Skip to main content

The Role of Biotransformation Studies in Reducing Drug Attrition

  • Chapter
  • First Online:
Reducing Drug Attrition

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 11))

Abstract

Biotransformation has evolved beyond simple structural elucidation of metabolites to provide data that is highly impactful and influential to various aspects of drug discovery. Based on our experience, we have grouped areas where biotransformation-related understanding can make an impact on drug design as follows: (1) defining clearance mechanisms, particularly for drug metabolizing enzymes other than P450s, (2) identifying metabolic hot spots, (3) identifying reactive metabolites, (4) characterizing active metabolites, and (5) assessing metabolite safety. This review will describe how these studies may be used to guide the development of structure–activity relationships to identify and mitigate potential safety liabilities and to interpret pharmacokinetic/pharmacodynamic (PKPD) relationships. Ultimately, a better understanding in all these aspects of drug disposition will aid in reducing candidate attrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riley RJ (2001) The potential pharmacological and toxicological impact of P450 screening. Curr Opin Drug Discov Devel 4:45–54

    CAS  Google Scholar 

  2. Strolin-Benedetti M, Whomsley R, Baltes E (2006) Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2:895–921

    Article  CAS  Google Scholar 

  3. Beedham C (1997) The role of non-P450 enzymes in drug oxidation. Pharm World Sci 19:255–263

    Article  CAS  Google Scholar 

  4. Omiecinski CJ, Remel RP, Hosagrahara VP (1999) Concise review of the cytochrome P450s and their roles in toxicology. Toxicol Sci 48:151–156

    Article  CAS  Google Scholar 

  5. Dalvie D, Obach RS, Kang P, Prakash CP, Loi C-M, Hurst S, Nedderman AN, Goulet L, Smith E, Bu H-Z, Smith DA (2009) Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites. Chem Res Toxicol 22:357–368

    Article  CAS  Google Scholar 

  6. Lewis DFV (2003) Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics; A compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr Med Chem 10:1955–1972

    Article  CAS  Google Scholar 

  7. Trager WF (2006) Principles of drug metabolism 1: redox reactions. In: Testa B, van de Waterbeemd H (eds) Comprehensive medicinal chemistry, vol 5, 2nd edn. Elsevier, Oxford, pp 87–132

    Google Scholar 

  8. Davison AN (1958) Physiological role of monoamine oxidase. Physiol Rev 38:729–747

    CAS  Google Scholar 

  9. Castagnoli N, Trevor AJ, Singer TP, Sparatore A, Leung, L, Shinka T, Wu EY, Booth RG (1988) Metabolic studies on the nigrostriatal toxin MPTP. In: Progress in catecholamine research. Alan R. Liss, Inc., New York, pp 93–100

    Google Scholar 

  10. Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 9:22–26

    Article  CAS  Google Scholar 

  11. De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 102:12684–12689

    Article  CAS  Google Scholar 

  12. Kalgutkar A, Dalvie D, Castagnoli N, Taylor TJ (2001) Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem Res Toxicol 1:1139–1162

    Article  CAS  Google Scholar 

  13. Obach RS, Cox LM, Tremaine LM (2005) Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 33:262–270

    Article  CAS  Google Scholar 

  14. Dixon CM, Park GR, Tarbit MH (1994) Characterisation of the enzyme responsible for the metabolism of sumatriptan in human liver. Biochem Pharmacol 47:1253–1257

    Article  CAS  Google Scholar 

  15. Imamura Y, Wu X, Noda A, Noda H (2002) Side-chain metabolism of propranolol: involvement of monoamine oxidase and mitochondrial aldehyde dehydrogenase in the metabolism of N-desisopropylpropranolol to naphthoxylactic acid in rat liver. Life Sci 70:2687–2697

    Article  CAS  Google Scholar 

  16. Garattini E, Fratelli M, Terao M (2008) Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci 65:1019–1048

    Article  CAS  Google Scholar 

  17. Moriyasu A, Sugihara K, Nakatani K, Ohta S, Kitamura S (2006) In vivo-in vitro relationship of methotrexate 7-hydroxylation by aldehyde oxidase in four different strain rats. Drug Metab Pharmacokinet 21:485–491

