Skip to main content

Part of the book series: Microbiology Monographs ((MICROMONO,volume 9))

Abstract

Mitosomes are simple, mitochondrion-derived organelles, which were recently found in various “amitochondrial” protists, including the human parasites Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, and microsporidians. Similar organelles might also be present in some free-living protists. Although all these organisms underwent different evolutionary histories, they arrived at common life strategies for which oxygen-dependent ATP synthesis is not required: they inhabit either an oxygen-poor environment, such as the intestinal tract of their hosts, or they are adapted to intracellular parasitism. Consequently, the majority of their mitochondrial functions were permanently lost with concomitant loss of the organellar genome, and mitochondria gradually transformed into their highly reduced forms named mitosomes. The common features of mitosomes, which were retained and pointed to their mitochondrial origin, are a double membrane surrounding the organellar matrix, conserved mechanisms of protein import and processing, and the biosynthesis of iron–sulfur (FeS) clusters. Finding the latter function in mitosomes supports the notion that FeS cluster assembly is the only essential function of mitochondria necessary for the maturation of cellular FeS proteins. Only in the mitosomes of E. histolytica was the mitochondrion type of FeS cluster assembly machinery not conserved, and their function remains enigmatic. Unlike hydrogenosomes, another type of mitochondrion-derived organelle, mitosomes do not synthesize ATP and hydrogen. Many more investigations are required to elucidate the biology of mitosomes and the evolutionary paths leading to the formation of the various mitochondrion-derived organelles, of which mitosomes are the most simplified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    Article  PubMed  CAS  Google Scholar 

  • Agar JN, Yuvaniyama P, Jack RF, Cash VL, Smith AD, Dean DR, Johnson MK (2000) Modular organization and identification of a mononuclear iron-binding site within the NifU protein. J Biol Inorg Chem 5:167–177

    Article  PubMed  CAS  Google Scholar 

  • Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T (2004) An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron–sulfur cluster assembly under anaerobic conditions. J Biol Chem 279:16863–16874

    Article  PubMed  CAS  Google Scholar 

  • Alves R, Herrero E, Sorribas A (2004) Predictive reconstruction of the mitochondrial iron–sulfur cluster assembly metabolism. II. Role of glutaredoxin Grx5. Proteins Struct Funct Bioinf 57:481–492

    Article  CAS  Google Scholar 

  • Andersson JO, Sjogren AM, Horner DS, Murphy CA, Dyal PL, Svard SG, Logsdon JM Jr, Ragan MA, Hirt RP, Roger AJ (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51

    Article  PubMed  CAS  Google Scholar 

  • Arisue N, Sánchez LB, Weiss LM, Müller M, Hashimoto T (2002) Mitochondrial-type Hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol Int 51:9–16

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Aguilar Netz DJ, Tepper K, Pierik AJ, Lill R (2005a) The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron–sulfur protein assembly. Mol Cell Biol 25:10833–10841

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Pierik AJ, Aguilar Netz DJ, Mühlenhoff U, Lill R (2005b) Nar1p, a conserved eukaryotic protein with similarity to Fe-only hydrogenases, functions in cytosolic iron–sulphur protein biogenesis. Biochem Soc Trans 33:86–89

    Article  PubMed  CAS  Google Scholar 

  • Benchimol M (2007) Structure of the Hydrogenosomes (in this volume). Springer, Heidelberg

    Google Scholar 

  • Bernas T, Dobrucki JW (2000) The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC. Arch Biochem Biophys 380:108–116

    Article  PubMed  CAS  Google Scholar 

  • Best AA, Morrison HG, McArthur AG, Sogin ML, Olsen GJ (2004) Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res 14:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Boldogh IR, Fehrenbacher KL, Yang HC, Pon LA (2005) Mitochondrial movement and inheritance in budding yeast. Gene 354:28–36

    Article  PubMed  CAS  Google Scholar 

  • Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55:193–200

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Upcroft JA, Upcroft P (1993) Cysteine is the major low molecular weight thiol in Giardia duodenalis. Mol Biochem Parasitol 61:155–158

    Article  PubMed  CAS  Google Scholar 

  • Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    Article  PubMed  CAS  Google Scholar 

  • Burri L, Williams BA, Bursac D, Lithgow T, Keeling PJ (2006) Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci USA 103:15916–15920

    Article  PubMed  CAS  Google Scholar 

  • Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, DeMichele G, Filla A, DeFrutos R, Palau F, Patel PI, DiDonato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987a) The origin of eukaryotic and archaebacterial cells. Ann NY Acad Sci 503:17–54

