Skip to main content

Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems

  • Chapter
  • First Online:
The Blood Brain Barrier (BBB)

Abstract

Research in the field of nano-neuroscience is becoming a promising future direction given the advantages presented by nanosystems for central nervous system (CNS) drug delivery. Since the blood–brain barrier (BBB) represents an invincible obstacle for the majority of drugs such as antineoplastic agents and a variety of psychoactive drugs such as neuropeptides, “smart” CNS drug delivery systems with high ability to deliver substances across the BBB are highly desired and will not only enable drugs to reach the CNS but also target specific areas of the CNS. Thus, injectable biodegradable nanoparticles have an important potential application in the treatment of a variety of neurological and psychiatric disorders. Therefore, in the following, we will highlight the requirement and importance of CNS drug delivery systems with particular emphasis on nano-scale systems. It is the objective of this article to offer a perspective on the complexity and challenges in fabrication of nanostructures, in vivo nano–bio interactions and also to highlight some of the most used nanosystems for drug delivery into the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardridge WM (2003) Blood brain barrier drug targeting: the future of brain drug development. Mol Interv 3:90–105

    Article  CAS  Google Scholar 

  2. Burke M, Langer R, Brim H (1999) Central nervous system: drug delivery to treat. Wiley, New York

    Google Scholar 

  3. Ambikanandan M, Ganesh S, Aliasgar S (2003) Drug delivery to the central nervous system: a review. J Pharm Pharmaceut Sci 6(2):252–273

    Google Scholar 

  4. Jones DR, Hall SD, Jackson EK, Branch RA, Wilkinson GR (1988) Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding. J Pharmacol Exp Ther 245(3):816–822

    Google Scholar 

  5. Begley DJ, Sqiires LK, Zlokovic BV et al (1990) Permeability of the blood–brain barrier to the immunosuppresive cyclic peptide cyclosporin A. J Neurochem 55:1222–1230

    Article  CAS  Google Scholar 

  6. Tsuji A, Tamai I (1997) Blood–brain barrier function of P-glycoprotein. Adv Drug Del Rev 25(2):287–298

    Article  CAS  Google Scholar 

  7. Cordon-Cardo C, O’Brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc Natl Acad Sci USA 86:695–698

    Article  CAS  Google Scholar 

  8. Borst P, Evers R, Kool M et al (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  CAS  Google Scholar 

  9. Sun H, Dai H, Shaik N et al (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55:83–105

    Article  CAS  Google Scholar 

  10. Saito Y, Wright EM (1983) Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J Physiol 336:635–648

    CAS  Google Scholar 

  11. Yarchoan R, Broder S (1987) Development of antiretroviral therapy for the acquired immunodeficiency syndrome and related disorders. N Engl J Med 316:557–564

    Article  CAS  Google Scholar 

  12. Dykstra KH, Arya A, Arriola DM et al (1993) Microdialysis study of zidovudine (AZT) transport in rat brain. J Pharmacol Exp Ther 267:1227–1236

    CAS  Google Scholar 

  13. Mak M, Fung L, Strasser JF et al (1995) Distribution of drugs following controlled delivery to the brain interstitium. J Neurooncol 1995(26):91–102

    Article  Google Scholar 

  14. Oldendorf WH (1972) Cerebrospinal fluid formation and circulation. Prog Nuc Med 1:336–358

    CAS  Google Scholar 

  15. Davson H (1969) The cerebrospinal fluid. Handbook Neurochem 2:23–48

    Article  CAS  Google Scholar 

  16. Lorenzo AV, Hedley-Whyte ET, Eisenberg JM et al (1975) Increased penetration of horseradish peroxidase across the blood–brain barrier induced by Metrazol seizures. Brain Res 88:136–140

    Article  CAS  Google Scholar 

  17. Neuwelt EA, Dahlborg SA (1989) Blood–brain barrier disruption in the treatment of brain tumors: clinical implications. In: Neuwelt EA (ed) Implications of the blood brain barrier and its manipulation: clinical aspects, vol 2. Plenum, New York, pp 195–262

    Chapter  Google Scholar 

  18. Chio CC, Baba T, Black KL (1992) Selective blood–tumor pro-barrier disruption by leukotrienes. J Neurosurg 77:407–410