    Article  CAS  Google Scholar 

  18. Chladek J, Martinkova J, Sispera L (1997) An in vitro study on methotrexate hydroxylation in rat and human liver. Physiol Res 46:371–379

    CAS  Google Scholar 

  19. Kitamura S, Sugihara K, Nakatani K, Ohta S, Oh-hara T, Ninomiya S, Green CE, Tyron CA (1999) Variation of hepatic methotrexate 7-hydroxylase activity in animals and humans. IUBMB Life 48:607–611

    Article  CAS  Google Scholar 

  20. Beedham C, al-Tayib Y, Smith JA (1992) Role of guinea pig and rabbit hepatic aldehyde oxidase in oxidative in vitro metabolism of cinchona antimalarials. Drug Metab Dispos 20:889–895

    CAS  Google Scholar 

  21. Clarke SE, Harrell AW, Chenery RJ (1995) Role of aldehyde oxidase in the in vitro conversion of famciclovir to penciclovir in human liver. Drug Metab Dispos 23:251–254

    CAS  Google Scholar 

  22. Rashidi MR, Smith JA, Clarke SE, Beedham C (1997) In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Drug Metab Dispos 25:805–813

    CAS  Google Scholar 

  23. Mitchell S (2008) Flavin mono-oxygenase (FMO) – the ‘other’ oxidase. Curr Drug Metab 9:280–284

    Article  CAS  Google Scholar 

  24. Cashman JR (2008) Role of flavin-containing monooxgenase in drug development. Expert Opin Drug Metab Toxicol 12:1507–1521

    Article  CAS  Google Scholar 

  25. Ziegler DM, Mitchell CH (1972) Microsomal oxidase. IV. Properties of a mixed-function amine oxidase isolated from pig liver microsomes. Arch Biochem Biophys 150:116–125

    Article  CAS  Google Scholar 

  26. Cashman JR (2005) Some distinctions between flavin-containing and cytochrome P450 monooxygenases. Biochem Biophys Res Commun 338:599–604

    Article  CAS  Google Scholar 

  27. Phillips IR, Francois AA, Shephard EA (2007) The flavin-containing monoooxygenases (FMOs): genetic variation and its consequences for the metabolism of therapeutic drugs. Curr Pharmacogenomics 5:292–313

    Article  CAS  Google Scholar 

  28. Park SB, Jacob P III, Benowitz NL, Cashman JR (1993) Stereoselective metabolism of (S)-(−)-nicotine in humans: Formation of trans-(S)-(−)-nicotine N-1’-oxide. Chem Res Toxicol 6:880–888

    Article  CAS  Google Scholar 

  29. Overby LH, Carver GC, Philpot RM (1997) Quantitation and kinetic properties of hepatic microsomal and recombinant flavin-containing monooxygenases 3 and 5 from humans. Chem Biol Interact 106:29–45

    Article  CAS  Google Scholar 

  30. Kang J-H, Chung W-G, Lee K-H, Park C-S, Kang J-S, Shin I-C, Roh H-K, Dong M-S, Baek H-M, Cha Y-N (2000) Phenotypes of flavin-containing monooxygenase activity determined by ranitidine N-oxidation are positively correlated with genotypes of linked FMO3 gene mutations in a Korean population. Pharmacogenetics 10:67–78

    Article  CAS  Google Scholar 

  31. Park C-S, Kang J-H, Chung W-G, Yi H-G, Pie J-E, Park D-K, Hines RN, McCarver DG, Cha Y-N (2002) Ethnic differences in allelic frequency of two flavin-containing monooxygenase 3 (FMO3) polymorphisms: linkage and effects on in vivo and in vitro FMO activities. Pharmacogenetics 12:77–80

    Article  CAS  Google Scholar 

  32. Remmel R, Nagar S, Argikar U (2008) Conjugative metabolism of drugs. In: Zhang D, Zhu M, Humphreys WG (eds) Drug metabolism in drug design and development. Wiley, Hoboken, pp 37–88

    Google Scholar 

  33. Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA (2001) The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 33:273–297

