Skip to main content

Potassium Channels: Oncogenic Potential and Therapeutic Target for Cancers

  • Chapter
  • First Online:
  • 1642 Accesses

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 3))

Abstract

Cell proliferation and cell death are two counterparts in sharing the responsibility for maintaining normal body function, and the delicate balance between the two coordinates developmental morphogenesis, cell homeostasis, and tissue modeling in organisms. Abnormally enhanced proliferation and/or impaired cell death often cause loss of control of cell growth leading to tumorigenesis or cancer formation. Several fundamental steps need to be fulfilled at the cellular level for tumorigenesis and these steps can be roughly viewed as characteristic alterations of some physicochemical processes: cell volume, intracellular Ca2+, and intracellular pH. Evidence has rapidly emerged indicating a pivotal role of K+ channels in controlling these fundamental biological processes and a deregulated expression of potassium channel protein-coding genes, as well as malfunction of K+ channels as an important step in the development and progression of cancers. Herein, the role of K+ channels in cancer progression will be introduced by presenting the data obtained over the past 25 years, beginning with the evidence for K+ channels as cancer markers, followed by the data linking K+ channels to neoplastic growth and cancer metastasis. The potential of targeting K+ channels for cancer therapy will then be discussed by outlining the promising approaches and strategies including inhibition of K+ channel activities using pharmacological agents and downregulation of K+ channel expression using various nucleic acids (siRNA, decoy ODN and miRNA). Some unanswered questions and unsolved problems with respect to K+ channels and cancer are discussed in the final section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul M, Hoosein N (2002) Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett 186:99–105

    CAS  Google Scholar 

  2. Abdul M, Hoosein N (2002) Voltage-gated potassium ion channels in colon cancer. Oncol Rep 9:961–964

    CAS  Google Scholar 

  3. Abdul M, Santo A, Hoosein N (2003) Activity of potassium channel-blockers in breast cancer. Anticancer Res 23:3347–3351

    CAS  Google Scholar 

  4. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    CAS  Google Scholar 

  5. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    CAS  Google Scholar 

  6. Arcangeli A (2004) herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64:606–611

    Google Scholar 

  7. Arcangeli A (2005) Expression and role of hERG channels in cancer cells. Novartis Found Symp 266:225–232

    Article  CAS  Google Scholar 

  8. Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronnello M, Mini E, Olivotto M, Wanke E (1995) A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol 489:455–471

    CAS  Google Scholar 

  9. Bielinska A, Shivdasani RA, Zhang L, Nabel GJ (1990) Regulation of gene expression with double stranded phosphorothioate oligonucleotides. Science 250:997–1000

    CAS  Google Scholar 

  10. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, Crociani O, Rosati B, Faravelli L, Olivotto M, Wanke E (1998) herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 58:815–822

    CAS  Google Scholar 

  11. Borowiec AS, Hague F, Harir N, Guénin S, Guerineau F, Gouilleux F, Roudbaraki M, Lassoued K, Ouadid-Ahidouch H (2007) IGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation. J Cell Physiol 212:690–701

    CAS  Google Scholar 

  12. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA–target recognition. PLoS Biol 3(e85):404–418

    CAS  Google Scholar 

  13. Brüggemann A, Stühmer W, Pardo LA (1997) Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in Xenopus oocytes. Proc Natl Acad Sci USA 94:537–542

    Google Scholar 

  14. Camacho J (2006) Ether a go-go potassium channels and cancer. Cancer Lett 233:1–9

    CAS  Google Scholar 

  15. Chakraborty C (2007) Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets 8:469–482

    CAS  Google Scholar 

  16. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, Noci I, Borri P, Borrani E, Giachi M, Becchetti A, Rosati B, Wanke E, Olivotto M, Arcangeli A (2000) HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non cancerous endometrium. Brit J Cancer 83:1722–1729

    CAS  Google Scholar 

  17. Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA, Heckman T, McBain CJ, Gallo V (2002) Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci USA 99:2350–2355

