Skip to main content

Modulation of the Kynurenine Pathway for the Potential Treatment of Neurodegenerative Diseases

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 6))

Abstract

Modulation of tryptophan metabolism and in particular the kynurenine pathway is of considerable interest in the discovery of potential new treatments for neurodegenerative diseases. A number of small molecule inhibitors of the kynurenine metabolic pathway enzymes have been identified over recent years; a summary of these and their utility has been reviewed in this chapter. In particular, inhibitors of kynurenine monooxygenase represent an opportunity to develop a therapy for Huntington’s disease; progress in the optimization of small molecule inhibitors of this enzyme is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.brainsonline.org

References

  1. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2009) Of mice, rats and men: revisiting the quinolinic acid hypotheses of Huntington’s disease. Prog Neurobiol. doi:10.1016/j.pneurobio.2009.04.005

    Google Scholar 

  2. Vamos E, Pardutz A, Klivenyi P, Toldi J, Vescei L (2009) The role of kynurenines in disorders of the central nervous system: possibilites for neuroprotection. J Neurol Sci 283:21–27

    Article  CAS  Google Scholar 

  3. Costantino G (2009) New promises for manipulation of kynurenine pathway in cancer and neurological diseases. Expert Opin Ther Targets 13:247–258

    Article  CAS  Google Scholar 

  4. Stone TW, Darlington LG (2002) Endogenous Kynurenines as targets for drug discovery and develop-ment. Nat Rev Drug Disc 1:609–620

    Article  CAS  Google Scholar 

  5. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharm Exp Ther 303:1–10

    Article  CAS  Google Scholar 

  6. Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8:1–27

    Article  Google Scholar 

  7. Schlossberger HG, Kochen W, Linzen B, Steinhart H (1984) Progress in tryptophan and serotonin research. Walter de Gruyter, Berlin

    Google Scholar 

  8. Heyes MP, Saito K, Markey SP (1992) Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid. Biochem J 283:633–635

    CAS  Google Scholar 

  9. Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryoptophan: much ado about IDO. Trends Immunol 24:242–248

    Article  CAS  Google Scholar 

  10. Owe-Young R, Webster NL, Mukhtar M, Pomerantz RJ, Smythe G, Walker D, Armati PJ, Crowe SM, Brew BJ (2008) Kynurenine pathway metabolism in human blood-brain-barrier cells: implications for immune tolerance & neurotoxicity. J Neurochem 105:1346–1357

    Article  CAS  Google Scholar 

  11. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  CAS  Google Scholar 

  12. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:1–13

    Article  Google Scholar 

  13. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003) Expression of the kynurenine path-way enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112

    Article  CAS  Google Scholar 

  14. Alberati-Giani D, Ricciardi-Castagnoli P, Kohler C, Cesura AM (1996) Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem 66:996–1004

    Article  CAS  Google Scholar 

  15. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2, 3-dioxygenase. J Exp Med 196:459–468

    Article  CAS  Google Scholar 

  16. Savvateeva E, Popov A, Kamyshev N, Bragina J, Heisenberg M, Senitz D, Kornhuber J, Riederer P (2000) Age-dependent memory loss, synaptic pathology and altered brain plasticity in the Drosophila mutant cardinal accumulating 3-hydroxykynurenine. J Neural Transm 107:581–601

    Article  CAS  Google Scholar 

  17. Foster AC, Collins JF, Schwarcz R (1983) On the excitotoxic properties of quinolinic acid, 2, 3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology 22:1331–1342

    Article  CAS  Google Scholar 

  18. Rios C, Santamaria A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res 16:1139–1143

    Article  CAS  Google Scholar 

  19. During MJ, Heyes MP, Freese A, Markey SP, Martin JB, Roth RH (1989) Quinolinic acid concentrations in strial extracellular fluid reach potentially neurotoxic levels following systemic L-tryptophan loading. Brain Res 476:384–387

    Article  CAS  Google Scholar 

  20. Saito K, Nowak TS Jr, Markey SP, Heyes MP (1993) Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J Neurochem 60:180–192

    Article  CAS  Google Scholar 

  21. Whetsell WO Jr, Schwarcz R (1989) Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotxic damage in organotypic cultures of rat corticostriatal system. Neurosci Lett 97:271–275

    Article  CAS  Google Scholar 

  22. Nakai M, Qin ZH, Wang Y, Chase TN (1999) Free radical scavenger OPC-14117 attenuates quinolinic acid-induced NF-kappaB activation and apoptosis in rat striatum. Brain Res Mol Brain Res 22:59–68