    Article  CAS  Google Scholar 

  34. Sallustio BC (2008) Chapter 3: Glucuronidation-dependent toxicity and bioactivation. In: Fishbein JC (ed) Advances in molecular toxicology, vol 2. Elsevier, Amsterdam, pp 57–86

    Chapter  Google Scholar 

  35. Fisher MB, VandenBranden M, Findlay K, Burchell B, Thummel KE, Hall SD, Wrighton SA (2000) Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogenetics 10:727–739

    Article  CAS  Google Scholar 

  36. Andersen G, Christrup L, Sjøgren P (2003) Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage 25:74–91

    Article  CAS  Google Scholar 

  37. Itäaho K, Mackenzie PI, Ikushiro S, Miners JO, Moshe Finel M (2008) The configuration of the 17-hydroxy group variably influences the glucuronidation of β-estradiol and epiestradiol by human UDP-glucuronosyltransferases. Drug Metab Dispos 36:2307–2315

    Article  CAS  Google Scholar 

  38. Smith DA, Schmid E, Jones B (2002) Do drug metabolism and pharmacokinetic departments make any contributions to drug discovery? Clin Pharmacokinet 41:1005–1019

    Article  CAS  Google Scholar 

  39. Czodrowski P, Kriegl JM, Scheuerer S, Fox T (2009) Computational approaches to predict drug metabolism. Expert Opin Drug Metab Toxicol 5:15–27

    Article  CAS  Google Scholar 

  40. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  CAS  Google Scholar 

  41. Zvinavashe E, Murk AJ, Rietjens IMCM (2008) Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Chem Res Toxicol 21:2229–2236

    Article  CAS  Google Scholar 

  42. McGuire JJ, Haile WH (2009) Metabolism-blocked antifolates as potential anti-rheumatoid arthritis agents: 4-amino-4-deoxy-5,8,10-trideazapteroyl-d, l-4’-methyleneglutamic acid (CH-1504) and its analogs. Biochem Pharmacol 77:1161–1172

    Article  CAS  Google Scholar 

  43. Nair MG, Fayard ML, Lariccia JM, Amato AE, McGuire JJ, Galiva JH, Kisliuk RL (1999) Metabolism blocked classical folate analogue inhibitors of dihydrofolate reductase-1: synthesis and biological evaluation of mobiletrex. Med Chem Res 9:176–185

    CAS  Google Scholar 

  44. Cheng Y, Zhang F, Rano TA, Lu Z, Schleif WA, Gabryelski L, Olsen DB, Stahlhut M, Rutkowski CA, Lin JH, Jin L, Emini EA, Chapman KT, Tata JR (2002) Indinavir analogues with blocked metabolism sites as HIV protease inhibitors with improved pharmacological profiles and high potency against PI-Resistant viral strains. Bioorg Med Chem Lett 12:2419–2422

    Article  CAS  Google Scholar 

  45. Middleton DS, Andrews M, Glossop P, Gymer G, Hepworth D, Jessiman A, Johnson PS, MacKenny M, Stobie A, Tang K, Morgan P, Jones B (2008) Designing rapid onset selective serotonin re-uptake inhibitors. Part 3: site-directed metabolism as a strategy to avoid active circulating metabolites: Structure–activity relationships of (thioalkyl)phenoxy benzylamines. Bioorg Med Chem Lett 18:5303–5306

    Article  CAS  Google Scholar 

  46. Moorjani M, Luo Z, Lin E, Vong BG, Chen Y, Zhang X, Rueter JK, Gross RS, Lanier MC, Tellew JE, Williams JP, Lechner SM, Malany S, Santos M, Crespo MI, Díaz J-L, Saunders J, Slee DH (2008) 2,6-Diaryl-4-acylaminopyrimidines as potent and selective adenosine A2A antagonists with improved solubility and metabolic stability. Bioorg Med Chem Lett 18:5402–5405

    Article  CAS  Google Scholar 

  47. Park BK, Kitteringham NR, O’Neill PM (2001) Metabolism of fluorine-containing drugs. Annu Rev Pharmacol Toxicol 41:443–470