    CAS  Google Scholar 

  18. Cogolludo A, Frazziano G, Briones AM, Cobeno L, Moreno L, Lodi F, Salaices M, Tamargo J, Perez-Vizcaino F (2007) The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2. Role in vasodilatation. Cardiovasc Res 73:424–431

    CAS  Google Scholar 

  19. Conforti L, Millhorn DE (1997) Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia. J Physiol 502:293–305

    CAS  Google Scholar 

  20. Conti M (2004) Targeting K+ channels for cancer therapy. J Exp Ther Oncol 4:161–166

    CAS  Google Scholar 

  21. Crociani O, Guasti L, Balzi M, Becchetti A, Wanke E, Olivotto M, Wymore RS, Arcangeli A (2003) Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem 278:2947–2955

    CAS  Google Scholar 

  22. Faehling M, Koch ED, Raithel J, Trischler G, Waltenberger J (2001) Vascular endothelial growth factor-a activates Ca2+-activated K+ channels in human endothelial cells in culture. Int J Biochem Cell Biol 33:337–346

    CAS  Google Scholar 

  23. Farias LM, Ocana DB, Diaz L, Larrea F, Avila-Chavez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernandez-Gallegos E, Camacho-Arroyo I, Duenas-Gonzalez A, Perez-Cardenas E, Pardo LA, Morales A, Taja-Chayeb L, Escamilla J, Sanchez-Pena C, Camacho J (2004) Ether a go-go potassium channels as human cervical cancer markers. Cancer Res 64:6996–7001

    CAS  Google Scholar 

  24. Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2:439–447

    CAS  Google Scholar 

  25. Flaherty KT, Stevenson JP, O'Dwyer PJ (2001) Antisense therapeutics: lessons from early clinical trials. Curr Opin Oncol 13:499–505

    CAS  Google Scholar 

  26. Fraser SP, Grimes JA, Diss JK, Stewart D, Dolly JO, Djamgoz MB (2003) Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation. Pflugers Arch 446:559–571

    CAS  Google Scholar 

  27. Fraser SP, Grimes JA, Djamgoz MB (2000) Effects of voltage-gated ion channel modulators on rat prostatic cancer cell proliferation: comparison of strongly and weakly metastatic cell lines. Prostate 44:61–76

    CAS  Google Scholar 

  28. Gao H, Xiao J, Yang B, Sun Q, Lin H, Bai Y, Yang L, Wang H, Wang Z (2006) A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anti-cancer effects. Mol Pharmacol 70:1621–1629

    CAS  Google Scholar 

  29. Gavrilova-Ruch O, Schonherr K, Gessner G, Schonherr R, Klapperstuck T, Wohlrab W, Heinemann SH (2002) Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J Membr Biol 188:137–149

    CAS  Google Scholar 

  30. Garcia-Ferreiro RE, Kerschensteiner D, Major F, Monje F, Stühmer W, Pardo LA (2004) Mechanism of block of hEag1 K+ channels by imipramine and astemizole. J Gen Physiol 124:301–317

    CAS  Google Scholar 

  31. Greber UF, Gerace L (1995) Depletion of calciumfrom the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol 128:5–14

    CAS  Google Scholar 

  32. Grinstein S, Rotin D, Mason MJ (1989) Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta 988:73–97

    CAS  Google Scholar 

  33. Hofmann G, Bernabei PA, Crociani O, Cherubini A, Guasti L, Pillozzi S, Lastraioli E, Polvani S, Bartolozzi B, Solazzo V, Gragnani L, Defilippi P, Rosati B, Wanke E, Olivotto M, Arcangeli A (2001) HERG K+ channels activation during beta(1) integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the preosteoclastic leukemia cell line FLG 29.1. J Biol Chem 276:4923–4931

    CAS  Google Scholar 

  34. Hoffman S, Gopalakrishna R, Gundimeda U, Murata T, Spee C, Ryan SJ, Hinton DR (1998) Verapamil inhibits proliferation, migration and protein kinase C activity in human retinal pigment cells. Exp Eye Res 67:45–52

    CAS  Google Scholar 

  35. Jager H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2001) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638

    Google Scholar 

  36. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736

    CAS  Google Scholar 

  37. Kayser ST, Ulrich H, Schaller HC (1998) Involvement of a Gardos-type potassium channel in head activator-induced mitosis of BON cells. Eur J Cell Biol 76:119–124