    Article  Google Scholar 

  23. Santamaría A, Salvatierra-Sánchez R, Vázquez-Román B, Santiago-López D, Villeda-Hernández J, Galván-Arzate S, Jiménez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86:479–488

    Article  Google Scholar 

  24. Okuda S, Nishiyama N, Saito H, Katsuki K (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal death with apoptotic features and region selectivity. J Neurosci 21:7463–7473

    Google Scholar 

  25. Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosc 11:3857–3863

    Article  CAS  Google Scholar 

  26. Obrenovitch TP, Urenjak J (2003) Accumulation of quinolinic acid with neuroinflammation: does it mean excitotoxicity? Exp Med Biol 527:147–154

    Article  CAS  Google Scholar 

  27. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    Article  CAS  Google Scholar 

  28. Hilmas C, Pereira EF, Alkondon M, Rassoulpor A, Schwarcz R, Albuquerque EX (2001) The brain me-tabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic re-ceptor expression: pathophysiological implications. J Neurosci 21:7463–7473

    CAS  Google Scholar 

  29. Rassoulpour A, Wu H-Q, Ferre S, Schwarcz R (2005) Nanomolar concentrations of kynurenic acid re-duce extracellular dopamine levels in the striatum. J Neurochem 93:762–765

    Article  CAS  Google Scholar 

  30. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    Article  CAS  Google Scholar 

  31. Moroni F, Russi P, Lombardi G, Beni M, Carla V (1988) Presence of kynurenic acid in the mammalian brain. J Neurochem 51:177–180

    Article  CAS  Google Scholar 

  32. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147

    Article  CAS  Google Scholar 

  33. Wu H-Q, Pereira EFR, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R (2010) The astrocyte-derived α7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci 40:204–210

    Article  CAS  Google Scholar 

  34. Kumar S, Malachowski WP, DuHadaway JB, LaLonde JM, Carroll PJ, Jaller D, Metz R, Prendergast GC, Muller AJ (2008) Indoleamine 2, 3-dioxygenase is the anticancer target for a series of potent naph-thoquinone-based inhibitors. J Med Chem 51:1706–1718

    Article  CAS  Google Scholar 

  35. Platten M, Ho PG, Sreinmann L (2009) Anti-inflammatory strategies for the treatment of multiple sclerosis – tryptophan catabolites may hold the key. Drug Disc Today 3:401–408

    Google Scholar 

  36. Schwarcz R (2004) The kynurenine pathway of tryptophan degredation as a drug target. Curr Opin Pharmacol 4:12–17

    Article  CAS  Google Scholar 

  37. Shimizu T, Nomiyama S, Hirata F, Hayaishi O (1978) Indoleamine 2, 3-dioxygenase: purification and some properties. J Biol Chem 253:4700–4706

    CAS  Google Scholar 

  38. Muller AJ, Scherle PA (2006) Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer 6:613–625

    Article  CAS  Google Scholar 

  39. Eguchi N, Watanabe Y, Kawanishi K, Hashimoto Y, Hayaishi O (1984) Inhibition of indoleamine 2, 3-dioxygenase and tryptophan 2, 3-dioxygenase by beta-carbolines and indole derivatives. Arch Biochem Biophys 232:602–609

    Article  CAS  Google Scholar 

  40. Peterson AC, La Loggia AJ, Hamaker LK, Arend RA, Fisette PL, Ozaki Y, Will JA, Brown RR, Cook JM (1993) Evaluation of substituted b-carbolines as noncompetitive indoleamine 2, 3-dioxygenase in-hibitors. Med Chem Res 3:473–482

    Google Scholar 

  41. Cady SG, Sono M (1991) 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen ana-log of tryptophan), and beta-[3-benzo. (b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are com-petitive inhibitors for indoleamine 2, 3-dioxygenase. Arch Biochem Biophys 291:326–333

    Article  CAS  Google Scholar 

  42. Peterson AC, Migawa MT, Martin MJ, Hamaker LK, Czerwinski KM, Zhang W, Arend RA, Fisette PL, Ozaki Y, Will JA, Brown RR, Cook JM (1994) Evaluation of functionalized tryptophan derivatives and related compounds as competitive inhibitors of indoleamine 2, 3-dioxygenase. Med Chem Res 3:531–544

