relevant units, viral proteases can be involved in further processes relevant to viral replication such as interaction to host proteins. Despite the promising nature of this drug discovery concept in general, lead discovery strategies against flavivirus-caused diseases such as Dengue- and West Nile virus infections are still at a comparably early stage. In the present contribution, recent advances targeting the proteases of Dengue and West Nile viruses are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abz:

o-Aminobenzoic acid

Ac:

Acetyl

ACMC:

7-Amino-3-carbamoylmethyl-4-methyl-coumarin

Ag:

Agmatine, 4-aminobutylguanidine

AMC:

4-Methylcoumaryl-7-amide

BHK21:

Baby hamster kidney cells

Boc:

t-Butoxycarbonyl

Bz:

Benzoyl

Cit:

Citrulline

cmpd(s):

Compound(s)

CNS:

Central nervous system

DEV:

Dengue virus

DEVpro :

Dengue virus protease

DNS:

Dansyl

EDDnp:

N-(2,4-dinitrophenyl)ethylenediamine

FL:

Full length

GCMA:

trans-(4-guanidino)cyclohexylmethylamide

HTS:

High-throughput-screening

ITC:

Isothermal titration calorimetry

Itz:

Iminothiazolidine

2-Naph:

2-Naphthoyl

nL:

Norleucine

nY-NH2 :

3-Nitrotyrosineamide

O:

Hydroxyprolin

Orn:

Ornithine

PDB:

Protein data bank

pG:

Pyroglutamyl

Ph:

Phenyl

Phac:

Phenacetyl

PI:

Protease inhibitor

pNA:

para nitroanilide

SAR:

Structure–activity relationship

SAXS:

Small-angle X-ray scattering

SPR:

Surface plasmon resonance

WNV:

West Nile virus

WNVpro :

WNV protease

Z:

Benzyloxycarbonyl

References

  1. Simmons CP, Farrar JJ, van Vinh Chau N, Wills B (2012) Dengue. N Engl J Med 366(15):1423–1432

    CAS  Google Scholar 

  2. Klein C (2010) Dengue- und West-Nil-Virus. Antivirale Strategien. Pharm Unser Zeit 39(1):50–53

    Google Scholar 

  3. Steuber H, Hilgenfeld R (2010) Recent advances in targeting viral proteases for the discovery of novel antivirals. Curr Top Med Chem 10(3):323–345

    CAS  Google Scholar 

  4. Gubler DJ (2011) Dengue, urbanization and globalization: the Unholy Trinity of the 21st century. Trop Med Health 39(4 Suppl):3–11

    Google Scholar 

  5. Rezza G (2012) Aedes albopictus and the reemergence of Dengue. BMC Public Health 12:72

    Google Scholar 

  6. Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92(6):1377–1390

    Google Scholar 

  7. Allwinn R, Hofknecht N, Doerr HW (2008) Dengue in travellers is still underestimated. Intervirology 51(2):96–100

    Google Scholar 

  8. Griffiths P (2008) Viruses in the era of global warming. Rev Med Virol 18(2):69–71

    Google Scholar 

  9. Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109(Suppl 2):223–233

    Google Scholar 

  10. Beebe NW, Cooper RD, Mottram P, Sweeney AW (2009) Australia’s Dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3(5):e429

    Google Scholar 

  11. Cyranoski D (2012) Modified mosquitoes set to quash dengue fever. Nature. doi:10.1038/nature.2012.9752

    Google Scholar 

  12. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323(5910):141–144

    CAS  Google Scholar 

  13. Lam SK, Burke D, Gubler D, Méndez-Gálvan J, Thomas L (2012) Call for a World Dengue Day. Lancet 379(9814):411–412

    Google Scholar 

  14. Leo YS, Ng LC, Cutter J (2011) Dengue research in Singapore marking the inaugural ASEAN Dengue Day. Ann Acad Med Singapore 40(12):520–522

    Google Scholar 

  15. Halstead SB (2007) Dengue. Lancet 370(9599):1644–1652

    Google Scholar 

  16. Murgue B (2010) Severe dengue: questioning the paradigm. Microbes Infect 12(2):113–118

    Google Scholar 

  17. Whitehorn J, Farrar J (2010) Dengue. Br Med Bull 95:161–173

    Google Scholar 

  18. Rajapakse S, Rodrigo C, Rajapakse A (2012) Treatment of Dengue fever. Infect Drug Resist 5:103–112

    Google Scholar 

  19. Bhattacharya MK, Maitra S, Ganguly A, Bhattacharya A, Sinha A (2013) Dengue: a growing menace – a snapshot of recent facts. Figures & remedies. Int J Biomed Sci 9(2):61–67