    CAS  Google Scholar 

  38. Kim CJ, Cho YG, Jeong SW, Kim YS, Kim SY, Nam SW, Lee SH, Yoo NJ, Lee JY, Park WS (2004) Altered expression of KCNK9 in colorectal cancers. Acta Pathol Microbiol Immunol Scand 112:588–594

    CAS  Google Scholar 

  39. Klimatcheva E, Wonderlin WF (1999) An ATP-sensitive K+ current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. J Membr Biol 171:35–46

    CAS  Google Scholar 

  40. Kuhlmann CR, Schaefer CA, Kosok C, Abdallah Y, Walther S, Ludders DW, Neumann T, Tillmanns H, Schafer C, Piper HM, Erdogan A (2005) Quercetin-induced induction of the NO/cGMP pathway depends on Ca2+-activated K+ channel-induced hyperpolarization-mediated Ca2+-entry into cultured human endothelial cells. Planta Med 71:520–524

    CAS  Google Scholar 

  41. Kumar LD, Clarke AR (2007) Gene manipulation through the use of small interfering RNA (siRNA): From in vitro to in vivo applications. Adv Drug Deliv Rev 59:87–100

    CAS  Google Scholar 

  42. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    CAS  Google Scholar 

  43. Lampert A, Muller MM, Berchtold S, Lang KS, Palmada M, Dobrovinskaya O, Lang F (2003) Effect of dexamethasone on voltage-gated K+ channels in Jurkat T-lymphocytes. Pflugers Arch 447:168–174

    CAS  Google Scholar 

  44. Lang F, Gulbins E, Szabo I, Lepple-Wienhues A, Huber SM, Duranton C, Lang KS, Lang PA, Wieder T (2004) Cell volume and the regulation of apoptotic cell death. J Mol Recognit 17:473–480

    CAS  Google Scholar 

  45. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, Bencini L, Calistri M, Messerini L, Scatizzi M, Moretti R, Wanke E, Olivotto M, Mugnai G, Arcangeli A (2004) herg1 and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64:606–611

    CAS  Google Scholar 

  46. Lastraioli E, Taddei A, Messerini L, Comin CE, Festini M, Giannelli M, Tomezzoli A, Paglierani M, Mugnai G, De Manzoni G, Bechi P, Arcangeli A (2006) hERG1 channels in human esophagus: evidence for their aberrant expression in the malignant progression of Barrett's esophagus. J Cell Physiol 209:398–404

    CAS  Google Scholar 

  47. Lepple-Wienhues A, Berweck S, Bohmig M, Leo CP, Meyling B, Garbe C, Wiederholt M (1996) K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol 151:149–157

    CAS  Google Scholar 

  48. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    CAS  Google Scholar 

  49. Lin H, Xiao J, Luo X, Xu C, Gao H, Wang H, Yang B, Wang Z (2007) Overexpression HERG K+ channel gene mediates cell-growth signals on activation of oncoproteins Sp1 and NF-κB and inactivation of tumor suppressor Nkx3.1. J Cell Physiol 212:137–147

    CAS  Google Scholar 

  50. Liu SI, Chi CW, Lui WY, Mok KT, Wu CW, Wu SN (1998) Correlation of hepatocyte growth factorinduced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochim Biophys Acta 1368:256–266

    CAS  Google Scholar 

  51. Luo X, Lin H, Lu Y, Li B, Xiao J, Yang B, Wang Z (2007) Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes an d potential implications in regional heterogeneity of their expressions. J Cell Physiol 212:358–367

    CAS  Google Scholar 

  52. Masiero M, Nardo G, Indraccolo S, Favaro E (2007) RNA interference: implications for cancer treatment. Mol Aspects Med 28:143–166

    CAS  Google Scholar 

  53. Meyer R, Heinemann SH (1998) Characterization of an eag-like potassium channel in human neuroblastoma cells. J Physiol 508:49–56