    Article  CAS  Google Scholar 

  19. Bodor N, Buchwald P (1997) Drug targeting via retrometabolic approaches. Pharmacol Ther 76:1–27

    Article  CAS  Google Scholar 

  20. Somogyi G, Nishitani S, Nomi D et al (1998) Targeted drug delivery to the brain via phosphonate derivatives. I: design, synthesis, and evaluation of an anionic chemical delivery system for testosterone. Int J Pharm 166:15–26

    Article  CAS  Google Scholar 

  21. Bahadur S, Pathak K (2012) Physicochemical and physiological considerations for efficient nose-to-brain targeting. Exp Opin Drug Del 9(1):19–31

    Article  CAS  Google Scholar 

  22. Sandberg DI, Bilsky MH, Souweidane MM et al (2000) Ommaya reservoirs for the treatment of leptomeningeal metastases. Neurosurgery 47(1):49–54

    CAS  Google Scholar 

  23. Harbaugh RE, Saunders RL, Reeder RF (1988) Use of implantable pumps for central nervous system drug infu- sions to treat neurological disease. Neurosurgery 23(6):693–698

    Article  CAS  Google Scholar 

  24. Bartneck M, Keul HA, Zwadlo-Klarwasser G et al (2010) Phagocytosis independent extracellular nanoparticles clearance by human immune cells. Nano Lett 10:59–63

    Article  CAS  Google Scholar 

  25. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Rel 132:171–183

    Article  CAS  Google Scholar 

  26. Chonn A, Cullis PR, Devine DV (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146:234–4241

    Google Scholar 

  27. Bertrand N, Leroux JC (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Rel 161(2):152–163

    Google Scholar 

  28. Tosi G, Costantino L, Ruozi B et al (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Exp Opin Drug Del 5:155–174

    Article  CAS  Google Scholar 

  29. Shi N, Pardridge WM (2000) Noninvasive gene targeting to the brain. Prot Natl Acad Sci USA 97:7567–7572

    Article  CAS  Google Scholar 

  30. Lockman PR, Mumper RJ, Khan MA et al (2002) Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev Ind Pharm 28(1):1–13

    Article  CAS  Google Scholar 

  31. Alyautidin RN, Gother D, Petrov V (1995) Analgesic activity of the hexapeptide dalagrin adsorbed on the surface of polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Eur J Pharm Biopharm 41:44–48

    Google Scholar 

  32. Kreuter J (2004) Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 4:484–488

    Article  CAS  Google Scholar 

  33. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139

    Article  CAS  Google Scholar 

  34. Ji B, Maeda J, Higuchi M et al (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 78:851–855

    Article  CAS  Google Scholar 

  35. Scherrmann JM, Temsamani J (2005) The use of Pep: trans vectors for the delivery of drugs into the central nervous system. Int Congr Ser 1277:199–211

    Article  CAS  Google Scholar 

  36. Gabathuler R, Arthur G, Kennard M et al (2005) Development of a potential protein vector (NeuroTrans) to deliver drugs across the bloodbrain barrier. Int Congr Ser 1277:171–184

    Article  CAS  Google Scholar 

  37. Chakraborty C, Sarkar B, Hsu CH et al (2009) Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol 93:285–286

    Article  CAS  Google Scholar 

  38. Umezawa F, EtoY (1988) Liposomes targeting to mouse brain: mannose as a recognition marker. Biochem Biophys Res Comm153:1038–1044

    Google Scholar 

  39. Wu D, Pardridge WM (1999) Blood–brain barrier transport of reduced folic acid. Pharm Res 16:415–419

    Article  CAS  Google Scholar 

  40. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57

    Article  CAS  Google Scholar 

  41. Panyam J, Labhasetwar V (2004) Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm 1:77–84

    Article  CAS  Google Scholar 

  42. Dubowchik GM, Walker MA (1999) Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharm Ther 83:67–123

    Article  CAS  Google Scholar 

  43. Savic R, Luo L, Eisenberg A et al (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618

    Article  CAS  Google Scholar 

  44. Cengelli F, Maysinger D, Tschudi-Monnet F et al (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharm Exp Therap 318:108–116

