Skip to main content

Making Rhizobium-Infected Root Nodules

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 8))

Abstract

Rhizobium bacteria have the unique capability to establish a symbiosis with higher plants of the taxonomic family of Fabaceae (also named Leguminosae) in which a new root organ, the nodule, is formed. In this nodule atmospheric nitrogen (N2) is fixed into ammonia and supplied to the plant. It is this symbiosis that will be central in this chapter. We will focus on the underlying molecular networks that are essential to make this interaction happen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kaló P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1347

    PubMed  CAS  Google Scholar 

  • Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome JC, Denarie J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–11374

    PubMed  CAS  Google Scholar 

  • Arrighi JF, Barre A, Ben Amor B, Bersoult A, Campos Soriano L, Mirabella R, De Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C (2006) The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142:265–279

    PubMed  CAS  Google Scholar 

  • Barnett MJ, Rushing BG, Fisher RF, Long SR (1996) Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti. J Bacteriol 178:1782–1787

    PubMed  CAS  Google Scholar 

  • Ben Amor B, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506

    CAS  Google Scholar 

  • Bender GL, Goydych W, Rolfe BG, Nayudu M (1987) The role of Rhizobium conserved and host specific nodulation genes in the infection of the non-legume Parasponia andersonii. Mol Gen Genet 210:299–306

    CAS  Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468

    PubMed  CAS  Google Scholar 

  • Bright LJ, Liang Y, Mitchell DM, Harris JM (2005) The LATD gene of Medicago truncatula is required both for nodule and root development. Mol Plant Microbe Interact 18:521–532

    PubMed  CAS  Google Scholar 

  • Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12:1647–1666

    PubMed  CAS  Google Scholar 

  • Charron D, Pingret J, Chabaud M, Journet E, Barker DG (2004) Pharmacological evidence that multiple phospholipid signaling pathways link rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, indicating Ca2+ spiking and specific ENOD gene expression. Plant Physiol 136:3582–3593

    PubMed  CAS  Google Scholar 

  • Chen XC, Feng J, Hou BH, Li FQ, Li Q, Hong GF (2005) Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acid Res 33:2540–2548

    PubMed  CAS  Google Scholar 

  • Compaan B, Yang WC, Bisseling T, Franssen H (2001) ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium–legume interaction and the highly conserved internal region of the gene does not encode a peptide. Plant Soil 230:1–8

    CAS  Google Scholar 

  • D'Haeze W, Gao M, De Rycke R, Van Montagu M, Engler G, Holsters M (1998) Roles for azorhizobial nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Mol Plant Microbe Interact 11:999–1008

    Google Scholar 

  • D'Haeze W, Mergaert P, Prome J-C, Holsters M (2000) Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. J Biol Chem 275:15676–15684

    PubMed  Google Scholar 

  • D'Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci USA 100:11789–11794

    PubMed  Google Scholar 

  • De Faria SM, Sutherland JM, Sprent JI (1986) A new type of infected cell in root nodules of Andira spp. (Leguminosae). Plant Sci 45:143–147

    Google Scholar 

  • Demont N, Debellé F, Aurelle H, Dénarié J, Promé J-C (1993) Role of Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268:20134–20142

    PubMed  CAS  Google Scholar 

  • Den Hartog M, Musgrave A, Munnik T (2001) Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation; a role for phospholipase C and D in root hair deformation. Plant J 25:55–65

    PubMed  CAS  Google Scholar 

  • Den Hartog M, Verhoef N, Munnik T (2003) Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol 132:311–317

    PubMed  CAS  Google Scholar 

  • Den Herder J, Vanhee C, De Rycke R, Corich V, Holsters M, Goormachtig S (2007) Nod factor perception during infection thread growth fine-tunes nodulation. Mol Plant Microbe Interact 20:129–137

    PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85:673–681

    PubMed  CAS  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    PubMed  CAS  Google Scholar 

  • Engstrom EM, Ehrhardt DW, Mitra RM, Long SR (2002) Pharmacological analysis of nod factor-induced calcium spiking in Medicago truncatula. Evidence for the requirement of type IIA calcium pumps and phosphoinositide signaling. Plant Physiol 128:1390–401

    PubMed  CAS  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    PubMed  CAS  Google Scholar 

  • Esseling JJ, Lhuissier FG, Emons AM (2004) A nonsymbiotic root hair tip growth phenotype in NORK-mutated legumes: implications for nodulation factor-induced signaling and formation of a multifaceted root hair pocket for bacteria. Plant Cell 16:933–944

    PubMed  CAS  Google Scholar 

  • Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton WJ, Jabbouri S (1998) NodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Mol Microbiol 27:1039–1050

    PubMed  CAS  Google Scholar 

  • Feng J, Li Q, Hu HL, Chen XC, Hong GF (2003) Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res 31:3143–3156

    PubMed  CAS  Google Scholar 

  • Ferraioli S, Tatè R, Rogato A, Chiurazzi M, Patriarca EJ (2004) Development of ectopic roots from abortive nodule primordia. Mol Plant Microbe Interact 17:1043–1050