    CAS  Google Scholar 

  43. Gaspari P, Banerjee T, Malachowski WP, Muller AJ, Prendergast GC, DuHadaway J, Bennett S, Dono-van AM (2006) Structure-activity study of Brassin derivatives as indoleamine 2, 3-dioxygenase inhibi-tors. J Med Chem 49:684–692

    Article  CAS  Google Scholar 

  44. Carr G, Chung MKW, Mauk G, Anderson RJ (2008) Synthesis of indoleamine 2, 3-dioxgenase inhibitory analogues of the sponge alkaloid Exiguamine A. J Med Chem 51:2634–2637

    Article  CAS  Google Scholar 

  45. Sono M, Cady SG (1989) Enzyme kinetic and spectroscopic studies of inhibitor and effector interactions with indoleamine 2, 3-dioxygenase. 1. Norharman and 4-phenylimidazole binding to the enzyme as inhibitors and heme ligands. Biochemistry 28:5392–5399

    Article  CAS  Google Scholar 

  46. Kumar S, Jaller D, Patel B, LaLonde JM, DuHadaway JB, Malachowski WP, Prendergast GC, Muller AJ (2008) Structure based development of phenylimidazole-derived inhibitors of indoleamine 2, 3-dioxygenase. J Med Chem 51:4968–4977

    Article  CAS  Google Scholar 

  47. Yue EW, Douty B, Wayland B, Bower M, Liu X, Leffet L, Wang Q, Bowman KJ, Hansbury MJ, Liu C, Wei M, Li Y, Wynn R, Burn TC, Koblish HK, Fridman JS, Metcalf B, Scherle PA, Combs AP (2009) Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacody-namic activity and efficacy in a mouse melanoma model. J Med Chem 52:7364–7367. doi:10.1021/jm900518f

    Google Scholar 

  48. Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007) Mitochondrial aspartate aminotrans-ferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111

    Article  CAS  Google Scholar 

  49. Yu P, Li Z, Zhang L, Tagle DA, Cai T (2006) Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family. Gene 365:111–118

    Article  CAS  Google Scholar 

  50. Yu P, DiProspero NA, Sapko MT, Cai T, Chen A, Melendez-Ferro M, Du F, Whetsell WO, Guidetti P, Schwarcz R, Tagle DA (2004) Biochemical and phenotypic abnormalities in kynurenine aminotrans-ferase II-deficient mice. Mol Cell Biol 24:6919–6930

    Article  CAS  Google Scholar 

  51. Pellicciari R, Rizzo RC, Costantino G, Marinozzi M, Amori L, Guidetti P, Wu HQ, Schwarcz R (2006) Modulators of the kynurenine pathway of tryptophan metabolism: synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. Chem Med Chem 1:528–531

    CAS  Google Scholar 

  52. Alkondon M, Pereira EFR, Yu P, Arruda EZ, Almeida LEF, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX (2004) Targeted deletion of the kynurenine aminotrans-ferase II gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmis-sion via a7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648

    Article  CAS  Google Scholar 

  53. Varasi M, Della Torre A, Heidempergher F, Pevarello P, Speciale C, Guidetti P, Wells DR, Schwarcz R (1996) Derivatives of kynurenine as inhibitors of rat brain kynurenine aminotransferase. Eur J Med Chem 31:11–21

    Article  CAS  Google Scholar 

  54. Pellicciari R, Venturoni F, Bellocchi D, Carotti A, Marinozzi M, Macchiarulo A, Amori L, Schwarcz R (2008) Sequence variants in kynurenine aminotransferase II (KAT II) orthologs determine different po-tencies of the inhibitor S-ESBA. Chem Med Chem 3:1199–1202

    CAS  Google Scholar 

  55. Soda K, Tanizawa K (1979) The mechanism of kynurenine hydrolysis catalyzed by kynureninase. Biochem J 86:1199–1209

    Google Scholar 

  56. Phillips RS, Dua RK (1991) Stereochemistry and mechanism of Aldol reactions catalyzed by kynureni-nase. J Am Chem Soc 113:7385–7388

    Article  CAS  Google Scholar 

  57. Drysdale MJ, Reinhard JF (1998) S-aryl cysteine S, S-dioxides as inhibitors of mammalian kynureninase. Bioorg Med Chem Lett 8:133–138

    Article  CAS  Google Scholar 

  58. Chiarugi A, Carpenedo R, Molina MT, Mattoli L, Pellicciari R, Moroni F (1995) Comparison of the neurochemical and behavioural effects resulting from the inhibition of kynurenine hydroxylase and/or kyureninase. J Neurochem 65:1176–1183