    Article  CAS  Google Scholar 

  48. Müller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317:1881–1886

    Article  CAS  Google Scholar 

  49. Shafer CM, Lindvall M, Bellamacina C, Gesner TG, Yabannavar A, Jia W, Lin S, Walter A (2008) 4-(1H-Indazol-5-yl)-6-phenylpyrimidin-2(1H)-one analogs as potent CDC7 inhibitors. Bioorg Med Chem Lett 18:4482–4485

    Article  CAS  Google Scholar 

  50. Kramer JA, Sagartz JE, Morris DL (2007) The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 6:636–649

    Article  CAS  Google Scholar 

  51. Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  Google Scholar 

  52. Miller EC, Miller JA (1966) Mechanisms of chemical carcinogenesis: nature of proximate carcinogens and interactions with macromolecules. Pharmacol Rev 18:805–838

    CAS  Google Scholar 

  53. Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187:185–194

    CAS  Google Scholar 

  54. Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202

    CAS  Google Scholar 

  55. Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther 187:203–210

    CAS  Google Scholar 

  56. Mitchell JR, Jollow D, Potter WZ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211–217

    CAS  Google Scholar 

  57. Dahlin DC, Miwa GT, Lu AY, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327–1331

    Article  CAS  Google Scholar 

  58. Zhao Z, Baldo BA, Rimmer J (2002) Beta-Lactam allergenic determinants: fine structural recognition of a cross-reacting determinant on benzylpenicillin and cephalothin. Clin Exp Allergy 32:1644–1650

    Article  CAS  Google Scholar 

  59. Hess DA, Sisson ME, Suria H, Wijsman J, Puvanesasingham R, Madrenas J, Rieder MJ (1999) Cytotoxicity of sulfonamide reactive metabolites: apoptosis and selective toxicity of CD8(+) cells by the hydroxylamine of sulfamethoxazole. FASEB J 13:1688–1698

    CAS  Google Scholar 

  60. Lecoeur S, Andre C, Beaune PH (1996) Tienilic acid-induced autoimmune hepatitis: anti-liver and-kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol Pharmacol 50:326–333

    CAS  Google Scholar 

  61. Bourdi M, Gautier JC, Mircheva J, Larrey D, Guillouzo C, Andre C, Belloc C, Beaune PH (1992) Anti-liver microsomes autoantibodies and dihydralazine-induced hepatitis: specificity of autoantibodies and inductive capacity of the drug. Mol Pharmacol 42:280–285

    CAS  Google Scholar 

  62. Bourdi M, Chen W, Peter RM, Martin JL, Buters JT, Nelson SD, Pohl LR (1996) Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem Res Toxicol 9:1159–1166

    Article  CAS  Google Scholar 

  63. Kalgutkar AS, Soglia JR (2005) Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol 1:91–142

    Article  CAS  Google Scholar 

  64. Kalgutkar AS, Gardner I, Obach RS et al (2005) A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6:161–225

    Article  CAS  Google Scholar 

  65. Correia MA, Krowech G, Caldera-Munoz P, Yee SL, Straub K, Castagnoli N Jr (1984) Morphine metabolism revisited. II. Isolation and chemical characterization of a glutathionylmorphine adduct from rat liver microsomal preparations. Chem Biol Interact 51:13–24

    Article  CAS  Google Scholar 

  66. Soglia JR, Harriman SP, Zhao S, Barberia J, Cole MJ, Boyd JG, Contillo LG (2004) The development of a higher throughput reactive intermediate screening assay incorporating micro-bore liquid chromatography-micro-electrospray ionization-tandem mass spectrometry and glutathione ethyl ester as an in vitro conjugating agent. J Pharm Biomed Anal 36:105–116

    Article  CAS  Google Scholar 

  67. Baillie TA, Davis MR (1993) Mass spectrometry in the analysis of glutathione conjugates. Biol Mass Spectrom 22:319–325

    Article  CAS  Google Scholar 

  68. Sahali-Sahly Y, Balani SK, Lin JH, Baillie TA (1996) In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Chem Res Toxicol 9:1007–1012