    PubMed  CAS  Google Scholar 

  • Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie J (1993) Resistance to nodulation of c.v. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10:351–360

    PubMed  CAS  Google Scholar 

  • Geurts R, Heidstra R, Hadri AE, Downie A, Franssen H, Van Kammen A, Bisseling T (1997) Sym2 of Pisum sativum is involved in a Nod factor perception mechanism that controls the infection process in the epidermis. Plant Physiol 115:351–359

    PubMed  CAS  Google Scholar 

  • Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah BW, Oldroyd GED (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:1149–1152

    PubMed  CAS  Google Scholar 

  • Godfroy O, Debelle F, Timmers T, Rosenberg C (2006) A rice calcium- and calmodulin-dependent protein kinase restores nodulation to a legume mutant. Mol Plant Microbe Interact 19:495–501

    PubMed  CAS  Google Scholar 

  • Goormachtig S, Capoen W, Holsters M (2004a) Rhizobium infection: lessons from the versatile nodulation behavior of water-tolerant legumes. Trends Plant Sci 9:518–522

    PubMed  CAS  Google Scholar 

  • Goormachtig S, Capoen W, James EK, Holsters M (2004b) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc Natl Acad Sci USA 101:6303–6308

    PubMed  CAS  Google Scholar 

  • Gupta RS (2005) Protein signatures distinctive of alpha proteobacteria and its subgroups and a model for alpha-proteobacterial evolution. Crit Rev Microbiol 31:101–135

    PubMed  CAS  Google Scholar 

  • Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA (2007) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142:1739–1750

    Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink HP, Van Kammen A, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105:787–797

    PubMed  CAS  Google Scholar 

  • Honma MA, Asomaning M, Ausubel FM (1990) Rhizobium meliloti nodD genes mediate host-specific activation of nodABC. J Bacteriol 172:901–911

    PubMed  CAS  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    PubMed  CAS  Google Scholar 

  • Kaló P, Gleason C, Edwards A, Marsh J, Mitra RA, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GED (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789

    PubMed  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359–364

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X (2004) Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51:335–347

    PubMed  CAS  Google Scholar 

  • Kondorosi E, Buire M, Cren M, Iyer N, Hoffman B, Kondorosi A (1991) Involvement of the syrM and nodD3 genes of Rhizobium meliloti in nod gene activation and in optimal nodulation of the plant host. Mol Microbiol 5:3035–3048

    PubMed  CAS  Google Scholar 

  • Kowalksa I, Stochmal A, Kapusta I, Janda B, Pizza C, Piacente S, Oleszek W (2007) Flavonoids from barrel medic (Medicago truncatula) aerial parts. J Agric Food Chem 55:2645–2652

    Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, De Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    PubMed  CAS  Google Scholar 

  • Lafay B, Bullier E, Burdon JJ (2006) Bradyrhizobia isolated from root nodules of Parasponia (Ulmaceae) do not constitute a separate coherent lineage. Int J Syst Evol Microbiol 56:1013–1018

    PubMed  CAS  Google Scholar 

  • Lancelle SA, Torrey JG (1984) Early development of Rhizobium-induced root nodules of Parasponia rigida, 1. lnfection and early nodule initiation. Protoplasma 123:26–37

    Google Scholar 

  • Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the “Alphaproteobacteria”: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919

    PubMed  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé J-C, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    PubMed  CAS  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    PubMed  CAS  Google Scholar 

  • Lewis G, Schrire B, MacKinder B, Lock M (eds) (2005) Legumes of the World. The Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Liang Y, Mitchella DM, Harris JM (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Mol Dev 304:297–307

    CAS  Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630–633

    PubMed  CAS  Google Scholar 

  • Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci USA 102:10375–10380

    PubMed  CAS  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    PubMed  CAS  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact 17:1063–1077

    PubMed  CAS  Google Scholar 

  • Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W, Krishnan HB, Perret X, Broughton WJ (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secre tion system of NGR234. Mol Plant Microbe Interact 16:743–751

    PubMed  CAS  Google Scholar 

  • Marie C, Deakin JW, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton JW, Perret X (2004) TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17:958–966

    PubMed  CAS  Google Scholar 

  • Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A, Long SR, Schultze M, Ratet P, Oldroyd GE (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335

    PubMed  CAS  Google Scholar 

  • Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91:842–847

    Article  PubMed  CAS  Google Scholar 

  • Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234

    PubMed  CAS  Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004a) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development Gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705

    PubMed  CAS  Google Scholar 

  • Mitra RM, Shaw SL, Long SR (2004b) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume–rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222

    PubMed  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of proteobacteria. Nature 411:948–950

    PubMed  CAS  Google Scholar 

  • Mulligan JT, Long SR (1989) A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics 122:7–18

    PubMed  CAS  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science 15:101–104

    Google Scholar 

  • Naisbitt T, James EK, Sprent JI (1992) The evolutionary significante of the legume genus Chamaecrista, as determined by nodule structure. New Phytol 122:487–492

    Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Masayoshi K (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    PubMed  CAS  Google Scholar 

  • Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    PubMed  CAS  Google Scholar 

  • Oldroyd GED, Long SR (2003) Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod actor signaling. Plant Physiol 131:1027–1032

    PubMed  CAS  Google Scholar 

  • Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729

    PubMed  CAS  Google Scholar 

  • Pawlowski K, Sirrenberg A (2003) Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes. Ind J Exp Biol 41:1165–1183

    CAS  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    PubMed  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    PubMed  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:917–1008

    Google Scholar 

  • Peters JW, Szilagyi RK (2006) Exploring new frontiers of nitrogenase structure and mechanism. Curr Opin Chem Biol 10:101–108

    PubMed  CAS  Google Scholar 

  • Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99:1526–1531

    PubMed  CAS  Google Scholar 

  • Pingret JL, Journet EP, Barker DG (1998) Rhizobium Nod factor signaling. Evidence for a G protein-mediated transduction mechanism. Plant Cell 10:659–672

    PubMed  CAS  Google Scholar 

  • Price NPJ, Talmont F, Wieruszeski JM, Promé D, Promé J-C (1996) Structural determination of symbiotic nodulation factors from the broad host-range Rhizobium species NGR234. Carbohydr Res 289:115–136

    PubMed  CAS  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    PubMed  CAS  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    PubMed  CAS  Google Scholar 

  • Riely BK, Lougnon G, Ané JM, Cook DR (2007) The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J 49:208–216

    PubMed  CAS  Google Scholar 

  • Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie JA, Parniske M, Hayashi M, Kawaguchi M (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624

    PubMed  CAS  Google Scholar 

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179

    PubMed  CAS  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195

    PubMed  CAS  Google Scholar 

  • Schnabel E, Journet PE, De Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    PubMed  Google Scholar 

  • Schultze M, Quiclet-Sire B, Kondorosi E, Virelizier H, Glushka JN, Endre G, Géro SD, Kondorosi A (1992) Rhizobium meliloti produces a family of sulfated lipo-oligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 89:192–196

    PubMed  CAS  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-Like Receptor kinase. Science 299:109–112

    PubMed  CAS  Google Scholar 

  • Sharma SB, Signer ER (1990) Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev 4:344–356

    PubMed  CAS  Google Scholar 

  • Shaw SL, Long SR (2004) Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol 131:976–984

    Google Scholar 

  • Schlaman HR, Horvath B, Vijgenboom E, Okker RJ, Lugtenberg BJ (1991) Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viciae. J Bacteriol 173:4277–4287

    PubMed  CAS  Google Scholar 

  • Scott KF (1986) Conserved nodulation genes from the non-legume symbiont Bradyrhizobium sp. (Parasponia). Nucleic Acid Res 14:2905–2919

    PubMed  CAS  Google Scholar 

  • Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308:1789–1791

    PubMed  CAS  Google Scholar 

  • Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C, Bisseling T (2007) Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol 145:183–191

    PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651

    PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linnean Soc 133:381–461

    Google Scholar 

  • Spaink HP, Kondorosi A, Hooykaas PJJ (1998) The Rhizobiaceae. Kluwer Academic Publishers, Norwell, USA

    Google Scholar 

  • Sprent JI (ed) (2001) Nodulation in legumes. The Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    PubMed  CAS  Google Scholar 

  • Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Downie A, Sato S, Tabata S, Hiroshi H, Parniske M, Kawasaki S, Stougaard J (2006a) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156

    PubMed  CAS  Google Scholar 

  • Timmers ACJ, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium–Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628

    PubMed  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    PubMed  CAS  Google Scholar 

  • Trinick MJ (1973) Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244:459–468

    Google Scholar 

  • Velazquez E, Peix A, Zurdo-Pineiro JL, Palomo JL, Mateos PF, Rivas R, Munoz-Adelantado E, Toro N, Garcia-Benavides P, Martinez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Mol Plant Microbe Interact 12:1325–1332

    Google Scholar 

  • Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:381–389

    Google Scholar 

  • Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarie J, Long SR (2000) Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci USA 97:13407–13412

    PubMed  CAS  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    PubMed  CAS  Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17:1385–1393

    PubMed  CAS  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo FB, Jiang Q, Gresshoff PM, De Bruijn FJ, Stougaard Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23:97–114

    PubMed  CAS  Google Scholar 

  • Yang GP, Debellé F, Savagnac A, Ferro M, Schiltz O, Maillet F, Promé D, Treilhou M, Vialas C, Lindstrom K, Dénarié J, Promé J-C (1999) Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with α,β-unsaturated N-acyl substitutions. Mol Microbiol 34:227–237

    PubMed  CAS  Google Scholar 

  • Zhu H, Riely BK, Burns NJ, An JM (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172:2491–2499

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Geurts .

Editor information

Katharina Pawlowski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Untergasser, A., Bisseling, T., Geurts, R. (2008). Making Rhizobium-Infected Root Nodules. In: Pawlowski, K. (eds) Prokaryotic Symbionts in Plants. Microbiology Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2008_119

Download citation

Publish with us

Policies and ethics