    CAS  Google Scholar 

  20. Guzman MG, Kouri G (2008) Dengue haemorrhagic fever integral hypothesis: confirming observations, 1987–2007. Trans R Soc Trop Med Hyg 102(6):522–523

    Google Scholar 

  21. Paessler S, Walker DH (2013) Pathogenesis of the viral hemorrhagic fevers. Annu Rev Pathol Mech Dis 8:411–440

    CAS  Google Scholar 

  22. Sun P, Kochel TJ (2013) The battle between infection and host immune responses of Dengue virus and its implication in Dengue disease pathogenesis. Sci World J 2013:843469

    Google Scholar 

  23. Whitehorn J, Simmons CP (2011) The pathogenesis of dengue. Vaccine 29(42):7221–7228

    CAS  Google Scholar 

  24. Malavige GN, Ogg G (2012) Pathogenesis of severe dengue infection. Ceylon Med J 57(3):97–100

    CAS  Google Scholar 

  25. Murphy BR, Whitehead SS (2011) Immune response to Dengue virus and prospects for a vaccine. Annu Rev Immunol 29:587–619

    CAS  Google Scholar 

  26. del Angel RM, Reyes-del Valle J (2013) Dengue vaccines: strongly sought but not a reality just yet. PLoS Pathog 9(10):e1003551

    Google Scholar 

  27. McArthur MA, Sztein MB, Edelman R (2013) Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert Rev Vaccines 12(8):933–953

    CAS  Google Scholar 

  28. Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, Jiwariyavej V, Dulyachai W, Pengsaa K, Wartel TA, Moureau A, Saville M, Bouckenooghe A, Viviani S, Tornieporth NG, Lang J (2012) Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380(9853):1559–1567

    CAS  Google Scholar 

  29. Mahalingam S, Herring BL, Halstead SB (2013) Call to action for Dengue vaccine failure. Emerg Infect Dis 19(8):1335–1337

    Google Scholar 

  30. Petersen LR, Hayes EB (2008) West Nile Virus in the Americas. Med Clin N Am 92(6):1307–1322

    Google Scholar 

  31. Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371(9611):500–509

    CAS  Google Scholar 

  32. Lindsey NP, Lehman JA, Staples E, Fischer M (2013) West Nile virus and other arboviral diseases--United States, 2012. MMWR Morb Mortal Wkly Rep 62(25):513–517

    Google Scholar 

  33. Fredericksen BL (2013) The neuroimmune response to West Nile virus. J Neurovirol. doi:10.1007/s13365-13013-10180-z

  34. Ulbert S (2011) West Nile Virus: the complex biology of an emerging pathogen. Intervirology 54(4):171–184

    Google Scholar 

  35. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR (2008) West Nile Virus NS2B/NS3 protease as an antiviral target. Curr Med Chem 15(27):2771–2784

    CAS  Google Scholar 

  36. Lescar J, Luo D, Xu T, Sampath A, Lim SP, Canard B, Vasudevan SG (2008) Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res 80(2):94–101

    CAS  Google Scholar 

  37. Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59:23–61

    CAS  Google Scholar 

  38. Sampath A, Padmanabhan R (2009) Molecular targets for flavivirus drug discovery. Antiviral Res 81(1):6–15

    CAS  Google Scholar 

  39. Bera AK, Kuhn RJ, Smith JL (2007) Functional characterization of cis and trans activity of the flavivirus NS2B-NS3 protease. J Biol Chem 282(17):12883–12892

    CAS  Google Scholar 

  40. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR (2007) Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3. Protein Expr Purif 53(1):87–96

    CAS  Google Scholar 

  41. Wang P, Dai J, Bai F, Kong KF, Wong SJ, Montgomery RR, Madri JA, Fikrig E (2008) Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 82(18):8978–8985

    CAS  Google Scholar 

  42. Shiryaev SA, Ratnikov BI, Chekanov AV, Sikora S, Rozanov DV, Godzik A, Wang J, Smith JW, Huang Z, Lindberg I, Samuel MA, Diamond MS, Strongin AY (2006) Cleavage targets and the d-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem J 393:503–511

    CAS  Google Scholar 

  43. Bazan JF, Fletterick RJ (1989) Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171(2):637–639

    CAS  Google Scholar 

  44. Chambers TJ, Weir RC, Grakoui A, McCourt DW, Bazan JF, Fletterick RJ, Rice CM (1990) Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A 87(22):8898–8902