    CAS  Google Scholar 

  54. Meyer R, Schönherr R, Gavrilova-Ruch O, Wohlrab W, Heinemann SH (1999) Identification of ether a-go-go and calciumactivated potassium channels in human melanoma cells. J Membr Biol 171:107–115

    CAS  Google Scholar 

  55. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    CAS  Google Scholar 

  56. Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KC, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S (2003) Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302

    CAS  Google Scholar 

  57. Mauro T, Dixon DB, Komuves L, Hanley K, Pappone PA (1997) Keratinocyte K+ channels mediate Ca2+-induced differentiation. J Invest Dermatol 108:864–870

    CAS  Google Scholar 

  58. Morishita R, Aoki M, Kaneda Y (2001) Decoy oligodeoxynucleotides as novel cardiovascular drugs for cardiovascular disease. Ann NY Acad Sci 947:294–301

    CAS  Google Scholar 

  59. Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ (1995) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 92:5855–5859

    CAS  Google Scholar 

  60. Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J, Ogihara T (1997) In vivo transfection of cis element “decoy” against nuclear factor-κB binding site prevents myocardial infarction. Nat Med 13:894–899

    Google Scholar 

  61. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calciumchannels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–C18

    CAS  Google Scholar 

  62. Occhiodoro T, Bernheim L, Liu J, Bijlenga P, Sinnreich M, Bader CR, Fischer-Lougheed J (1998) Cloning of a human ether-a-go-go potassium channel expressed in myoblasts at the onset of fusion. FEBS Lett 434:177–182

    CAS  Google Scholar 

  63. Ouadid-Ahidouch H, Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N (2001) Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: Possible involvement of a h-ether a-gogo K+ channel. Receptors Channels 7:345–356

    CAS  Google Scholar 

  64. Pancrazio JJ, Viglione MP, Kleiman RJ, Kim YI (1991) Verapamil-induced blockade of voltage-activated K+ current in small-cell lung cancer cells. J Pharmacol Exp Ther 257:184–191

    CAS  Google Scholar 

  65. Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19:285–292

    CAS  Google Scholar 

  66. Pardo LA, Brüggemann A, Camacho J, Stühmer W (1998) Cell cycle-related changes in the conducting properties of r-eag K+ channels. J Cell Biol 143:767–775

    CAS  Google Scholar 

  67. Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W (1999) Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547

    CAS  Google Scholar 

  68. Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164

    CAS  Google Scholar 

  69. Patel AJ, Lazdunski M (2004) The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 448:261–273

    CAS  Google Scholar 

  70. Patt S, Preussat K, Beetz C, Kraft R, Schrey M, Kalff R, Schonherr K, Heinemann SH (2004) Expression of ether a-go-go potassium channels in human gliomas. Neurosci Lett 368:249–253

    CAS  Google Scholar 

  71. Pawlak W, Zolnierek J, Sarosiek T, Szczylik C (2000) Antisense therapy in cancer. Cancer Treat Rev 26:333–350

    CAS  Google Scholar 

  72. Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T (2003) Oncogenic potential of TASK3 (kcnk9) 593 depends on K+ channel function. Proc Natl Acad Sci USA 100:7803–7807

    CAS  Google Scholar 

  73. Pena TL, Chen SH, Konieczny SF, Rane SG (2000) Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem 275:13677–13682

    CAS  Google Scholar 

  74. Pillozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A, Guasti L, Bartolozzi B, Becchetti A, Wanke E, Bernabei PA, Olivotto M, Pegoraro L, Arcangeli A (2002) HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 16:1791–1798

    CAS  Google Scholar 

  75. Prakash TP, Bhat B (2007) 2′-Modified oligonucleotides for antisense therapeutics. Curr Top Med Chem 7:641–649

    CAS  Google Scholar 

  76. Potier M, Joulin V, Roger S, Besson P, Jourdan ML, Leguennec JY, Bougnoux P, Vandier C (2006) Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther 5:2946–2953

    CAS  Google Scholar 

  77. Preussat K, Beetz C, Schrey M, Kraft R, Wolfl S, Kalff R, Patt S (2003) Expression of voltage-gated potassium channels Kv1.3 and Kv1.5 in human gliomas. Neurosci Lett 346:33–36