    Article  CAS  Google Scholar 

  59. Fitzgerald DH, Muirhead KM, Botting NP (2001) A comparative study on the inhibition of human and bacterial kynureninase by novel bicyclic kynurenine analogues. Bioorg Med Chem 9:983–989

    Article  CAS  Google Scholar 

  60. Walsh HA, Leslie PL, O’Shea KC, Botting NP (2002) 2-Amino-4[3’-ydroxyphenyl]-4-hydroxybutanoic acid; a potent inhibitor of rat and recombinant human kynureninase. Bioorg Med Chem Lett 12:361–363

    Article  CAS  Google Scholar 

  61. Lima S, Kumar S, Gawandi V, Momany C, Phillips RS (2009) Crystal structure of the Homo sapiens kynureninase-3-hydroxhippuric acid inhibitor complex: insights into the molecular basis of kynureninase substrate specificity. J Med Chem 52:389–396

    Article  CAS  Google Scholar 

  62. Bokman AH, Schweigert BS (1951) 3-Hydroxyanthranilic acid metabolism. IV. Spectrophotometric evi-dence for the formation of an intermediate. Arch Biochem Biophys 33:270–276

    Article  CAS  Google Scholar 

  63. Manthey MK, Pyne SG, Truscott RJW (1988) The autoxidation of 3-hydroxyanthranilic acid. J Org Chem 53:1486–1488

    Article  CAS  Google Scholar 

  64. Saito K, Markey SP, Heyes MP (1994) 6-Chloro-D, L-tryptophan, 4-chloro-3-hydroxyyanthranilate and dexamethasone attenuate quinolinic acid accumulation in brain and bllod following systemic immune activation. Neurosci Lett 178:211–215

    Article  CAS  Google Scholar 

  65. Linderberg M, Hellberg S, Björk S, Gotthammer B, Högberg T, Persson K, Schwarcz R, Luthman J, Jo-hansson R (1999) Synthesis and QSAR of substituted 3-hydroxyanthranilic acid derivatives as inhibitors of 3-hydroxyanthranilic acid dioxygenase (3-HAO). Eur J Med Chem 34:729–744

    Article  CAS  Google Scholar 

  66. Okamoto H, Yamamoto S, Nozaki M, Hayashi O (1967) On the submitochondrial localization of L-Kynurenine-3-hydroxylase. Biochem Biophys Res Commun 26:309–314

    Article  CAS  Google Scholar 

  67. Amori L, Guidetti P, Pelliciari R, Kajii Y, Schwarcz R (2009) On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109:316–325

    Article  CAS  Google Scholar 

  68. Moroni F, Russi P, Gallo-Mezo MA, Moneti G, Pellicciari R (1991) Modulation of quinolinic acid and kynurenic acid content in the rat brain: effects of endotoxins and nicotinylalanine. J Neurochem 57:1630–1635

    Article  CAS  Google Scholar 

  69. Pellicciari R, Natalini B, Costantino G, Mahmoud MR, Mattoli L, Sadeghpour BM (1994) Modulation of the kynurenine pathway in search for new neuroprotective agents: synthesis and preliminary evaluation of (m-nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase. J Med Chem 37:647–655

    Article  CAS  Google Scholar 

  70. Moroni F, Carpenedo R, Chiarugi A (1996) Kynurenine hydroxylase and kynureninase inhibitors as tools to study the role of kynurenine metabolites in the central nervous system. Adv Exp Med Biol 398:203–210

    Article  CAS  Google Scholar 

  71. Costantino G, Mattoli L, Moroni F, Natalini B, Pellicciari R (1996) Kynurenine-3-hydroxylase asnd its selective inhibitors: molecular modelling studies. Adv Exp Med Biol 398:493–497

    Article  CAS  Google Scholar 

  72. Giordani A, Corti L, Cini M, Marconi M, Pillan A, Ferrario R, Schwarcz R, Guidetti P, Speciale C, Varasi M (1996) Benzoylalanine analogues as inhibitors of rat brain kynureninase and kynurenine 3-hydroxylase. Adv Exp Med Biol 398:499–505

    Article  CAS  Google Scholar 

  73. Giordani A, Pevarello P, Cini M, Bormetti R, Greco F, Toma S, Speciale C, Varasi M (1998) 4-Phenyl-4-oxo-butanoic acid derviatives inhibitors of kynurenine 3-hydroxylase. Bioorg Med Chem Lett 8:2907–2912