    CAS  Google Scholar 

  45. Murthy HM, Clum S, Padmanabhan R (1999) Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J Biol Chem 274(9):5573–5580

    CAS  Google Scholar 

  46. Murthy HM, Judge K, DeLucas L, Padmanabhan R (2000) Crystal structure of Dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J Mol Biol 301(4):759–767

    CAS  Google Scholar 

  47. Yan Y, Li Y, Munshi S, Sardana V, Cole JL, Sardana M, Steinkuehler C, Tomei L, De Francesco R, Kuo LC, Chen Z (1998) Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: A 2.2 Å resolution structure in a hexagonal crystal form. Protein Sci 7(4):837–847

    CAS  Google Scholar 

  48. Dauter Z, Baker EN (2010) Black sheep among the flock of protein structures. Acta Crystallogr Sect D Biol Crystallogr 66:1

    Google Scholar 

  49. Borrell B (2009) Fraud rocks protein community. Nature 462(7276):970

    Google Scholar 

  50. Berman HM, Kleywegt GJ, Nakamura H, Markley JL, Burley SK (2010) Safeguarding the integrity of protein archive. Nature 463(7280):425

    Google Scholar 

  51. Erbel P, Schiering N, D'Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, Vasudevan SG, Hommel U (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13(4):372–373

    CAS  Google Scholar 

  52. Noble CG, Seh CC, Chao AT, Shi PY (2012) Ligand-bound structures of the Dengue virus protease reveal the active conformation. J Virol 86(1):438–446

    CAS  Google Scholar 

  53. Chandramouli S, Joseph JS, Daudenarde S, Gatchalian J, Cornillez-Ty C, Kuhn P (2010) Serotype-specific structural differences in the protease-cofactor complexes of the Dengue virus family. J Virol 84(6):3059–3067

    CAS  Google Scholar 

  54. Luo D, Xu T, Hunke C, Gruber G, Vasudevan SG, Lescar J (2008) Crystal structure of the NS3 protease-helicase from Dengue virus. J Virol 82(1):173–183

    CAS  Google Scholar 

  55. Luo D, Wei N, Doan DN, Paradkar PN, Chong Y, Davidson AD, Kotaka M, Lescar J, Vasudevan SG (2010) Flexibility between the protease and helicase domains of the Dengue virus NS3 protein conferred by the linker region and its functional implications. J Biol Chem 285(24):18817–18827

    CAS  Google Scholar 

  56. Yildiz M, Ghosh S, Bell JA, Sherman W, Hardy JA (2013) Allosteric inhibition of the NS2B-NS3 protease from Dengue virus. ACS Chem Biol 8(12):2744–2752

    CAS  Google Scholar 

  57. Aleshin AE, Shiryaev SA, Strongin AY, Liddington RC (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16(5):795–806

    CAS  Google Scholar 

  58. Hammamy MZ, Haase C, Hammami M, Hilgenfeld R, Steinmetzer T (2013) Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B-NS3 protease. ChemMedChem 8(2):231–241

    CAS  Google Scholar 

  59. Robin G, Chappell K, Stoermer MJ, Hu SH, Young PR, Fairlie DP, Martin JL (2009) Structure of West Nile virus NS3 protease: ligand stabilization of the catalytic conformation. J Mol Biol 385(5):1568–1577

    CAS  Google Scholar 

  60. Noble CG, Shi PY (2012) Structural biology of Dengue virus enzymes: towards rational design of therapeutics. Antiviral Res 96(2):115–126

    CAS  Google Scholar 

  61. Shiryaev SA, Kozlov IA, Ratnikov BI, Smith JW, Lebl M, Strongin AY (2007) Cleavage preference distinguishes the two-component NS2B-NS3 serine proteinases of Dengue and West Nile viruses. Biochem J 401(3):743–752

    CAS  Google Scholar 

  62. Doan DN, Li KQ, Basavannacharya C, Vasudevan SG, Madhusudhan MS (2012) Transplantation of a hydrogen bonding network from West Nile virus protease onto Dengue-2 protease improves catalytic efficiency and sheds light on substrate specificity. Protein Eng Des Sel 25(12):843–850

    CAS  Google Scholar 

  63. Schüller A, Yin Z, Brian Chia CS, Doan DN, Kim HK, Shang L, Loh TP, Hill J, Vasudevan SG (2011) Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease. Antiviral Res 92(1):96–101

