Skip to main content

The Mitochondrion-Related Organelle of Cryptosporidium parvum

  • Chapter
  • First Online:
Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 9))

Abstract

The mitochondrion-related organelle of Cryptosporidium parvum is structurally distinguished from the hydrogenosomes and mitosomes of anaerobic protists by its (1) close association with the crystalloid body, an organelle unique to this apicomplexan and the function of which is currently unknown; (2) close association with the outer nuclear membrane and possibly nuclear pores; (3) envelopment by rough endoplasmic reticulum and in some cases an apparent direct tethering to ribosomes; and (4) atypical internal membranous compartments that lack well-defined crista junctions with the mitochondrial inner membrane, a characteristic that defines most aerobic eukaryotic mitochondria. Like most hydrogenosome- and mitosome-bearing anaerobic protists, however, C. parvum lacks a mitochondrial genome, i.e. proteins are encoded by the nucleus and targeted back to the mitochondrion-like organelle. As a consequence of this reductive evolution, there are no genes for electron transport or oxidative phosphorylation, and the only function so far ascribed to this tiny organelle is one common to all eukaryotic mitochondria, the assembly and maturation of iron sulfur clusters. The ultrastructure and tomography of the relic mitochondrion and crystalloid body, as well as their probable functions, are the primary topics herein. An overview of iron sulfur cluster biosynthesis, the likely mechanisms for import into and export from the mitochondrion, as well as core carbohydrate and energy metabolism are discussed. Similarities and differences in the structure and function of both organelles with anaerobic protists in general, as well as with other apicomplexans specifically, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  • Aji T, Flanigan T, Marshall R, Kaetzel C, Aikawa M (1991) Ultrastructural study of asexual development of Cryptosporidium parvum in a human intestinal cell line. J Protozool 38:82S

    PubMed  CAS  Google Scholar 

  • Alvarez-Pellitero P, Quiroga MI, Sitjà-Bobadilla A, Redondo MJ, Palenzuela O, Padrós F, Vázquez S, Nieto JM (2004) Cryptosporidium scophthalmi n. sp. (Apicomplexa: Cryptosporidiidae) from cultured turbot Scophthalmus maximus. Light and electron microscope description and histopathological study. Dis Aquat Organ 62:133–145

    PubMed  CAS  Google Scholar 

  • Aravind L, Watanabe H, Lipman DJ, Koonin EV (2000) Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci USA 97:11319–11324

    Article  PubMed  CAS  Google Scholar 

  • Barbera MJ, Ruiz-Trillo I, Leigh J, Hug LA, Roger AJ (2006) Diversity of mitochondrion-related organelles amongst eukaryotic microbes. In: Martin WF, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 239–275

    Google Scholar 

  • Beyer TV, Svezhova NV, Sidorenko NV, Khokhlov SE (2000) Cryptosporidium parvum (Coccidia Apicomplexa): Some new ultrastructural observations on its endogenous development. Eur J Protistol 36:151–159

    Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldon T, van Hoek AHAM, Moon-van der Staay S, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502

    PubMed  CAS  Google Scholar 

  • Cai X, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella. Gene 321:39–46

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Herschap D, Zhu G (2005) Functional characterization of an evolutionarily distinct phosphopantetheinyl transferase in the apicomplexan Cryptosporidium parvum. Eukaryot Cell 4:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1991) The evolution of cells. In: Osawa S, Honjo T (eds) Evolution of Life. Springer, Tokyo, pp 271–304

    Google Scholar 

  • Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Junji ERS, Leon-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15:737–742

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Article  PubMed  CAS  Google Scholar 

  • Coombs GH, Müller S (2002) Recent advances in the search for new anti-coccidial drugs. Int J Parasitol 32:497–508

    Article  PubMed  CAS  Google Scholar 

  • Crawford MJ, Fraunholz MJ, Roos DS (2003) Energy metabolism in the Apicomplexa. In: Marr JJ, Nielsen TW, Komuniecki RW (eds) Molecular Medical Parasitology, vol 7. Academic Press, New York, pp 154–169

    Google Scholar 

  • Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, BAlla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    Article  PubMed  CAS  Google Scholar 