    Article  CAS  Google Scholar 

  69. Olsen R, Molander P, Øvrebø S et al (2005) Reaction of glyoxal with 2’-deoxyguanosine, 2’-deoxyadenosine, 2’-deoxycytidine, cytidine, thymidine, and calf thymus DNA: identification of DNA adducts. Chem Res Toxicol 18:730–739

    Article  CAS  Google Scholar 

  70. Gorrod JW, Whittlesea CM, Lam SP (1991) Trapping of reactive intermediates by incorporation of 14C-sodium cyanide during microsomal oxidation. Adv Exp Med Biol 283:657–664

    Article  CAS  Google Scholar 

  71. Argoti D, Liang L, Conteh A, Chen L, Bershas D, Yu CP, Vouros P, Yang E (2005) Cyanide trapping of iminium ion reactive intermediates followed by detection and structure identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chem Res Toxicol 18:1537–1544

    Article  CAS  Google Scholar 

  72. Walker GS, Atherton J, Bauman J, Kohl C, Lam W, Reily M, Lou Z, Mutlib A (2007) Determination of degradation pathways and kinetics of acyl glucuronides by NMR spectroscopy. Chem Res Toxicol 20:876–886

    Article  CAS  Google Scholar 

  73. Johnson CH, Wilson ID, Harding JR, Stachulski AV, Iddon L, Nicholson JK, Lindon JC (2007) NMR spectroscopic studies on the in vitro acyl glucuronide migration kinetics of Ibuprofen ((+/−)-(R, S)-2-(4-isobutylphenyl) propanoic acid), its metabolites, and analogues. Anal Chem 79:8720–8727

    Article  CAS  Google Scholar 

  74. Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17:3–16

    Article  CAS  Google Scholar 

  75. Kalgutkar AS, Dalvie DK, Aubrecht J et al (2007) Genotoxicity of 2-(3-chlorobenzyloxy)-6-(piperazinyl)pyrazine, a novel 5-hydroxytryptamine2c receptor agonist for the treatment of obesity: role of metabolic activation. Drug Metab Dispos 35:848–858

    Article  CAS  Google Scholar 

  76. Amos HE, Lake BG, Artis J (1978) Possible role of antibody specific for a practolol metabolite in the pathogenesis of oculomucocutaneous syndrome. Br Med J 1:402–404

    Article  CAS  Google Scholar 

  77. Orton C, Lowery C (1981) Practolol metabolism. III. Irreversible binding of [14C]practolol metabolite(s) to mammalian liver microsomes. J Pharmacol Exp Ther 219:207–212

    CAS  Google Scholar 

  78. Borchard U (1990) Pharmacokinetics of beta-adrenoceptor blocking agents: clinical significance of hepatic and/or renal clearance. Clin Physiol Biochem 8(suppl 2):28–34

    Google Scholar 

  79. Satoh H, Martin BM, Schulick AH, Christ DD, Kenna JG, Pohl LR (1989) Human anti-endoplasmic reticulum antibodies in sera of patients with halothane-induced hepatitis are directed against a trifluoroacetylated carboxylesterase. Proc Natl Acad Sci USA 86:322–326

    Article  CAS  Google Scholar 

  80. Njoku D, Laster MJ, Gong DH, Eger EI II, Reed GF, Martin JL (1997) Biotransformation of Halothane, enflurane, isoflurane, and desflurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury. Anesth Analg 84:173–178

    CAS  Google Scholar 

  81. Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing KF, Kollman PA, Benet LZ, Christians U (2000) Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 28:1369–1378

    CAS  Google Scholar 

  82. Prueksaritanont T, Subramanian R, Fang X, Ma B, Qiu Y, Lin JH, Pearson PG, Baillie TA (2002) Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos 30:505–512

    Article  CAS  Google Scholar 

  83. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84:891–896

    CAS  Google Scholar 

  84. Savi P, Zachayus JL, Delesque-Touchard N et al (2006) The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci USA 103:11069–11074

    Article  CAS  Google Scholar 

  85. Herbert JM, Savi P (2003) P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 3:113–122

    Article  Google Scholar 

  86. Olbe L, Carlsson E, Lindberg P (2003) A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov 2:132–139

    Article  CAS  Google Scholar 

  87. Fellenius E, Berglindh T, Sachs G, Olbe L, Elander B, Sjöstrand SE, Wallmark B (1981) Substituted benzimidazoles inhibit gastric acid secretion by blocking (H+ + K+)ATPase. Nature 290:159–161

