Skip to main content

Hydrogenosomes of Anaerobic Chytrids: An Alternative Way to Adapt to Anaerobic Environments

  • Chapter
  • First Online:
Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 9))

Abstract

Fungi form a very diverse group of eukaryotes. The majority of investigated fungi contain mitochondria and are capable of oxidative phosphorylation. On the other hand, anaerobically functioning chytridiomycete fungi, found as symbionts in the gastrointestinal tract of many herbivorous mammals, contain hydrogenosomes. These organelles are found in multiple classes of protozoa and catabolize glycolytic end products and produce hydrogen and ATP by substrate-level phosphorylation. However, in contrast to the hydrogenosomes of trichomonads and anaerobic ciliates, the hydrogenosomes of the anaerobic chytrids Neocallimastix and Piromyces lack pyruvate dehydrogenase (PDH) and pyruvate-ferrodoxin oxidoreductase (PFO) and instead contain pyruvate-formate lyase (PFL). The function in carbohydrate metabolism of these hydrogenosomes of anaerobic chytridiomycete fungi and their evolutionary relation to fungal mitochondria is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhmanova A, Voncken FGJ, Harhangi H, Hosea KM, Vogels GD, Hackstein0 JHP (1998) Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2. Mol Microbiol 30:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Voncken FGJ, Hosea KM, Harhangi H, Keltjens JT, den Camp HJMO, Vogels GD, Hackstein JHP (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Sjogren AM, Davis LAM, Embley TM, Roger AJ (2003) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13:94–104

    Article  PubMed  CAS  Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  PubMed  CAS  Google Scholar 

  • Arnau J, Jorgensen F, Madsen SM, Vrang A, Israelsen H (1998) Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J Bacteriol 180:3049–3055

    PubMed  CAS  Google Scholar 

  • Bauchop T (1979) Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38:148–158

    PubMed  CAS  Google Scholar 

  • Bowman BH, Taylor JW, Brownlee AG, Lee J, Lu SD, White TJ (1992) Molecular evolution of the fungi—relationship of the basidiomycetes, ascomycetes, and chytridiomycetes. Mol Biol Evol 9:285–296

    PubMed  CAS  Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Brownlee AG (1989) Remarkably at-rich genomic dna from the anaerobic fungus Neocallimastix. Nucleic Acids Res 17:1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Brownlee AG (1994) The nucleic acids of anaerobic fungi. In: Mountfort DO, Orpin CG (eds) Anaerobic Fungi. Biology, Ecology, and Function. Marcel Dekker, New York, pp 241–256

    Google Scholar 

  • Bruchhaus I, Tannich E (1994) Purification and molecular characterization of the NAD(+)-dependent acetaldehyde alcohol-dehydrogenase from Entamoeba histolytica. Biochem J 303:743–748

    PubMed  CAS  Google Scholar 

  • Bullerwell CE, Lang BF (2005) Fungal evolution: the case of the vanishing mitochondrion. Curr Opin Microbiol 8:362–369

    Article  PubMed  CAS  Google Scholar 

  • Chen HZ, Li XL, Ljungdahl LG (1995) Biomass degrading enzymes from anaerobic rumen fungi. SAAS Bull Biochem Biotechnol 8:1–6

    PubMed  CAS  Google Scholar 

  • Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64:281–315

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Dyal PL, Embley TM, van der Giezen M (2006) Hydrogenosomal succinyl-CoA synthetase from the rumen-dwelling fungus Neocallimastix patriciarum; an energy-producing enzyme of mitochondrial origin. Gene 373:75–82

    Article  PubMed  CAS  Google Scholar 

  • Dan MX, Wang CC (2000) Role of alcohol dehydrogenase E (ADHE) in the energy metabolism of Giardia lamblia. Mol Biochem Parasitol 109:25–36

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ (2002) An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 296:45–52

    Article  PubMed  CAS  Google Scholar 

  • Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol 38:446–455

    Article  PubMed  CAS  Google Scholar 

  • Fontaine L, Meynial-Salles I, Girbal L, Yang XH, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830

    Article  PubMed  CAS  Google Scholar 

  • Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324

    Article  PubMed  CAS  Google Scholar 

  • Gabaldon T, Huynen MA (2004) Shaping the mitochondrial proteome. Biochim Biophys Acta 1659:212–220

    Article  PubMed  CAS  Google Scholar 

  • Gabaldon T, Snel B, van Zimmeren F, Hemrika W, Tabak H, Huynen MA (2006) Origin and evolution of the peroxisomal proteome. Biol. Direct 1:8, doi:10.1186/1745-6150-1-8 MAR 23 2006

    Google Scholar 

  • Gelius-Dietrich G, Henze K (2004) Pyruvate formate lyase (PFL) and PFL activating enzyme in the chytrid fungus Neocallimastix frontalis: A free-radical enzyme system conserved across divergent eukaryotic lineages. J Eukaryot Microbiol 51:456–463

    Article  PubMed  CAS  Google Scholar 

  • Gelius-Dietrich G, Ter Braak M, Henze K (2007) Mitochondrial steps of arginine biosynthesis are conserved in the hydrogenosomes of the chytridiomycete Neocallimastix frontalis. J Eukaryot Microbiol 54:42–44

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FGJ (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7:441–447

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zool-Anal Complex Syst 104:290–302

    CAS  Google Scholar 

  • Hackstein JHP, Tjaden J, Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50:225–245

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Hirt RP, Embley TM (1999) A single eubacterial origin of eukaryotic pyruvate : ferredoxin oxidoreductase genes: Implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16:1280–1291

    PubMed  CAS  Google Scholar 

  • Julliand V, Riondet C, de Vaux A, Alcaraz G, Fonty G (1998) Comparison of metabolic activities between Piromyces citronii, and equine fungal species, and Piromyces communis, a ruminal species. Anim Feed Sci Technol 70:161–168