  • Ctrnacta V, Ault JG, Stejskal F, Keithly JS (2006) Localization of pyruvate : NADP+ oxidoreductase in sporozoites of Cryptosporidium parvum. J Eukaryot Microbiol 53:225–231

    Article  PubMed  CAS  Google Scholar 

  • Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Marko M, Buttle KF, Leith A, Mieczkowski M, Mannella CA (1999) Cubic membrane structure in [the] amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J Struct Biol 127:231–239

    Article  PubMed  CAS  Google Scholar 

  • deVenevelles P, Chich JF, Faigle W, Lombard, Loew D, Pery P, Labbe M (2006) Study of proteins associated with the Eimeria tenella refractile body by a proteomic approach. Intl J Parasitol 36:1399–1407

    Article  CAS  Google Scholar 

  • Dolezal P, Dancis A, Lesuisse E, Sutak R, Hrdy I, Embley TM, Tachezy J (2007) Frataxin, a conserved mitochondrial protein in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 6:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318

    Article  PubMed  CAS  Google Scholar 

  • Dong J-S, Lai R, Nielsen K, Fekete CA, Qiu H-F, Hinnebusch AG (2004) The essential ATP-binding cassette protein Rli1 functions in translation by promoting preinitiation complex assembly. J Biol Chem 274:42157–42168

    Article  CAS  Google Scholar 

  • Ellis JE, Setchell KD, Kaneshiro ES (1994) Detection of ubiquinone in parasitic and free-living protozoa, including species devoid of mitochondria. Mol Biochem Parasitol 65:213–224

    Article  PubMed  CAS  Google Scholar 

  • Ellis TJ, Morrison DA, Jeffries AC (1998) The phylum Apicomplexa: an update on the molecular phlogeny. In: Coombs GC, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary Relationships among the Protozoa. Kluwer, Boston, pp 255–274

    Google Scholar 

  • Entrala E, Mascaro C (1997) Glycolytic enzyme activities in Cryptosporidium parvum oocysts. FEMS Microbiol Lett 151:51–57

    Article  PubMed  CAS  Google Scholar 

  • Fayer R (1997) Cryptosporidium and Cryptosporidiosis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Feagin JE, Drew ME (1995) Plasmodium falciparum alterations in organelle transcript abundance during the erythrocytic cycle. Exp Parasitol 80:430–440

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163

    PubMed  CAS  Google Scholar 

  • Fetterer RH, Miska KB, Lillehoj H, Barfield RC (2007) Serine protease activity in developmental stages of Eimeria tenella. J Parasitol 93:333–340

    Article  PubMed  CAS  Google Scholar 

  • Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324

    Article  PubMed  CAS  Google Scholar 

  • Frey TG, Perkins GA, Ellisman MH (2006) Electron tomography of membrane-bound cellular organelles. Annu Rev Biophys Biomol Struct 35:199–224

    Article  PubMed  CAS  Google Scholar 

  • Fry M, Beesley JE (1991) Mitochondria of mammalian Plasmodium spp. Parasitol 102:17–26

    Article  Google Scholar 

  • Gentle IE, Perry AJ, Alcock FH, Likic VA, Dolezal P, Ng ET, Purcell AW, McConnville M, Naderer T, Chanez A-L, Charrier F, Aschinger C, Schneider A, Tokatlidis K, Lithgow T (2007) Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Mol Biol Evol 24:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Minireview. Genome Biology 2:1018.1–1018.5

    Google Scholar 

  • Harris JR, Scheffler D (2002) routine preparation of air-dried negatively stained and unstained specimens on holey carbon support films: A review of applications. Micron 33:461–480

    Article  PubMed  Google Scholar 

  • Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Mühlenhoff U, Lill R (2005) The eukaryotic P loop NTPase NBP35: An essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc Natl Acad Sci USA 102:3266–3271

    Article  PubMed  CAS  Google Scholar 

  • Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW (2005) The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 21:68–74

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709

    PubMed  CAS  Google Scholar 

  • Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262:9130–9135

    PubMed  CAS  Google Scholar 

  • Johnson D, Cascio M, Sawaya M, Gingery I, Schröder E (2006) Crystal structures of a tetrahedral open pore ferritin from the hyperthermophilic archaeon. Structure 13:637–648