    Article  CAS  Google Scholar 

  45. Tosi G, Fano RA, Badiali L et al (2010) Peptide-engineered polylactide-co-glycolide (PLGA) nanoparticles for brain delivery of drugs: in vivo experiments and proof of concept. SfN Neurosci San Diego (USA) 1:84

    Google Scholar 

  46. Tosi G, Ruozi B, Belletti D (2012) Nanomedicine: the future for advancing medicine and neuroscience. Nanomedicine (Lond) 7(8):1113–1116

    Article  Google Scholar 

  47. Grislain L, Couvrer P, Lenaerts V (1983) Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 15:333–345

    Google Scholar 

  48. Tröster SD, Kreuter J (1988) Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly(methyl methacrylate) surfaces. Int J Pharm 45:91–100

    Article  Google Scholar 

  49. Silva GA (2008) Nanotechnology approaches to crossing the blood–brain barrier and drug delivery to the CNS. BMC Neurosci 9(Suppl 3):S4

    Google Scholar 

  50. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569

    Google Scholar 

  51. Steiniger SC, Kreuter J, Khalansky AS et al (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    Article  CAS  Google Scholar 

  52. Alyaudtin RN, Reichel A, Lobenberg R et al (2001) Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro. J Drug Target 9:209–221

    Article  CAS  Google Scholar 

  53. Schroeder U, Sommerfeld P, Ulrich S et al (1998) Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci 87:1305–1307

    Article  CAS  Google Scholar 

  54. Zhang Y, Calon F, Zhu C et al (2003) Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther 14:1–12

    Article  Google Scholar 

  55. Liu G, Men P, Peggy LR et al (2006) Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett 406(3):189–193

    Article  CAS  Google Scholar 

  56. Weiss N, Miller F, Cazaubon S et al (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788(4):842–857

    Article  CAS  Google Scholar 

  57. Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13(23–24):1099–1106

    Article  CAS  Google Scholar 

  58. Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967

    Article  CAS  Google Scholar 

  59. Koo YEL, Reddy GR, Bhojani M et al (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 85:1556–1577

    Article  Google Scholar 

  60. Juillerat-Jeanneret L (2006) Critical analysis of cancer therapy using nanomaterials. In: Kumar CSSR (ed) Nanomaterials for cancer therapy and diagnosis. Wiley-VCH, Weinheim, pp 199–232

    Google Scholar 

  61. Kreuter J, Alyautdin RN, Kharkevich DA et al (1995) Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174

    Article  CAS  Google Scholar 

  62. Alyautdin RN, Tezikov EB, Ramge P et al (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67–74

    Article  CAS  Google Scholar 

  63. Alyautdin RN, Petrov VE, Langer K et al (1997) Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328

    Article  CAS  Google Scholar 

  64. Friese A, Seiller E, Quack G et al (2000) Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcya-noacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 49:103–109

    Article  CAS  Google Scholar 

  65. Kreuter J (1995) Nanoparticulate systems in drug delivery and targeting. J Drug Target 3:171–173

    Article  CAS  Google Scholar 

  66. Aliautdin RN, Petrov VE, Ivanov AA et al (1996) Transport of the hexapeptide dalargin across the hematoencephalic barrier into the brain using polymer nanoparticles. Eksp Klin Farmakol 59:57–60

    CAS  Google Scholar 

  67. Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    Article  CAS  Google Scholar 

  68. Olivier JC, Fenart L, Chauvet R et al (1999) Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 16:1836–1842

    Article  CAS  Google Scholar 

  69. Troster SD, Muller U, Kreuter J (1990) Modification of the body distribution of poly(methyl methyl methyl-acrylate) nanoparticles by coating with surfactants. Int J Pharm 61:85–100

    Article  Google Scholar 

  70. Koffie RM, Farrar CT, Saidi LJ, William CM, Hyman BT, Spires-Jones TL (2011) Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci USA 108(46):18837–18842

    Google Scholar 

  71. Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2(1):108–119

    Article  Google Scholar 

  72. Emerich DF, Tracy MA, Ward KL et al (1999) Biocompatibility of poly (dl-lactide-co-glycolide) microspheres implanted into the brain. Cell Transplant 8:47–58