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987b) Eukaryotes with no mitochondria. Nature 326:332–333

    Article  PubMed  CAS  Google Scholar 

  • Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ERS, Leon-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15:737–742

    Article  PubMed  CAS  Google Scholar 

  • Chanez AL, Hehl AB, Engstler M, Schneider A (2006) Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J Cell Sci 119:2968–2974

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Article  PubMed  CAS  Google Scholar 

  • Clayton CE, Michels P (1996) Metabolic compartmentation in African trypanosomes. Parasitol Today 12:465–471

    Article  PubMed  CAS  Google Scholar 

  • Doležal P, Šmíd O, Rada P, Zubáčová Z, Bursac D, Šut'ák R, Nebesářová J, Lithgow T, Tachezy J (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci USA 102:10924–10929

    Article  PubMed  CAS  Google Scholar 

  • Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron–sulfur (Fe/S) center biogenesis: similarities to and differences from its bacterial counterpart. J Biol Chem 278:29719–29727

    Article  PubMed  CAS  Google Scholar 

  • Dyall S, Doležal P (2007) Protein Import into Hydrogenosomes and Mitosomes (in this volume). Springer, Heidelberg

    Google Scholar 

  • Ellis JE, Williams R, Cole D, Cammack R, Lloyd D (1993) Electron transport components of the parasitic protozoon Giardia lamblia. FEBS Lett 325:196–200

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M, Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R Soc Lond B Biol Sci 262:87–93

    Article  CAS  Google Scholar 

  • Emelyanov VV (2003) Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiol Lett 226:257–266

    Article  PubMed  CAS  Google Scholar 

  • Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65

    Article  PubMed  CAS  Google Scholar 

  • Fry M, Beesley JE (1991) Mitochondria of mammalian Plasmodium spp. Parasitology 102:17–26

    Article  PubMed  Google Scholar 

  • Gerber J, Mühlenhoff U, Lill R (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4:906–911

    Article  PubMed  CAS  Google Scholar 

  • Germot A, Philippe H, LeGuyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci USA 93:14614–14617

    Article  PubMed  CAS  Google Scholar 

  • Germot A, Philippe H, LeGuyader H (1997) Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasitol 87:159–168

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Field J, Rogers R, Hickman M, Samuelson J (2000) The Entamoeba histolytica mitochondrion-derived organelle (crypton) contains double-stranded DNA and appears to be bound by a double membrane. Infect Immun 68:4319–4322

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Simpson AGB (2007) Possible Mitochondria-Related Organelles in Poorly-Studied “Amitochondriate” Eukaryotes (in this volume). Springer, Heidelberg

    Google Scholar 

  • Harlow DR, Weinbach EC, Diamond LS (1976) Nicotinamide nucleotide transhydrogenase in Entamoeba histolytica, a protozoan lacking mitochondria. Comp Biochem Physiol 53:141–144

    Article  CAS  Google Scholar 

  • Hashimoto T (1998) Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci USA 95:6860–6865

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y, Yamaguchi M (1996) Nicotinamide nucleotide transhydrogenase: a model for utilization of substrate binding energy for proton translocation. FASEB J 10:444–452

    PubMed  CAS  Google Scholar 

  • Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Mühlenhoff U, Lill R (2005) The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron–sulfur protein assembly machinery. Proc Natl Acad Sci USA 102:3266–3271

    Article  PubMed  CAS  Google Scholar 

  • Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Hirt RP, Kilvington S, Lloyd D, Embley TM (1996) Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc R Soc Lond B Biol Sci 263:1053–1059

    Article  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709

    PubMed  CAS  Google Scholar 

  • Hrdý I, Tachezy J, Müller M (2007) Metabolism of Trichomonad Hydrogenosomes (in this volume). Springer, Heidelberg

    Google Scholar 

  • Johnson D, Dean D (2004) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13:1297–1305

    PubMed  CAS  Google Scholar 

  • Keithly JS (2007) The Mitochondrion-Related Organelle of Cryptosporidium parvum (in this volume). Springer, Heidelberg

    Google Scholar 

  • Keithly JS, Langreth SG, Buttle KF, Mannella CA (2005) Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 52:132–140

    Article  PubMed  Google Scholar 

  • Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494–498

    Article  PubMed  CAS  Google Scholar 

  • Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981–3989

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki PR, Johnson J, Kamhawi M, Komuniecki R (1993) Mitochondrial heterogeneity in the parasitic nematode, Ascaris suum. Exp Parasitol 76:424–437

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T, Nishida K, Yoshida Y, Fujiwara T, Mori T, Kuroiwa H, Misumi O (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochim Biophys Acta 1763:510–521