    Article  CAS  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Presier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenback J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  • Kayser O, Waters WR, Woods KM, Upton SJ, Keithly JS, Laatsch H, Kiderlen AF (2002) Evaluation of in vitro and in vivo activity of benzindazole-4,9-quinones against Cryptosporidium parvum. J Antimicrob Chemother 50:975–980

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2004) Reduction and compaction in the genome of the apicomplexan parasite Cryptosporidium parvum. Develop Cell 1:614–616

    Article  Google Scholar 

  • Keeling PJ, Fast NM (2002) Microsporidia: Biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116

    Article  PubMed  CAS  Google Scholar 

  • Keithly JS, Langreth SG, Buttle KF, Mannella CA (2005) Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 52:132–140

    Article  PubMed  Google Scholar 

  • Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janaky T, Bassler J, Guilar Netz DJ, Balk J, Rotte C, Lill R (2005) Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J 24:589–598

    Article  PubMed  CAS  Google Scholar 

  • Kita K, Hirawake H, Miyadera H, Amino H, Takeo S (2002) Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. Biochim Biophys Acta 1553:123–139

    Article  PubMed  CAS  Google Scholar 

  • Krungkrai SR, Learngaramkul P, Kudan S, Prapunwattana P, Krungkrai JP (1999) Mitochondrial heterogeneity in human malarial parasite Plasmodium falciparum. Science Asia 25:77–83

    Article  Google Scholar 

  • Krungkrai J, Prapunwattana P, Krungkrai SR (2000) Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite 7:19–26

    PubMed  CAS  Google Scholar 

  • LaGier MJ, Tachezy J, Stejskal F, Kutisova F, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiol-UK 149:3519–3930

    Article  CAS  Google Scholar 

  • Leon-Avila G, Tovar J (2004) Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiol-UK 150:1245–1250

    Article  CAS  Google Scholar 

  • Lill R, Fekete Z, Sipos K, Rotte C (2005) Is there an answer? Why are mitochondria essential for life? IUBMB Life 57:701–703

    PubMed  CAS  Google Scholar 

  • Lill R, Mühlenhoff U (2005) Iron-sulfur protein biogenesis in eukaryotes. Trends Biochem Sci 30:133–141

    Article  PubMed  CAS  Google Scholar 

  • Lucic V, Forster F, Baumeister W (2005) Structural studies by electron tomography: From cells to molecules. Annu Rev Biochem 74:833–865

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J (1992) Life cycle of Goussia pannonica (Molnar 1989) (Apicomplexa, Eimeriorina), an extracytoplasmic coccidium from the white bream Blicca bjoerkna. J Protozool 39:484–494

    Google Scholar 

  • Madern D, Cai X, Abrahamsen MS, Zhu G (2004) Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. Mol Biol Evol 21:489–497

    Article  PubMed  CAS  Google Scholar 

  • Mann T, Beckers C (2001) Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Mol Biochem Parasitol 115:257–268

    Article  PubMed  CAS  Google Scholar 

  • Mannella CA, Pfeiffer DR, Bradshaw PC, Moraru II, Slepchenko B, Loew LM, Hsieh C, Buttle K, Marko M (2001) Topology of the mitochondrial inner membrane: Dynamics and bioenergetic implications. Critical Review. IUMBM Life 52:93–100

    CAS  Google Scholar 

  • McFadden GI (2003) Plastids mitochondria and hydrogenosomes. In: Marr JJ, Nielsen TW, Komuniecki RW (eds) Molecular Medical Parasitology. Academic Press, New York, pp 277–294

    Google Scholar 

  • Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Melo EJL, Attias M, DeSouza W (2000) The single mitochondrion of tachyzoites of Toxoplasma gondii. J Struct Biol 130:27–33

    Article  PubMed  CAS  Google Scholar 

  • Mi-Ichi F, Takeo S, Takashima E, Kobayashi T, Kim HS, Wataya Y, Matsuda A, Torrii M, Tsuboi T, Kita K (2003) Unique properties of respiratory chain in Plasmodium falciparum mitochondria. Adv Exp Med Biol 531:117–133

    PubMed  CAS  Google Scholar 

  • Morrissette NS, Sibley LD (2002) Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 66:21–38