    Google Scholar 

  64. de la Cruz L, Nguyen TH, Ozawa K, Shin J, Graham B, Huber T, Otting G (2011) Binding of low molecular weight inhibitors promotes large conformational changes in the Dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts. J Am Chem Soc 133(47):19205–19215

    Google Scholar 

  65. Kim YM, Gayen S, Kang C, Joy J, Huang Q, Chen AS, Wee JL, Ang MJ, Lim HA, Hung AW, Li R, Noble CG, le Lee T, Yip A, Wang QY, Chia CS, Hill J, Shi PY, Keller TH (2013) NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. J Biol Chem 288(18):12891–12900

    CAS  Google Scholar 

  66. Garces AP, Watowich SJ (2013) Intrinsic flexibility of west nile virus protease in solution characterized using small-angle X-ray scattering. Biochemistry 52(39):6856–6865

    CAS  Google Scholar 

  67. Leung D, Schroder K, White H, Fang NX, Stoermer MJ, Abbenante G, Martin JL, Young PR, Fairlie DP (2001) Activity of recombinant Dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 276(49):45762–45771

    CAS  Google Scholar 

  68. Khumthong R, Angsuthanasombat C, Panyim S, Katzenmeier G (2002) In vitro determination of Dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates. J Biochem Mol Biol 35(2):206–212

    CAS  Google Scholar 

  69. Khumthong R, Niyomrattanakit P, Chanprapaph S, Angsuthanasombat C, Panyim S, Katzenmeier G (2003) Steady-sate cleavage kinetics for Dengue virus type 2 NS2b-NS3(pro) serine protease with synthetic peptides. Protein Pept Lett 10(1):19–26

    CAS  Google Scholar 

  70. Gouvea IE, Izidoro MA, Judice WA, Cezari MH, Caliendo G, Santagada V, dos Santos CN, Queiroz MH, Juliano MA, Young PR, Fairlie DP, Juliano L (2007) Substrate specificity of recombinant dengue 2 virus NS2B-NS3 protease: influence of natural and unnatural basic amino acids on hydrolysis of synthetic fluorescent substrates. Arch Biochem Biophys 457(2):187–196

    CAS  Google Scholar 

  71. Niyomrattanakit P, Yahorava S, Mutule I, Mutulis F, Petrovska R, Prusis P, Katzenmeier G, Wikberg JE (2006) Probing the substrate specificity of the dengue virus type 2 NS3 serine protease by using internally quenched fluorescent peptides. Biochem J 397(1):203–211

    CAS  Google Scholar 

  72. Prusis P, Lapins M, Yahorava S, Petrovska R, Niyomrattanakit P, Katzenmeier G, Wikberg JE (2008) Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorg Med Chem 16(20):9369–9377

    CAS  Google Scholar 

  73. Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R (2000) Purified NS2B/NS3 serine protease of Dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275(14):9963–9969

    CAS  Google Scholar 

  74. Li J, Lim SP, Beer D, Patel V, Wen D, Tumanut C, Tully DC, Williams JA, Jiricek J, Priestle JP, Harris JL, Vasudevan SG (2005) Functional profiling of recombinant NS3 proteases from all four serotypes of Dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280(31):28766–28774

    CAS  Google Scholar 

  75. Mueller NH, Yon C, Ganesh VK, Padmanabhan R (2007) Characterization of the West Nile virus protease substrate specificity and inhibitors. Int J Biochem Cell Biol 39(3):606–614

    CAS  Google Scholar 

  76. Nall TA, Chappell KJ, Stoermer MJ, Fang NX, Tyndall JD, Young PR, Fairlie DP (2004) Enzymatic characterization and homology model of a catalytically active ecombinant West Nile Virus NS3 protease. J Biol Chem 279(47):48535–48542

    CAS  Google Scholar 

  77. Ezgimen MD, Mueller NH, Teramoto T, Padmanabhan R (2009) Effects of detergents on the West Nile Virus protease activity. Bioorg Med Chem 17(9):3278–3282

    CAS  Google Scholar 

  78. Steuer C, Heinonen KH, Kattner L, Klein CD (2009) Optimization of assay conditions for dengue virus protease: effect of various polyols and nonionic detergents. J Biomol Screen 14(9):1102–1108

    CAS  Google Scholar 

  79. Shiryaev SA, Ratnikov BI, Aleshin AE, Kozlov IA, Nelson NA, Lebl M, Smith JW, Liddington RC, Strongin AY (2007) Switching the substrate specificity of the two-component NS2B-NS3 flavivirus proteinase by structure-based mutagenesis. J Virol 81(9):4501–4509