    Article  CAS  Google Scholar 

  88. Durand A, Thenot JP, Bianchetti G, Morselli PL (1992) Comparative pharmacokinetic profile of two imidazopyridine drugs: zolpidem and alpidem. Drug Metab Rev 24:239–266

    Article  CAS  Google Scholar 

  89. Chen Q, Ngui JS, Doss GA et al (2002) Cytochrome P450 3A4-mediated bioactivation of raloxifene: irreversible enzyme inhibition and thiol adduct formation. Chem Res Toxicol 15:907–914

    Article  CAS  Google Scholar 

  90. Kemp DC, Fan PW, Stevens JC (2002) Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. Drug Metab Dispos 30:694–700

    Article  CAS  Google Scholar 

  91. Obach RS, Kalgutkar AS, Soglia JR, Zhao SX (2008) Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chem Res Toxicol 21:1814–1822

    Article  CAS  Google Scholar 

  92. Bauman JN, Kelly JM, Tripathy S, Zhao SX, Lam WW, Kalgutkar AS, Obach RS (2009) Can in vitro metabolism-dependent covalent binding data distinguish hepatotoxic from nonhepatotoxic drugs? An analysis using human hepatocytes and liver S-9 fraction. Chem Res Toxicol 22:332–340

    Article  CAS  Google Scholar 

  93. Ring BJ, Patterson BE, Mitchell MI et al (2005) Effect of tadalafil on cytochrome P450 3A4-mediated clearance: studies in vitro and in vivo. Clin Pharmacol Ther 77:63–75

    Article  CAS  Google Scholar 

  94. Erve JC, Vashishtha SC, DeMaio W, Talaat RE (2007) Metabolism of prazosin in rat, dog, and human liver microsomes and cryopreserved rat and human hepatocytes and characterization of metabolites by liquid chromatography/tandem mass spectrometry. Drug Metab Dispos 35:908–916

    Article  CAS  Google Scholar 

  95. Nakayama S, Atsumi R, Takakusa H, Kobayashi Y, Kurihara A, Nagai Y, Nakai D, Okazaki O (2009) A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab Dispos 37:1970–1977

    Article  CAS  Google Scholar 

  96. Hughes AR, Brothers CH, Mosteller M, Spreen WR, Burns DK (2009) Genetic association studies to detect adverse drug reactions: abacavir hypersensitivity as an example. Pharmacogenomics 10:225–233

    Article  CAS  Google Scholar 

  97. Brynne N, Stahl MMS, Hallen B, Edlund PO, Palmer L, Hoglund P, Gabrielsson J (1997) Pharmacokinetics and pharmacodynamics of tolterodine in man. A new drug for the treatment of urinary bladder overactivity. Int J Clin Pharmacol Ther 35:287–295

    CAS  Google Scholar 

  98. Nilvebrant L, Gillberg P-G, Sparf B (1997) Antimuscarinic potency and bladder selectivity of PNU-200577, a major metabolite of tolterodine. Pharmacol Toxicol (Copenhagen) 81:169–172

    Article  CAS  Google Scholar 

  99. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD, Schaff HV (1997) Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 337:581–588

    Article  CAS  Google Scholar 

  100. Weissman NJ (2001) Appetite suppressants and valvular heart disease. Am J Med Sci 321:285–291

    Article  CAS  Google Scholar 

  101. Roth BL (2007) Drugs and valvular heart disease. N Engl J Med 356:6–9

    Article  CAS  Google Scholar 

  102. De Boer AR, Letzel T, Van Elswijk DA, Lingeman H, Niessen WMA, Irth H (2004) On-line coupling of high-performance liquid chromatography to a continuous-flow enzyme assay based on electrospray ionization mass spectrometry. Anal Chem 76:3155–3161