    Article  PubMed  Google Scholar 

  • Müller M (1973) Peroxisomes and hydrogenosomes in protozoa. J Histochem Cytochem 21:955–957

    PubMed  Google Scholar 

  • Müller M (1975) Biochemistry of protozoan microbodies: peroxisomes, alpha-glycerophosphate oxidase bodies, hydrogenosomes. Annu Rev Microbiol 29:467–483

    Article  PubMed  Google Scholar 

  • Müller M (2003) Energy metabolism. Part I: Anaerobic protozoa. In: Marr JJ, Nilsen TW, Komnuniecki RW (eds) Molecular Medical Parasitology. Academic Press, New York, pp 125–139

    Google Scholar 

  • Nakazawa M, Inui H, Yamaji R, Yamamoto T, Takenaka S, Ueda M, Nakano Y, Miyatake K (2000) The origin of pyruvate : NADP+ oxidoreductase in mitochondria of Euglena gracilis. FEBS Lett 479:155–156

    Article  PubMed  CAS  Google Scholar 

  • Nasirudeen AM, Tan KS (2004) Isolation and characterization of the mitochondrion-like organelle from Blastocystis hominis. J Microbiol Methods 58:101–109

    Article  PubMed  CAS  Google Scholar 

  • Painter HJ, Morrisey JM, Mather MW, Vaidya AB (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446:88–91

    Article  PubMed  CAS  Google Scholar 

  • Perkins GA, Song JY, Tarsa L, Deerinck TJ, Ellisman MH, Frey TG (1998) Electron tomography of mitochondria from brown adipocytes reveals crista junctions. J Bioeneerg Biomembr 30:431–432

    Article  CAS  Google Scholar 

  • Petry F, Harris JR (1999) Ultrastructure fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. Int J Parasitol 29:1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, Wastling JM (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitol 129:1–18

    Article  CAS  Google Scholar 

  • Riordan CE, Langreth SG, Sanchez LB, Kayser O, Keithly JS (1999) Preliminary evidence for a mitochondrion in Cryptosporidium parvum: phylogenetic and therapeutic implications. J Eukaryot Microbiol 46:S52–S55

    Google Scholar 

  • Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU, Richards TA, Milhous W, Kyle D, McIntosh L, Hill GC, Chaudhuri M, Tzipori S, McLeod R (2004) Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Intl J Parasitol 34:297–308

    Article  CAS  Google Scholar 

  • Rotte C, Henze K, Müller M, Martin W (2000) The origin of hydrogenosomes and mitochondria. Curr Opin Microbiol 3:481–486

    Article  PubMed  CAS  Google Scholar 

  • Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biochem Evol 18:710–720

    CAS  Google Scholar 

  • Schrevel J (1971a) Contribution a l'etude des Selenidiidae parasites d'annelides polychetes. II. Ultrastructure de queques trophozoites. Protistologica 7:101–130

    Google Scholar 

  • Schrevel J (1971b) Observations biologiques et ultrastructurales sur les Selenidiidae et Leurs consequences sur la systematique des gregarinomorphes. J Protozool 18:448–470

    Google Scholar 

  • Senkovich O, Speed H, Grigorian A, Bradley K, Ramarao CS, Lane B, Zhu G, Chattopadhyay D (2005) Crystallization of three key glycolytic enzymes of the opportunistic pathogen Cryptosporidium parvum. Biochim Biophys Acta 1750:166–172

    PubMed  CAS  Google Scholar 

  • Siddall ME, Desser SS (1992) Ultrastructure of gametogenesis and sporogony of Haemogregarina (sensu lato) myoxocephali (Apicomplexa: Adeleina) in the marine leech Malmiana scorpii. J Protozool 39:545–554

    Google Scholar 

  • Slapeta JR, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell 3:483–494

    Article  PubMed  CAS  Google Scholar 

  • Stejskal F, Slapeta J, Ctrnacta V, Keithly JS (2003) A Narf-like gene from Cryptosporidium parvum resembles homologues observed in aerobic protists and higher eukaryotes. FEMS Microbiol Lett 229:91–96