    Article  PubMed  CAS  Google Scholar 

  • LaGier MJ, Tachezy J, Stejskal F, Kutišová K, Keithly JS (2003) Mitochondrial-type iron–sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiol-SGM 149:3519–3530

    Article  CAS  Google Scholar 

  • Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • Lange H, Lisowsky T, Gerber J, Mühlenhoff U, Kispal G, Lill R (2001) An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep 2:715–720

    Article  PubMed  CAS  Google Scholar 

  • Leon-Avila G, Tovar J (2004) Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiol-SGM 150:1245–1250

    Article  CAS  Google Scholar 

  • Li J, Kogan M, Knight SA, Pain D, Dancis A (1999) Yeast mitochondrial protein, Nfs1p, coordinately regulates iron–sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem 274:33025–33034

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Mühlenhoff U (2006) Iron–sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Diekert K, Kaut A, Lange H, Pelzer W, Prohl C, Kispal G (1999) The essential role of mitochondria in the biogenesis of cellular iron–sulfur proteins. Biol Chem 380:1157–1166

    Article  PubMed  CAS  Google Scholar 

  • Lindmark DG (1980) Energy metabolism of the anaerobic protozoon Giardia lamblia. Mol Biochem Parasitol 1:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Ralphs JR, Harris JC (2002) Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiol-SGM 148:727–733

    CAS  Google Scholar 

  • Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (crypton) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205

    PubMed  CAS  Google Scholar 

  • Martin W (2007) Anaerobic Eukaryotes in Pursuit of Phylogenetic Normality: the Evolution of Hydrogenosomes and Mitosomes. Springer, Heidelberg

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Mercer NA, McKelvey JR, Fioravanti CF (1999) Hymenolepis diminuta: catalysis of transmembrane proton translocation by mitochondrial NADPH→NAD transhydrogenase. Exp Parasitol 91:52–58

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, Roger AJ, Nystul TG, Gillin FD, Sogin ML (2001) Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol 18:530–541

    PubMed  CAS  Google Scholar 

  • Netz DJA, Pierik AJ, Stuempfig M, Mühlenhoff U, Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron–sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3:278–286

    Article  PubMed  CAS  Google Scholar 

  • Nixon JEJ, Wang A, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J (2002) A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci USA 99:3701–3705

    Article  PubMed  CAS  Google Scholar 

  • Nohýnková E, Tùmová P, Kulda J (2006) Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryot Cell 5:753–761

    Article  PubMed  CAS  Google Scholar 

  • Ogbadoyi EO, Robinson DR, Gull K (2003) A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 14:1769–1779

    Article  PubMed  CAS  Google Scholar 

  • Ollagnier-de-Choudens S, Mattioli T, Tagahashi Y, Fontecave M (2001) Iron–sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276:22604–22607

    Article  PubMed  CAS  Google Scholar 

  • Olson JW, Agar JN, Johnson MK, Maier RJ (2000) Characterization of the NifU and NifS Fe–S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry 39:16213–16219

    Article  PubMed  CAS  Google Scholar 

  • Orozco E, Baez-Camargo M, Riveron AM, Gharibeh R, Gariglio P, de la Cruz HF, Chavez P (1997) A model for unscheduled DNA replication in Entamoeba histolytica trophozoites. Arch Med Res 28:24–26

    PubMed  CAS  Google Scholar 

  • Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, Wastling JM (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 129:1–18

    Article  PubMed  CAS  Google Scholar 

  • Reeves RE, Warren LG, Susskind B, Lo H-S (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252:726–731

    PubMed  CAS  Google Scholar 

  • Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, Hehl AB (2005) Protein import, replication and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563

    Article  PubMed  CAS  Google Scholar 

  • Riordan CE, Langreth SG, Sanchez LB, Kayser O, Keithly JS (1999) Preliminary evidence for a mitochondrion in Cryptosporidium parvum: phylogenetic and therapeutic implications. J Eukaryot Microbiol 46:52S–55S

    PubMed  CAS  Google Scholar 

  • Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MA, Garcia-Perez RM, Mendoza L, Sanchez T, Guillen N, Orozco E (1998) The pyruvate:ferredoxin oxidoreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba. Microb Pathog 25:1–10

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13:1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ, Svard SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci USA 95:229–234

    Article  PubMed  CAS  Google Scholar 

  • Rouault TA, Tong WH (2005) Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE (2003) A novel eukaryotic factor for cytosolic Fe–S cluster assembly. EMBO J 22:4826–4835