    CAS  Google Scholar 

  80. Tomlinson SM, Watowich SJ (2008) Substrate inhibition kinetic model for West Nile Virus NS2B-NS3 protease. Biochemistry 47(45):11763–11770

    CAS  Google Scholar 

  81. Chappell KJ, Nall TA, Stoermer MJ, Fang NX, Tyndall JD, Fairlie DP, Young PR (2005) Site-directed mutagenesis and kinetic studies of the West Nile virus NS3 protease identify key enzyme-substrate interactions. J Biol Chem 280(4):2896–2903

    CAS  Google Scholar 

  82. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR (2006) Insights to substrate binding and processing by West Nile Virus NS3 protease through combined modeling, protease mutagenesis, and kinetic studies. J Biol Chem 281(50):38448–38458

    CAS  Google Scholar 

  83. Chanprapaph S, Saparpakorn P, Sangma C, Niyomrattanakit P, Hannongbua S, Angsuthanasombat C, Katzenmeier G (2005) Competitive inhibition of the dengue virus NS3 serine protease by synthetic peptides representing polyprotein cleavage sites. Biochem Biophys Res Commun 330(4):1237–1246

    CAS  Google Scholar 

  84. Yin Z, Patel SJ, Wang WL, Wang G, Chan WL, Rao KR, Alam J, Jeyaraj DA, Ngew X, Patel V, Beer D, Lim SP, Vasudevan SG, Keller TH (2006) Peptide inhibitors of Dengue virus NS3 protease. Part 1: Warhead. Bioorg Med Chem Lett 16(1):36–39

    CAS  Google Scholar 

  85. Yin Z, Patel SJ, Wang WL, Chan WL, Ranga Rao KR, Wang G, Ngew X, Patel V, Beer D, Knox JE, Ma NL, Ehrhardt C, Lim SP, Vasudevan SG, Keller TH (2006) Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorg Med Chem Lett 16(1):40–43

    CAS  Google Scholar 

  86. Nitsche C, Behnam MA, Steuer C, Klein CD (2012) Retro peptide-hybrids as selective inhibitors of the Dengue virus NS2B-NS3 protease. Antiviral Res 94(1):72–79

    CAS  Google Scholar 

  87. Nitsche C, Schreier VN, Behnam MA, Kumar A, Bartenschlager R, Klein CD (2013) Thiazolidinone-peptide hybrids as Dengue virus protease inhibitors with antiviral activity in cell culture. J Med Chem 56(21):8389–8403

    CAS  Google Scholar 

  88. Prusis P, Junaid M, Petrovska R, Yahorava S, Yahorau A, Katzenmeier G, Lapins M, Wikberg JE (2013) Design and evaluation of substrate-based octapeptide and non substrate-based tetrapeptide inhibitors of Dengue virus NS2B-NS3 proteases. Biochem Biophys Res Commun 434(4):767–772

    CAS  Google Scholar 

  89. Gao Y, Cui T, Lam Y (2010) Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease. Bioorg Med Chem 18(3):1331–1336

    CAS  Google Scholar 

  90. Xu S, Li H, Shao X, Fan C, Ericksen B, Liu J, Chi C, Wang C (2012) Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J Med Chem 55(15):6881–6887

    CAS  Google Scholar 

  91. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA, Yusof R (2012) Protegrin-1 inhibits Dengue NS2B-NS3 serine protease and viral replication in MK2 cells. J Biomed Biotechnol 2012:251482

    Google Scholar 

  92. Rothan HA, Han HC, Ramasamy TS, Othman S, Rahman NA, Yusof R (2012) Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect Dis 12:314

    CAS  Google Scholar 

  93. Knox JE, Ma NL, Yin Z, Patel SJ, Wang WL, Chan WL, Ranga Rao KR, Wang G, Ngew X, Patel V, Beer D, Lim SP, Vasudevan SG, Keller TH (2006) Peptide inhibitors of West Nile NS3 protease: SAR study of tetrapeptide aldehyde inhibitors. J Med Chem 49(22):6585–6590

    CAS  Google Scholar 

  94. Stoermer MJ, Chappell KJ, Liebscher S, Jensen CM, Gan CH, Gupta PK, Xu WJ, Young PR, Fairlie DP (2008) Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability. cell permeability and antiviral activity. J Med Chem 51(18):5714–5721

    CAS  Google Scholar 

  95. Lim HA, Joy J, Hill J, San Brian Chia C (2011) Novel agmatine and agmatine-like peptidomimetic inhibitors of the West Nile virus NS2B/NS3 serine protease. Eur J Med Chem 46(7):3130–3134