    Article  PubMed  CAS  Google Scholar 

  • Suchan P, Vyoral D, Petrak J, Sutak R, Rasoloson D, Nohynkova E, Dolezal P, Tachezy J (2003) Incorporation of iron into Tritrichomonas foetus cell compartments reveals ferredoxin as a major iron-binding protein in hydrogenosomes. Microbiol-UK 149:1911–1921

    Article  CAS  Google Scholar 

  • Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Müller M, Tachezy J (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA 101:10368–10373

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Hashimoto T, Yabu Y, Kido Y, Sakamoto K, Nihei C, Hato M, Suzuki S, Amano Y, Nagai K, Hosokawa T, Minagawa N, Ohta N, Kita K (2004) Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in the apicomplexan parasite Cryptosporidium parvum: phylogenetic and therapeutic implications. Biochem Biophys Res Commun 313:1044–1052

    Article  PubMed  CAS  Google Scholar 

  • Tachezy J, Dolezal P (2007) Iron-sulfur proteins and iron-sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin WF, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 105–133

    Chapter  Google Scholar 

  • Tan TC, Suresh KG (2006) Amoeboid form of Blastocystis hominis—a detailed ultrastructural insight. Parasitol Res 99:737–742

    Article  PubMed  CAS  Google Scholar 

  • Templeton TJ, Iyer LM, Anatharam V, Enomoto S, Abrahante JE, Subramanian GM, Hoffman SL, Abramsen MS, Aravind L (2004) Comparative analysis of Apicomplexa and genomic diversity in eukaryotes. Genome Res 14:1686–1695

    Article  PubMed  CAS  Google Scholar 

  • Tetley L, Brown SMA, McDonald V, Coombs GH (1998) Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiol-UK 144:3249–3255

    CAS  Google Scholar 

  • Thompson RC, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS (2005) Cryptosporidium and cryptosporidiosis. Adv Parasitol 59:77–158

    Article  PubMed  CAS  Google Scholar 

  • Tielens AGM, van Hellemond JJ (2006) Anaerobic mitochondria: properties and origins. In: Martin WF, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 86–103

    Google Scholar 

  • Tovar J (2006) Mitosomes of parasitic protozoa: biology and evolutionary significance. In: Martin WF and Müller M (eds), Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 277–300

    Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176

    Article  PubMed  CAS  Google Scholar 

  • Trefiak WD, Desser SS (1973) Crystalloid inclusions in species of Leucocytozoon, Parahaemoproteus and Plasmodium. J Protozool 20:73–80

    PubMed  CAS  Google Scholar 

  • Uni S, Iseki M, Maekawa T, Moriya K, Takada S (1987) Ultrastructure of Cryptosporidium muris (strain RN 66) parasitizing the murine stomach. Parasitol Res 74:123–132

    Article  PubMed  CAS  Google Scholar 

  • van der Giezen M, Cox S, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225

    Article  PubMed  Google Scholar 

  • van Hoek AHAM, Akhmanova AS, Huynen MA, Hackstein JHP (2000) A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. Mol Biol Evol 17:202–206

    PubMed  Google Scholar 

  • Vivier E, Schrevel J (1966) Les ultrastructures cytoplasmiques de Selenidium hollandei, n. sp. gregarine parasite de Sabellaria alveolata L. J Microscopie 5:213–228

    Google Scholar 

  • Williams BAP, Keeling PJ (2003) Cryptic organelles in parasitic protists and fungi. Adv Parasitol 54:10–68

    Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Zhu G (2004) Current progress in the fatty acid metabolism in Cryptosporidium parvum. J Eukaryot Microbiol 51:381–388

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, LaGier MJ, Stejskal F, Millership JJ, Cai X, Keithly JS (2002) Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 298:79–89

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Li Y, Cai X, Millership JJ, Marchewka MJ, Keithly JS (2004) Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol Biochem Parasitol 134:127–135

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Marchewka M, Keithly JS (2000) Cryptosporidium parvum appears to lack a plastid genome. Microbiol-UK 146:315–321

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet S. Keithly .

Editor information

Jan Tachezy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keithly, J.S. (2007). The Mitochondrion-Related Organelle of Cryptosporidium parvum . In: Tachezy, J. (eds) Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Microbiology Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_115

Download citation

Publish with us

Policies and ethics