    Article  PubMed  CAS  Google Scholar 

  • Schilke B, Voisine C, Beinert H, Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:10206–10211

    Article  PubMed  CAS  Google Scholar 

  • Schwartz CJ, Djaman O, Imlay JA, Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe–S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97:9009–9014

    Article  PubMed  CAS  Google Scholar 

  • Shan Y, Napoli E, Cortopassi G (2007) Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 16:929–941

    Article  PubMed  CAS  Google Scholar 

  • Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron–sulfur proteins requires glutathione. J Biol Chem 277:26944–26949

    Article  PubMed  CAS  Google Scholar 

  • Šlapeta J, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell 3:483–494

    Article  PubMed  CAS  Google Scholar 

  • Šmíd O, Horáková E, Vilímová V, Hrdý I, Cammack R, Horvath A, Lukeš J, Tachezy J (2006) Knock-downs of iron–sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J Biol Chem 281:28679–28686

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Biol 1:457–463

    CAS  Google Scholar 

  • Stejskal F, Šlapeta J, Čtrnáctá V, Keithly JS (2003) A Narf-like gene from Cryptosporidium parvum resembles homologues observed in aerobic protists and higher eukaryotes. FEMS Microbiol Lett 229:91–96

    Article  PubMed  CAS  Google Scholar 

  • Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151:1423–1434

    Article  PubMed  CAS  Google Scholar 

  • Tachezy J, Doležal P (2007) Iron–sulfur proteins and iron–sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Heidelberg, pp 105–133

    Chapter  Google Scholar 

  • Tachezy J, Sánchez LB, Müller M (2001) Mitochondrial type iron–sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383

    Article  PubMed  CAS  Google Scholar 

  • Tong WH, Rouault T (2000) Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19:5692–5700

    Article  PubMed  CAS  Google Scholar 

  • Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell Metab 3:199–210

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature 426:172–176

    Article  PubMed  CAS  Google Scholar 

  • van der Giezen M, Cox S, Tovar J (2004) The iron–sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 4:7

    Article  PubMed  Google Scholar 

  • van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 57:405–419

    Article  PubMed  CAS  Google Scholar 

  • van Dooren GG, Stimmler LM, McFadden GI (2006) Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30:596–630

    Article  PubMed  CAS  Google Scholar 

  • Vávra J (1976) Structure of the microsporidia. In: Bulla LA Jr, Cheng TS (eds) Comparative pathobiology, vol 1. Biology of the Microsporidia. Plenum, New York, pp 1–86

    Google Scholar 

  • Vávra J (2005) Polar vesicles of microsporidia are mitochondrial remnants (mitosomes)? Folia Parasitol 52:193–195

    PubMed  Google Scholar 

  • Vickerman K (1985) Development cycles and biology of pathogenic trypanosomes. Br Med Bull 41:105–114

    PubMed  CAS  Google Scholar 

  • Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J Biol Chem 279:14473–14476

    Article  PubMed  CAS  Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJ, Williamson DH (1997) Extrachromosomal DNA in the Apicomplexa. Microbiol Mol Biol Rev 61:1–16

    PubMed  CAS  Google Scholar 

  • Wilson RJM, Rangachari K, Saldanha JW, Rickman L, Buxton RS, Eccleston JF (2003) Parasite plastids: maintenance and functions. Philos Trans R Soc Lond B Biol Sci 358:155–162

    Article  PubMed  CAS  Google Scholar 

  • Wu SP, Wu G, Surerus KK, Cowan JA (2002) Iron–sulfur cluster biosynthesis. Kinetic analysis of [2Fe-2S] cluster transfer from holo ISU to apo Fd: role of redox chemistry and a conserved aspartate. Biochemistry 41:8876–8885

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP, Stuurman N, Vale RD (2003) Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles. Proc Natl Acad Sci USA 100:11424–11428

    Article  PubMed  CAS  Google Scholar 

  • Yarlett N, Hackstein JHP (2005) Hydrogenosomes: one organelle, multiple origins. Bioscience 55:657–667

    Article  Google Scholar 

  • Youssef NN, Hammond D (1971) The fine structure of the developmental stages of the microsporidian Nosema apis Zander. Tissue Cell 3:283–294

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Samuelson J (1994) Primary structure of an Entamoeba histolytica nicotinamide nucleotide transhydrogenase. Mol Biochem Parasitol 68:323–328

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tachezy .

Editor information

Jan Tachezy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tachezy, J., Šmíd, O. (2007). Mitosomes in Parasitic Protists. In: Tachezy, J. (eds) Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Microbiology Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_113

Download citation

Publish with us

Policies and ethics