    CAS  Google Scholar 

  96. Kang C, Gayen S, Wang W, Severin R, Chen AS, Lim HA, Chia CS, Schüller A, Doan DN, Poulsen A, Hill J, Vasudevan SG, Keller TH (2013) Exploring the binding of peptidic West Nile virus NS2B-NS3 protease inhibitors by NMR. Antiviral Res 97(2):137–144

    CAS  Google Scholar 

  97. Lim HA, Ang MJ, Joy J, Poulsen A, Wu W, Ching SC, Hill J, Chia CS (2013) Novel agmatine dipeptide inhibitors against the West Nile virus NS2B/NS3 protease: a P3 and N-cap optimization study. Eur J Med Chem 62:199–205

    CAS  Google Scholar 

  98. Ganesh VK, Muller N, Judge K, Luan CH, Padmanabhan R, Murthy KH (2005) Identification and characterization of nonsubstrate based inhibitors of the essential dengue and West Nile virus proteases. Bioorg Med Chem 13(1):257–264

    CAS  Google Scholar 

  99. Cregar-Hernandez L, Jiao GS, Johnson AT, Lehrer AT, Wong TA, Margosiak SA (2011) Small molecule Pan-Dengue and West Nile virus NS3 protease inhibitors. Antivir Chem Chemother 21(5):209–218

    CAS  Google Scholar 

  100. Knehans T, Schüller A, Doan DN, Nacro K, Hill J, Güntert P, Madhusudhan MS, Weil T, Vasudevan SG (2011) Structure-guided fragment-based in silico drug design of dengue protease inhibitors. J Comput Aided Mol Des 25(3):263–274

    CAS  Google Scholar 

  101. Tomlinson SM, Watowich SJ (2012) Use of parallel validation high-throughput screens to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors. Antiviral Res 93(2):245–252

    CAS  Google Scholar 

  102. Yang CC, Hsieh YC, Lee SJ, Wu SH, Liao CL, Tsao CH, Chao YS, Chern JH, Wu CP, Yueh A (2011) Novel Dengue virus-specific NS2B/NS3 protease inhibitor, BP2109. Discovered by a high-throughput screening assay. Antimicrob Agents Chemother 55(1):229–238

    CAS  Google Scholar 

  103. Tomlinson SM, Watowich SJ (2011) Anthracene-based Inhibitors of Dengue Virus NS2B-NS3 Protease. Antiviral Res 89(2):127–135

    CAS  Google Scholar 

  104. Tomlinson SM, Malmstrom RD, Russo A, Mueller N, Pang YP, Watowich SJ (2009) Structure-based discovery of dengue virus protease inhibitors. Antiviral Res 82(3):110–114

    CAS  Google Scholar 

  105. Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA (2006) Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards Dengue-2 virus NS3 protease. Bioorg Med Chem Lett 16(12):3337–3340

    CAS  Google Scholar 

  106. Heh CH, Othman R, Buckle MJ, Sharifuddin Y, Yusof R, Rahman NA (2013) Rational discovery of Dengue type 2 non-competitive inhibitors. Chem Biol Drug Des 82(1):1–11

    CAS  Google Scholar 

  107. Deng J, Li N, Liu H, Zuo Z, Liew OW, Xu W, Chen G, Tong X, Tang W, Zhu J, Zuo J, Jiang H, Yang CG, Li J, Zhu W (2012) Discovery of novel small molecule inhibitors of Dengue viral NS2B-NS3 protease using virtual screening and scaffold hopping. J Med Chem 55(14):6278–6293

    CAS  Google Scholar 

  108. Bodenreider C, Beer D, Keller TH, Sonntag S, Wen D, Yap L, Yau YH, Shochat SG, Huang D, Zhou T, Caflisch A, Su XC, Ozawa K, Otting G, Vasudevan SG, Lescar J, Lim SP (2009) A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of Dengue virus protease. Anal Biochem 395(2):195–204

    CAS  Google Scholar 

  109. Su XC, Ozawa K, Yagi H, Lim SP, Wen D, Ekonomiuk D, Huang D, Keller TH, Sonntag S, Caflisch A, Vasudevan SG, Otting G (2009) NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease. Febs J 276(15):4244–4255

    CAS  Google Scholar 

  110. Steuer C, Gege C, Fischl W, Heinonen KH, Bartenschlager R, Klein CD (2011) Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg Med Chem 19(13):4067–4074