    Article  CAS  Google Scholar 

  103. De Boer AR, Alcaide-Hidalgo JM, Krabbe JG, Kolkman J, Van Emde Boas CN, Niessen WMA, Lingeman H, Irth H (2005) High-temperature liquid chromatography coupled on-line to a continuous-flow biochemical screening assay with electrospray ionization mass spectrometric detection. Anal Chem 77:7894–7900

    Article  CAS  Google Scholar 

  104. Van Liempd SM, Kool J, Niessen WMA, van Elswijk DE, Irth H, Vermeulen NPE (2006) On-line formation, separation, and estrogen receptor affinity screening of cytochrome P450-derived metabolites of selective estrogen receptor modulators. Drug Metab Dispos 34:1640–1649

    Article  CAS  Google Scholar 

  105. Van Liempd SM, Kool J, Meerman JH, Irth H, Vermeulen NP (2007) Metabolic profiling of endocrine-disrupting compounds by on-line cytochrome P450 bioreaction coupled to on-line receptor affinity screening. Chem Res Toxicol 20:1825–1832

    Article  CAS  Google Scholar 

  106. Yun CH, Okerholm RA, Guengerich FP (1993) Oxidation of the antihistaminic drug terfenadine in human liver microsomes. Role of cytochrome P-450 3A(4) in N-dealkylation and C-hydroxylation. Drug Metab Dispos 21:403–409

    CAS  Google Scholar 

  107. Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR (1993) Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. J Am Med Assoc 269:1513–1518

    Article  CAS  Google Scholar 

  108. Van Heek M, France CF, Compton DS, McLeod RL, Yumibe NP, Alton KB, Sybertz EJ, Davis HR Jr (1997) In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH 58235, in the rat and rhesus monkey through identification of the active metabolites of SCH 48461. J Pharmacol Exp Ther 283:157–163

    Google Scholar 

  109. Clader JW (2004) The discovery of ezetimibe: a view from outside the receptor. J Med Chem 47:1–9

    Article  CAS  Google Scholar 

  110. Danhof M, Van der Graaf PH, Jonker DM, Visser SAG, Zuideveld KP (2006) Mechanism-based pharmacokinetic-pharmacodynamic modeling for the prediction of in vivo drug concentration-effect relationships- application in drug candidate selection and lead optimization. Compr Med Chem II 5:885–908

    CAS  Google Scholar 

  111. Beier H, Garrido MJ, Christoph T, Kasel D, Troconiz IF (2008) Semi-mechanistic pharmacokinetic/pharmacodynamic modelling of the antinociceptive response in the presence of competitive antagonism: the interaction between tramadol and its active metabolite on m-opioid agonism and monoamine reuptake inhibition, in the rat. Pharm Res 25:1789–1797

    Article  CAS  Google Scholar 

  112. Smith DA (1991) Species differences in metabolism and pharmacokinetics: are we close to an understanding? Drug Metab Rev 23:355–373

    Article  CAS  Google Scholar 

  113. FDA Guidance for Industry. Safety Testing of Drug Metabolites (2008) http://www.fda.gov/cder/guidance/6897fnl.pdf

  114. Baillie TA, Cayen MN, Fouda H, Gersons RJ, Green JD, Grossman SJ, Klunk LJ, LeBlanc B, Perkins DG, Shipley LA (2002) Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–196

    Article  CAS  Google Scholar 

  115. Smith DA, Obach RS (2005) Seeing through the mist: abundance versus percentage. Commentary on metabolites in safety testing. Drug Metab Dispos 33:1409–1417

    Article  CAS  Google Scholar 

  116. Smith DA, Obach RS (2006) Metabolites and Safety: what are the concerns and how should we address them? Chem Res Toxicol 19:1570–1579

    Article  CAS  Google Scholar 

  117. Humphreys WG, Unger SE (2006) Safety assessment of drug metabolites: characterization of chemically stable metabolites. Chem Res Toxicol 19:1564–1569

    Article  CAS  Google Scholar 

  118. Baillie TA (2009) Approaches to the assessment of stable and chemically reactive drug metabolites in early clinical trials. Chem Res Toxicol 22:263–266

    Article  CAS  Google Scholar 

  119. Joshi EM, Heasley BH, Chordia MD, Macdonald TL (2004) In vitro metabolism of 2-acetylbenzothiophene: relevance to zileuton hepatotoxicity. Chem Res Toxicol 17:137–143