    CAS  Google Scholar 

  78. Renaudo A, Watry V, Chassot AA, Ponzio G, Ehrenfeld J, Soriani O (2004) Inhibition of tumor cell proliferation by sigma ligands is associated with K+ Channel inhibition and p27kip1 accumulation. J Pharmacol Exp Ther 311:1105–1114

    CAS  Google Scholar 

  79. Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M, Alunni-Fabbroni M, Casavola V, Tommasino M (2000) Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J 14:2185–2197

    CAS  Google Scholar 

  80. Roderick C, Reinach PS, Wang L, Lu L (2003) Modulation of rabbit corneal epithelial cell proliferation by growth factor-regulated K+ channel activity. J Membr Biol 196:41–50

    CAS  Google Scholar 

  81. Rouzaire-Dubois B, Dubois JM (1990) Tamoxifen blocks both proliferation and voltage-dependent K+ channels of neuroblastoma cells. Cell Signal 2:387–393

    CAS  Google Scholar 

  82. Rouzaire-Dubois B, Gerard V, Dubois JM (1993) Involvement of K+ channels in the quercetin-induced inhibition of neuroblastoma cell growth. Pflugers Arch 423:202–205

    CAS  Google Scholar 

  83. Rouzaire-Dubois B, Dubois JM (1998) K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol 510:93–102

    CAS  Google Scholar 

  84. Rouzaire-Dubois B, Malo M, Milandri JB, Dubois JM (2004) Cell size-proliferation relationship in rat glioma cells. Glia 45:249–257

    Google Scholar 

  85. Rouzaire-Dubois B, Milandri JB, Bostel S, Dubois JM (2000) Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pflugers Arch 440:881–888

    CAS  Google Scholar 

  86. Rouzaire-Dubois B, O'Regan S, Dubois JM (2005) Cell size-dependent and independent proliferation of rodent neuroblastoma x glioma cells. J Cell Physiol 203:243–250

    CAS  Google Scholar 

  87. Rybalchenko V, Prevarskaya N, Van Coppenolle F, Legrand G, Lemonnier L, Le Bourhis X, Skryma R (2001) Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Mol Pharmacol 59:1376–1387

    CAS  Google Scholar 

  88. Schreiber R (2005) Ca2+ signaling, intracellular pH and cell volume in cell proliferation. J Membr Biol 205:129–137

    CAS  Google Scholar 

  89. Schwab M (1999) Oncogene amplification in solid tumors. Semin Cancer Biol 9:319–325

    CAS  Google Scholar 

  90. Shao XD, Wu KC, Hao ZM, Hong L, Zhang J, Fan DM (2005) The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (HERG) channel, on gastric cancer cells. Cancer Biol Ther 4:295–301

    Article  CAS  Google Scholar 

  91. Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, Gill DL (1993) Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci USA 90:4986–4990

    CAS  Google Scholar 

  92. Shrode LD, Tapper H, Grinstein S (1997) Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 29:393–399

    CAS  Google Scholar 

  93. Skryma RN, Prevarskaya NB, Dufy-Barbe L, Odessa MF, Audin J, Dufy B (1997) Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate 33:112–122

    CAS  Google Scholar 

  94. Smith GAM, Tsui H, Newell EW, Jiang X, Zhu XP, Tsui FWL, Schlichter LC (2002) Functional up-regulation of HERG KC channels in neoplastic hematopoietic cells. J Biol Chem 277:18528–18534

    CAS  Google Scholar 

  95. Spitzner M, Ousingsawat J, Scheidt K, Kunzelmann K, Schreiber R (2007) Voltage-gated K+ channels support proliferation of colonic carcinoma cells. FASEB J 21:35–44

    CAS  Google Scholar 

  96. Suzuki T, Takimoto K (2004) Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Oncol 25:153–159

    CAS  Google Scholar 

  97. Tsien RW, Tsien RY (1990) Calciumchannels, stores, oscillations. Annu Rev Cell Biol 6:715–760

    CAS  Google Scholar 

  98. Utermark T, Alekov A, Lerche H, Abramowski V, Giovannini M, Hanemann CO (2003) Quinidine impairs proliferation of neurofibromatosis type 2-deficient human malignant mesothelioma cells. Cancer 97:1955–1962