    CAS  Google Scholar 

  111. Nitsche C, Steuer C, Klein CD (2011) Arylcyanoacrylamides as inhibitors of the Dengue and West Nile virus proteases. Bioorg Med Chem 19(24):7318–7337

    CAS  Google Scholar 

  112. Tiew KC, Dou D, Teramoto T, Lai H, Alliston KR, Lushington GH, Padmanabhan R, Groutas WC (2012) Inhibition of Dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives. Bioorg Med Chem 20(3):1213–1221

    CAS  Google Scholar 

  113. Lai H, Dou D, Aravapalli S, Teramoto T, Lushington GH, Mwania TM, Alliston KR, Eichhorn DM, Padmanabhan R, Groutas WC (2013) Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: potent inhibitors of Dengue and West Nile virus NS2B/NS3 proteases. Bioorg Med Chem 21(1):102–113

    CAS  Google Scholar 

  114. Aravapalli S, Lai H, Teramoto T, Alliston KR, Lushington GH, Ferguson EL, Padmanabhan R, Groutas WC (2012) Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold. Bioorg Med Chem 20(13):4140–4148

    CAS  Google Scholar 

  115. Nguyen TT, Lee S, Wang HK, Chen HY, Wu YT, Lin SC, Kim DW, Kim D (2013) In vitro evaluation of novel inhibitors against the NS2B-NS3 protease of Dengue fever virus type 4. Molecules 18(12):15600–15612

    Google Scholar 

  116. Zhou GC, Weng Z, Shao X, Liu F, Nie X, Liu J, Wang D, Wang C, Guo K (2013) Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-NS3 protease inhibitors. Bioorg Med Chem Lett 23(24):6549–6554

    CAS  Google Scholar 

  117. Mueller NH, Pattabiraman N, Ansarah-Sobrinho C, Viswanathan P, Pierson TC, Padmanabhan R (2008) Identification and biochemical characterization of small-molecule inhibitors of West Nile virus serine protease by a high-throughput screen. Antimicrob Agents Chemother 52(9):3385–3393

    CAS  Google Scholar 

  118. Ezgimen M, Lai H, Mueller NH, Lee K, Cuny G, Ostrov DA, Padmanabhan R (2012) Characterization of the 8-hydroxyquinoline scaffold for inhibitors of West Nile virus serine protease. Antiviral Res 94(1):18–24

    CAS  Google Scholar 

  119. Lai H, Sridhar Prasad G, Padmanabhan R (2013) Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of Dengue virus type 2 protease in vitro. Antiviral Res 97(1):74–80

    CAS  Google Scholar 

  120. Shiryaev SA, Cheltsov AV, Gawlik K, Ratnikov BI, Strongin AY (2011) Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile virus NS3 proteinase. Assay Drug Dev Technol 9(1):69–78

    CAS  Google Scholar 

  121. Samanta S, Cui T, Lam Y (2012) Discovery, synthesis, and in vitro evaluation of West Nile virus protease inhibitors based on the 9,10-dihydro-3H,4aH-1,3,9,10a-tetraazaphenanthren-4-one scaffold. ChemMedChem 7(7):1210–1216

    CAS  Google Scholar 

  122. Samanta S, Lim TL, Lam Y (2013) Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 2-{6-[2-(5-Phenyl-4H-{1,2,4]triazol-3-ylsulfanyl)acetylamino]benzothiazol-2-ylsul fanyl}acetamide scaffold. ChemMedChem 8(6):994–1001

    CAS  Google Scholar 

  123. Gao Y, Samanta S, Cui T, Lam Y (2013) Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 1,3,4,5-tetrasubstituted 1H-Pyrrol-2(5H)-one scaffold. ChemMedChem 8(9):1554–1560

    CAS  Google Scholar 

  124. Johnston PA, Phillips J, Shun TY, Shinde S, Lazo JS, Huryn DM, Myers MC, Ratnikov BI, Smith JW, Su Y, Dahl R, Cosford ND, Shiryaev SA, Strongin AY (2007) HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus. Assay Drug Dev Technol 5(6):737–750

    CAS  Google Scholar 

  125. Sidique S, Shiryaev SA, Ratnikov BI, Herath A, Su Y, Strongin AY, Cosford ND (2009) Structure-activity relationship and improved hydrolytic stability of pyrazole derivatives that are allosteric inhibitors of West Nile virus NS2B-NS3 proteinase. Bioorg Med Chem Lett 19(19):5773–5777