    Article  CAS  Google Scholar 

  120. Walker DK, Brady J, Dalvie D, Davis J, Dowty M, Duncan JN, Nedderman A, Obach RS, Wright P (2009) A holistic strategy for characterising the safety of metabolites through drug discovery and development. Chem Res Toxicol 22:1653–1662

    Article  CAS  Google Scholar 

  121. Viswanathan K, Babalola K, Wang J, Espina R, Yu L, Adedoyin A, Talaat R, Mutlib A, Scatina J (2009) Obtaining exposures of metabolites in preclinical species through plasma pooling and quantitative NMR: addressing metabolites in safety testing (MIST) guidance without using radiolabeled compounds and chemically synthesized metabolite standards. Chem Res Toxicol 22:311–322

    Article  CAS  Google Scholar 

  122. Dear GJ, Roberts AD, Beaumont C, North SE (2008) Evaluation of preparative high performance liquid chromatography and cryoprobe-nuclear magnetic resonance spectroscopy for the early quantitative estimation of drug metabolites in human plasma. J Chromatogr B: Anal Technol Biomed Life Sci 876:182–190

    Article  CAS  Google Scholar 

  123. Espina R, Yu L, Wang J, Tong Z, Vashishtha S, Talaat R, Scatina J, Mutlib A (2009) Nuclear magnetic resonance spectroscopy as a quantitative tool to determine the concentrations of biologically produced metabolites: implications in metabolites in safety testing. Chem Res Toxicol 22:299–310

    Article  CAS  Google Scholar 

  124. Fang J, Semple HA, Song J (2004) Determination of metoprolol and its four metabolites in dog plasma. J Chromatogr B: Anal Technol Biomed Life Sci 809:9–14

    Article  CAS  Google Scholar 

  125. Taylor EW, Jia W, Bush M, Dollinger GD (2002) Accelerating the drug optimisation process: identification, structure elucidation and quantification of in vivo metabolites using stable isotopes with LC/MSn and the chemiluminescent nitrogen detector. Anal Chem 74:3232–3238

    Article  CAS  Google Scholar 

  126. Axelsson B-O, Jornten-Karlsson M, Michelsen P, Abou-Shakra F (2001) The potential of inductively coupled plasma mass spectrometry detection for high-performance liquid chromatography combined with accurate mass measurement or organic pharmaceutical compounds. Rapid Commun Mass Spectrom 15:375–385

    Article  CAS  Google Scholar 

  127. Allan G, Davis J, Dickins M, Gardner I, Jenkins T, Jones H, Webster R, Westgate H (2008) Pre-clinical pharmacokinetics of UK-453,061, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), and use of in silico physiologically based prediction tools to predict the oral pharmacokinetics of UK-453,061 in man. Xenobiotica 38:620–640

    Article  CAS  Google Scholar 

  128. Walker DK, Davis J, Houle C, Gardner IB, Webster R (2009) Species differences in the multiple dose pharmacokinetics of the non-nucleoside reverse transcriptase inhibitor (NNRTI) UK-453,061 in animals and man – implications for safety considerations. Xenobiotica 39:534–543

    Article  CAS  Google Scholar 

  129. Vourvahis M, Gleave M, Nedderman AN, Hyland R, Gardner I, Howard M, Kempshall S, Collins C, LaBadie R (2010) Excretion and metabolism of lersivirine (5-{[3,5-diethyl-1-(2-hydroxyethyl)(3,5–14C2)-1H-pyrazol-4-yl]oxy}benzene-1,3-dicarbonitrile), a next-generation non-nucleoside reverse transcriptase inhibitor, after administration of [14C]Lersivirine to healthy volunteers. Drug Metab Dispos 38:789–800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas K. Spracklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spracklin, D.K., Kalgutkar, A.S., Nedderman, A.N.R. (2013). The Role of Biotransformation Studies in Reducing Drug Attrition. In: Empfield, J., P Clark, M. (eds) Reducing Drug Attrition. Topics in Medicinal Chemistry, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2012_18

Download citation

Publish with us

Policies and ethics