    Article  CAS  Google Scholar 

  • Keithly JS, Langreth SG, Buttle KF, Mannella CA (2005) Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and Organelles. J Eukaryot Microbiol 52:132–140

    Article  PubMed  Google Scholar 

  • Kessler D, Leibrecht I, Knappe J (1991) Pyruvate-formate-lyase-deactivase and acetyl-coa reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhe. FEBS Lett 281:59–63

    Article  PubMed  CAS  Google Scholar 

  • Kessler D, Herth W, Knappe J (1992) Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymatic ADHE protein of Escherichia coli. J Biol Chem 267:18073–18079

    PubMed  CAS  Google Scholar 

  • Luo QW, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in sulfide-rich zodletone spring (Oklahoma). Appl Environ Microbiol 71:6175–6184

    Article  PubMed  CAS  Google Scholar 

  • Mannella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta-Mol Basis Dis 1762:140–147

    CAS  Google Scholar 

  • Marvin-Sikkema FD, Gomes TMP, Grivet JP, Gottschal JC, Prins RA (1993) Characterization of hydrogenosomes and their role in glucose-metabolism of Neocallimastix sp. L2. Arch Microbiol 160:388–396

    Article  PubMed  CAS  Google Scholar 

  • Marvin-Sikkema FD, Driessen AJM, Gottschal JC, Prins RA (1994) Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix—evidence for a functional-relationship with mitochondria. Mycol Res 98:205–212

    Article  CAS  Google Scholar 

  • Müller M (1998) Enzymes and compartmentation of core energy metabolism of anaerobic protists—a special case in eukaryotic evolution? In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. The Systematics Association, Special Volume Series 56. Kluwer Academic Publishers, Dordrecht, pp 109–132

    Google Scholar 

  • Munn EA, Orpin CG, Greenwood CA (1988) The ultrastructure and possible relationships of 4 obligate anaerobic chytridiomycete fungi from the rumen of sheep. Biosystems 22:67–81

    Article  PubMed  CAS  Google Scholar 

  • Nicholson MJ, Theodorou MK, Brookman JL (2005) Molecular analysis of the anaerobic rumen fungus Orpinomyces—insights into an AT-rich genome. Microbiology (UK) 151:121–133

    Article  CAS  Google Scholar 

  • O'Fallon JV, Wright RW, Calza RE (1991) Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. Biochem J 274:595–599

    PubMed  Google Scholar 

  • Orpin CG (1975) Studies on rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262

    PubMed  CAS  Google Scholar 

  • Orpin CG (1977) Occurrence of chitin in cell-walls of rumen organisms neocallimastix-frontalis, piromonas-communis and sphaeromonas-communis. J Gen Microbiol 99:215–218

    PubMed  CAS  Google Scholar 

  • Paquin B, Forget L, Roewer I, Lang BF (1995) Molecular phylogeny of Allomyces macrogynus—congruency between nuclear ribosomal RNA and mitochondrial protein-based trees. J Mol Evol 41:657–665

    Article  PubMed  CAS  Google Scholar 

  • Paquin B, Lang BF (1996) The mitochondrial DNA of Allomyces macrogynus: The complete genomic sequence from an ancestral fungus. J Mol Biol 255:688–701

    Article  PubMed  CAS  Google Scholar 

  • Ragan MA, Chapman DJ (1978) A biochemial phylogeny of the protists. Academic Press, New York

    Google Scholar 

  • Sánchez LB (1998) Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch Biochem Biophys 354:57–64

    Article  PubMed  Google Scholar 

  • Sawers G, Watson G (1998) A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29:945–954

    Article  PubMed  CAS  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  PubMed  CAS  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    Article  PubMed  CAS  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: Biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Trinci APJ, Davies DR, Gull K, Lawrence MI, Nielsen BB, Rickers A, Theodorou MK (1994) Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152 Part 2

    Article  Google Scholar 

  • Van der Giezen M, Sjollema KA, Artz RRE, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408:147–150

    Article  PubMed  Google Scholar 

  • van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ERS (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J 21:572–579

    Article  PubMed  Google Scholar 

  • van der Giezen M, Birdsey GM, Horner DS, Lucocq J, Dyal PL, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20:1051–1061

    Article  PubMed  Google Scholar 

  • Voncken F (2001) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. PhD Thesis, University of Nijmegen (ISBN 90-9014868-x)

    Google Scholar 

  • Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, Verbeek F, Tielens AGM, Haferkamp I, Neuhaus HE, Vogels G, Veenhuis M, Hackstein JHP (2002a) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44:1441–1454

    Article  PubMed  CAS  Google Scholar 

  • Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP (2002b) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 284:103–112

    Article  PubMed  CAS  Google Scholar 

  • Williams AG, Withers SE, Naylor GE, Joblin KN (1994) Interactions between the rumen chytrid fungi and other microorganisms. In: Mountfort DO, Orpin CG (eds) Anaerobic Fungi. Biology, Ecology, and Function. Marcel Dekker, New York, pp 191–227

    Google Scholar 

  • Wubah DA, Fuller MS, Akin DE (1991) Resitant body formation in Neocallimastix sp., an anaerobic fungus from the rumen of a cow. Mycologia 83:40–47

    Article  Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. P. Hackstein .

Editor information

Jan Tachezy

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hackstein, J.H.P., Baker, S.E., van Hellemond, J.J., Tielens, A.G.M. (2008). Hydrogenosomes of Anaerobic Chytrids: An Alternative Way to Adapt to Anaerobic Environments. In: Tachezy, J. (eds) Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Microbiology Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_111

Download citation

Publish with us

Policies and ethics