    CAS  Google Scholar 

  126. Ekonomiuk D, Su XC, Ozawa K, Bodenreider C, Lim SP, Otting G, Huang D, Caflisch A (2009) Flaviviral protease inhibitors identified by fragment-based library docking into a structure generated by molecular dynamics. J Med Chem 52(15):4860–4868

    CAS  Google Scholar 

  127. Ekonomiuk D, Su XC, Ozawa K, Bodenreider C, Lim SP, Yin Z, Keller TH, Beer D, Patel V, Otting G, Caflisch A, Huang D (2009) Discovery of a non-peptidic inhibitor of West Nile virus NS3 protease by high-throughput docking. PLoS Negl Trop Dis 3(1):e356

    Google Scholar 

  128. Dou D, Viwanathan P, Li Y, He G, Alliston KR, Lushington GH, Brown-Clay JD, Padmanabhan R, Groutas WC (2010) Design, synthesis, and in vitro evaluation of potential West Nile virus protease inhibitors based on the 1-Oxo-1,2,3,4-tetrahydroisoquinoline and 1-Oxo-1,2-dihydroisoquinoline Scaffolds. J Comb Chem 12(6):836–843

    CAS  Google Scholar 

  129. Jia F, Zou G, Fan J, Yuan Z (2010) Identification of palmatine as an inhibitor of West Nile virus. Arch Virol 155(8):1325–1329

    CAS  Google Scholar 

  130. Anderson AC, Pollastri MP, Schiffer CA, Peet NP (2011) The challenge of developing robust drugs to overcome resistance. Drug Discov Today 16(17–18):755–761

    CAS  Google Scholar 

  131. Parkinson T, Pryde DC (2010) Small molecule drug discovery for Dengue and West Nile viruses: applying experience from hepatitis C virus. Future Med Chem 2(7):1181–1203

    CAS  Google Scholar 

  132. Schmidt WN, Nelson DR, Pawlotsky JM, Sherman KE, Thomas DL, Chung RT (2014) Direct-acting antiviral agents and the path to interferon independence. Clin Gastroenterol Hepatol. doi:10.1016/j.cgh.2013.06.024

    Google Scholar 

  133. Nalam MN, Schiffer CA (2008) New approaches to HIV protease inhibitor drug design II: testing the substrate envelope hypothesis to avoid drug resistance and discover robust inhibitors. Curr Opin HIV AIDS 3(6):642–646

    Google Scholar 

  134. Lefebvre E, Schiffer CA (2008) Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir. AIDS Rev 10(3):131–142

    Google Scholar 

  135. Romano KP, Ali A, Royer WE, Schiffer CA (2010) Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci U S A 107(49):20986–20991

    CAS  Google Scholar 

  136. Romano KP, Ali A, Aydin C, Soumana D, Özen A, Deveau LM, Silver C, Cao H, Newton A, Petropoulos CJ, Huang W, Schiffer CA (2012) The molecular basis of drug resistance against Hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog 8(7):e1002832

    Google Scholar 

  137. Anderson J, Schiffer C, Lee S-K, Swanstrom R (2009) Viral protease inhibitors. In: Kräusslich H-G, Bartenschlager R (eds) Antiviral strategies, handbook of experimental pharmacology. Springer, Berlin, pp 85–110

    Google Scholar 

  138. Maschera B, Darby G, Palú G, Wright LL, Tisdale M, Myers R, Blair ED, Furfine ES (1996) Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J Biol Chem 271(52):33231–33235

    CAS  Google Scholar 

  139. Yuthavong Y, Tarnchompoo B, Vilaivan T, Chitnumsub P, Kamchonwongpaisan S, Charman SA, McLennan DN, White KL, Vivas L, Bongard E, Thongphanchang C, Taweechai S, Vanichtanankul J, Rattanajak R, Arwon U, Fantauzzi P, Yuvaniyama J, Charman WN, Matthews D (2012) Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci U S A 109(42):16823–16828

    CAS  Google Scholar 

  140. Copeland RA (2013) Drug–target residence time. In: Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists, 2nd edn. Wiley, Hoboken, doi:10.1002/9781118540398.ch8

  141. Hay S (2013) Football fever could be a dose of dengue. Nature 503(7477):439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Steuber or Wibke E. Diederich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steuber, H., Kanitz, M., Ehlert, F.G.R., Diederich, W.E. (2014). Recent Advances in Targeting Dengue and West Nile Virus Proteases Using Small Molecule Inhibitors. In: Diederich, W., Steuber, H. (eds) Therapy of Viral Infections. Topics in Medicinal Chemistry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2014_46

Download citation

Publish with us

Policies and ethics