    Article  CAS  Google Scholar 

  74. Drysdale M, Hind SL, Jansen M, Renhard JF (2000) Synthesis and SAR of 4-aryl-2-hydroxy-4-oxobut-2enoic acids and esters and 2-amino-4-aryl-4-oxobut-2-enoic acids and esters: potent inhibitors of kynurenine-3-hydroxylase as potential neuroprotective agents. J Med Chem 43:123–127

    Article  CAS  Google Scholar 

  75. Pellicciari R, Amori L, Costantino G, Giordani A, Macchiarulo A, Mattoli L, Pevarello P, Speciale C (2003) Modulation of the kynurine pathway of tryptophan metabolism in search for neuroprotective agents. Focus on kynurenine-3-hydroxylase. Adv Exp Med Biol 527:621–628

    Article  CAS  Google Scholar 

  76. Heidempergher F, Pevarello P, Pillan A, Pinciroli V, Della Torre A, Speciale C, Marconi M, Cini M, Toma S, Greco F, Varasi M (1999) Pyrrolo[3, 2-c]quinoline derivatives: a new class of kynurenine-3-hydroxylase inhibitors. Il Farmaco 54:152–160

    Article  CAS  Google Scholar 

  77. Rover S, Cesura AM, Huguenin P, Kettler R, Szente A (1997) Synthesis and biological evaluation of N-(4-phenyl-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J Med Chem 40:4378–4385

    Article  CAS  Google Scholar 

  78. Carpenedo R, Meli E, Peruginelli F, Pellegrini-Giampietro DE, Moroni F (2002) Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures. J Neurochem 82:1465–1471

    Article  CAS  Google Scholar 

  79. Cozzi A, Carpenedo R, Moroni F (1999) Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3, 4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61–8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 19:771–777

    Article  CAS  Google Scholar 

  80. Roze E, Saudou F, Caboche J (2008) Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Curr Opin Neurol 21:497–503

    Article  CAS  Google Scholar 

  81. Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71

    Article  CAS  Google Scholar 

  82. Leblhuber F, Walli J, Jellinger K, Tilz GP, Widner B, Laccone F, Fuchs D (1998) Activated immune system in patients with Huntington’s disease. Clin Chem Lab Med 36:747–750

    Article  CAS  Google Scholar 

  83. Stoy N, Mackay GM, Forrest CM, Stone CCJ, TW DLG (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623

    Article  CAS  Google Scholar 

  84. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1990) Chronic quinolinic acid lesions in rates closely resemble Huntingdon’s disease. J Neurosci 11:1649–1659

    Google Scholar 

  85. Guidetti P, Bates GP, Graham RK, Hayden MR, Leavitt BR, MacDonald ME, Slow EJ, Wheeler VC, Woodman B, Schwarcz R (2006) Neurobiol Dis 23:190–197

    Article  CAS  Google Scholar 

  86. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, Li XJ, Simpson EM, Gutekunst CA, Leavitt BR, Hayden MR (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntrington disease. Hum Mol Get 12:1555–1567

    Article  CAS  Google Scholar 

  87. Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461

    Article  CAS  Google Scholar 

  88. Giorgini F, Guidetti P, Nguyen O, Bennet SC, Muchowski PJ (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Gen 37:526–531

    Article  CAS  Google Scholar 

  89. Norinder U, Haeberlein M (2002) Computational approaches to the prediction of the blood-brain distribution. Adv Drug Del Rev 54:291–313

    Article  CAS  Google Scholar 

  90. Cheng T, Li X, Li Y, Liu Z, Wang RJ (2009) Comparative assessment of scoring functions on a diverse test set. Chem Inf Model 49:1079–1093

    Article  CAS  Google Scholar 

  91. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:595959–595967

    Article  Google Scholar 

  92. Klebe G (1998) Comparative molecular similarity indices, CoMSIA. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design. Kluwer Academic Publishers, Great Britain

    Google Scholar 

Download references

Acknowledgment

The authors thank Andreas Ebneth, Celia Dominguez, and Ignacio Munoz-Sanjuan for their help.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Courtney, S., Scheel, A. (2010). Modulation of the Kynurenine Pathway for the Potential Treatment of Neurodegenerative Diseases. In: Dominguez, C. (eds) Neurodegenerative Diseases. Topics in Medicinal Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2010_9

Download citation

Publish with us

Policies and ethics