    CAS  Google Scholar 

  99. Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77:51–74

    CAS  Google Scholar 

  100. Warmke J, Drysdale R, Ganetzky B (1991) A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science 252:1560–1562

    CAS  Google Scholar 

  101. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z (2002) HERG K+ channel: A regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    CAS  Google Scholar 

  102. Wang S, Melkoumian Z, Woodfork KA, Cather C, Davidson AG, Wonderlin WF, Strobl JS (1998) Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J Cell Physiol 176:456–464

    CAS  Google Scholar 

  103. Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286

    CAS  Google Scholar 

  104. Wang ZH, Shen B, Yao HL, Jia YC, Ren J, Feng YJ, Wang YZ (2007) Blockage of intermediate-conductance-Ca2+-activated K+ channels inhibits progression of human endometrial cancer. Oncogene 26:5107–5114

    CAS  Google Scholar 

  105. Weng Z, Pan Xa, Cui N, Wang S, Wang B (2007) Voltage-gated K+ channels are associated with cell proliferation and cell cycle of ovarian cancer cell. Gynecol Oncol 104:455–460

    CAS  Google Scholar 

  106. Weaver AK, Liu X, Sontheimer H (2004) Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J Neurosci Res 78:224–234

    CAS  Google Scholar 

  107. Wohlrab D, Lebek S, Kruger T, Reichel H (2002) Influence of ion channels on the proliferation of human chondrocytes. Biorheology 39:55–61

    CAS  Google Scholar 

  108. Wohlrab D, Markwardt F (1999) Influence of ion channel blockers on proliferation and free intracellular Ca2+ concentration of human keratinocytes. Skin Pharmacol Appl Skin Physiol 12:257–265

    CAS  Google Scholar 

  109. Wonderlin WF, Woodfork KA, Stroble JS (1995) Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 165:177–185

    CAS  Google Scholar 

  110. Wonderlin WF, Stroble JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107

    CAS  Google Scholar 

  111. Woodfork KA, Wonderlin WF, Peterson VA, Strobl JS (1995) Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol 162:163–171

    CAS  Google Scholar 

  112. Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: Examinat ion on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292

    CAS  Google Scholar 

  113. Xu B, Wilson BA, Lu L (1996) Induction of human myeloblastic ML-1 cell G1 arrest by suppression of K+ channel activity. Am J Physiol Cell Physiol 40:C2037–C2044

    Google Scholar 

  114. Xu DZ, Wang L, Dai W, Lu L (1999) A requirement for K+-channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells. Blood 94:139–145

    CAS  Google Scholar 

  115. Yang B, Lin H, Xiao J, Luo X, Li B, Lu Y, Wang H, Wang Z (2007) The muscle-specific microRNA miR-1 causes cardiac arrhythmias by targeting GJA1 and KCNJ2 genes. Nat Med 13:486–491

    CAS  Google Scholar 

  116. Yao X, Kwan HY (1999) Activity of voltage-gated K+ channels is associated with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer. Life Sci 65:55–62

    CAS  Google Scholar 

  117. Zhanping W, Xiaoyu P, Na C, Shenglan W, Bo W (2007) Voltage-gated K+ channels are associated with cell proliferation and cell cycle of ovarian cancer cell. Gynecol Oncol 104:455–460

    Google Scholar 

  118. Zhou Q, Kwan HY, Chan HSC, Jiang JL, Tam SC, Yao XQ (2003) Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int J Mol Med 11:261–266

    CAS  Google Scholar 

  119. Zhou ZH, Unlap T, Li L, Ma HP (2002) Incomplete inactivation of voltage-dependent K+ channels in human B lymphoma cells. J Membr Biol 188:97–105

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang .

Editor information

Bernard Fermini Birgit T. Priest

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z. (2008). Potassium Channels: Oncogenic Potential and Therapeutic Target for Cancers. In: Fermini, B., Priest, B.T. (eds) Ion Channels. Topics in Medicinal Chemistry, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2008_020

Download citation

Publish with us

Policies and ethics