    CAS  Google Scholar 

  73. Menei P, Daniel V, Montero-Menei C et al (1993) Biodegradation and brain tissue reaction to poly(d, l-lactide-co-glycolide) microspheres. Biomaterials 14:470–478

    Article  CAS  Google Scholar 

  74. Garcia-Garcia E, Andrieux K, Gil S et al (2007) Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298:274–923

    Article  Google Scholar 

  75. Tosi G, Bortot B, Ruozi B et al (2013) Potential use of polymeric nanoparticles for drug delivery across the blood–brain barrier. Curr Med Chem 20(17):2212–2225

    Google Scholar 

  76. Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48:342–353

    Article  CAS  Google Scholar 

  77. Costantino L, Gandolfi F, Tosi G et al (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J Control Rel 108:84–96

    Article  CAS  Google Scholar 

  78. Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F (2007) Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Rel 122:1–9

    Google Scholar 

  79. Vergoni AV, Tosi G, Tacchi R et al (2009) Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomed Nanotechnol Biol Med 5:369–377

    Article  CAS  Google Scholar 

  80. Tosi G, Fano RA, Bondioli L et al (2011) Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine 6(3):423–436

    Article  CAS  Google Scholar 

  81. Grabrucker AM, Garner CC, Boeckers TM et al (2011) Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS One 6(3):e17851

    Article  CAS  Google Scholar 

  82. Tosi G, Badiali L, Ruozi B et al (2012) Can Leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Nanomedicine 7(3):365–382

    Article  CAS  Google Scholar 

  83. Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 93:14164–14169

    Article  CAS  Google Scholar 

  84. Zhang Y, Schlachetzki F, Pardridge WM (2003) Global non-viral gene transfer to the primate brain following intravenous administration. Mol Ther 7:11–18

    Article  CAS  Google Scholar 

  85. Shi N, Zhang Y, Zhu C et al (2001) Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 98:12754–12759

    Article  CAS  Google Scholar 

  86. Huwyler J, Yang J, Pardridge WM (1997) Targeted delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther 282:1541–1546

    CAS  Google Scholar 

  87. Qin J, Chen D, Hu H et al (2007) Body distribution of RGD-mediated liposome in brain-targeting drug delivery. Yakugaku Zasshi 127(9):1497–1501

    Article  CAS  Google Scholar 

  88. Koziara JM, Lockman PR, Allen DD et al (2003) In situ blood–brain barrier transport of nanoparticles. Pharm Res 20:1772–1778

    Article  CAS  Google Scholar 

  89. Nicolas J, Mura S, Brambilla D et al (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable /biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235

    Article  CAS  Google Scholar 

  90. Xu G, Yong KT, Roy I et al (2008) Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood–brain barrier. Bioconjug Chem 19(6):1179–1185

    Article  CAS  Google Scholar 

  91. Yim YS, Choi JS, Kim GT et al (2012) A facile approach for the delivery of inorganic nanoparticles into the brain by passing through the blood–brain barrier (BBB). Chem Commun (Camb) 48(1):61–63

    Article  CAS  Google Scholar 

  92. Barandeh F, Nguyen PL, Kumar R etal (2012) Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One 7(1):e29424

    Google Scholar 

  93. Knezevic NZ, Slowing II, Lin VS-Y (2012) Tuning the release of anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles. ChemPlusChem 77:48–55

    Article  CAS  Google Scholar 

  94. Gupta PK, Hung CT (1990) Targeted delivery of low dose doxorubicin hydrochloride administered via magnetic albumin microspheres in rats. J Micro- encaps 7:85–94

    CAS  Google Scholar 

  95. Pulfer SK, Gallo JM (1998) Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. J. Drug Target 6:215–227

    Article  CAS  Google Scholar 

  96. Xie Y, Wang Y, Zhang T et al (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:14

    Article  CAS  Google Scholar 

  97. Grabrucker AM, Rowan M, Garner CC (2011) Brain-delivery of zinc-ions as potential treatment for neurological diseases: mini review. Drug Deliv Lett 1(1):13–23

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas M. Grabrucker or Giovanni Tosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grabrucker, A.M. et al. (2013). Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. In: Fricker, G., Ott, M., Mahringer, A. (eds) The Blood Brain Barrier (BBB). Topics in Medicinal Chemistry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2013_22

Download citation

Publish with us

Policies and ethics