Skip to main content

Protein Import into Hydrogenosomes and Mitosomes

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 9))

Abstract

In the past decade, studies on protein targeting to hydrogenosomes and mitosomes have revealed several characteristics in common with mitochondrial protein targeting. Proteins from one system can readily be imported into another, strongly suggesting that targeting signals on hydrogenosomal, mitosomal and mitochondrial preproteins are conserved. By extension, these observations, together with the proposed common origin of hydrogenosomes, mitosomes and mitochondria, led to the proposition that components of the respective protein import machineries for these organelles are conserved. With the advent of complete genome sequence databases for diverse eukaryotes, we are now in a better position to examine this proposition. In this review, we report and integrate the latest experimental and bioinformatics data on the state of protein import in hydrogenosomes, mitosomes and mitochondria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y et al. (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100:551–560

    PubMed  CAS  Google Scholar 

  • Abrahamsen MS et al. (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    PubMed  CAS  Google Scholar 

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357

    PubMed  CAS  Google Scholar 

  • Ahting U et al. (1999) The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J Cell Biol 147:959–968

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  • Andersson SG et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    PubMed  CAS  Google Scholar 

  • Andersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177

    PubMed  CAS  Google Scholar 

  • Arisue N, Sanchez LB, Weiss LM, Muller M, Hashimoto T (2002) Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol Int 51:9–16

    PubMed  CAS  Google Scholar 

  • Bakatselou C, Beste D, Kadri AO, Somanath S, Clark CG (2003) Analysis of genes of mitochondrial origin in the genus Entamoeba. J Eukaryot Microbiol 50:210–214

    PubMed  CAS  Google Scholar 

  • Baker A, Schatz G (1987) Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. Proc Natl Acad Sci USA 84:3117–3121

    PubMed  CAS  Google Scholar 

  • Baker KP, Schaniel A, Vestweber D, Schatz G (1990) A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348:605–609

    PubMed  CAS  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    PubMed  CAS  Google Scholar 

  • Bateman A et al. (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–141

    PubMed  CAS  Google Scholar 

  • Beasley EM, Muller S, Schatz G (1993) The signal that sorts yeast cytochrome b2 to the mitochondrial intermembrane space contains three distinct functional regions. EMBO J 12:2303–2311

    PubMed  CAS  Google Scholar 

  • Becker L et al. (2005) Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J Mol Biol 353:1011–1020

    PubMed  CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975a) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    PubMed  CAS  Google Scholar 

  • Blobel G, Dobberstein B (1975b) Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    PubMed  CAS  Google Scholar 

  • Bohnert M, Pfanner N, van der Laan M (2007) A dynamic machinery for import of mitochondrial precursor proteins. FEBS Lett 581:2802–2810

    PubMed  CAS  Google Scholar 

  • Bolliger L et al. (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J 13:1998–2006

    PubMed  CAS  Google Scholar 

  • Bolliger L, Junne T, Schatz G, Lithgow T (1995) Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J 14:6318–6326

    PubMed  CAS  Google Scholar 

  • Bomer U, Meijer M, Guiard B, Dietmeier K, Pfanner N, Rassow J (1997) The sorting route of cytochrome b2 branches from the general mitochondrial import pathway at the preprotein translocase of the inner membrane. J Biol Chem 272:30439–30446

    PubMed  CAS  Google Scholar 

  • Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol 80:525–548

    PubMed  CAS  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    PubMed  CAS  Google Scholar 

  • Boxma B et al. (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    PubMed  CAS  Google Scholar 

  • Bozner P (1997) Immunological detection and subcellular localization of Hsp70 and Hsp60 homologs in Trichomonas vaginalis. J Parasitol 83:224–229

    PubMed  CAS  Google Scholar 

  • Bradley PJ, Lahti CJ, Plümper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493

    PubMed  CAS  Google Scholar 

  • Brix J, Dietmeier K, Pfanner N (1997) Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J Biol Chem 272:20730–20735

    PubMed  CAS  Google Scholar 

  • Brix J, Ziegler GA, Dietmeier K, Schneider-Mergener J, Schulz GE, Pfanner N (2000) The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J Mol Biol 303:479–488

    PubMed  CAS  Google Scholar 

  • Brondijk TH, Durand R, van der Giezen M, Gottschal JC, Prins RA, Fevre M (1996) scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. Mol Gen Genet 253:315–323

    PubMed  CAS  Google Scholar 

  • Bui ET, Johnson PJ (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol 76:305–310

    PubMed  CAS  Google Scholar 

  • Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    PubMed  CAS  Google Scholar 

  • Burri L, Keeling PJ (2007) Protein targeting in parasites with cryptic mitochondria. Int J Parasitol 37:265–272

    PubMed  CAS  Google Scholar 

  • Burri L, Williams BA, Bursac D, Lithgow T, Keeling PJ (2006) Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci USA 103:15916–15920

    PubMed  CAS  Google Scholar 

  • Carlton JM et al. (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212

    PubMed  Google Scholar 

  • Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503:55–71

    PubMed  CAS  Google Scholar 

  • Chacinska A et al. (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–829

    PubMed  CAS  Google Scholar 

  • Chan KW et al. (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15:737–742

    PubMed  CAS  Google Scholar 

  • Chan NC, Likic VA, Waller RF, Mulhern TD, Lithgow T (2006) The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J Mol Biol 358:1010–1022

    PubMed  CAS  Google Scholar 

  • Cheng MY et al. (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625

    PubMed  CAS  Google Scholar 

  • Choi C, Liu Z, Adams KL (2006) Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes. New Phytol 172:429–439

    PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    PubMed  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    PubMed  CAS  Google Scholar 

  • Craig EA, Kramer J, Kosic-Smithers J (1987) SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc Natl Acad Sci USA 84:4156–4160

    PubMed  CAS  Google Scholar 

  • Curran SP, Leuenberger D, Leverich EP, Hwang DK, Beverly KN, Koehler CM (2004) The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. J Biol Chem 279:43744–43751

    PubMed  CAS  Google Scholar 

  • D'Silva PD, Schilke B, Walter W, Andrew A, Craig EA (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci USA 100:13839–13844

    PubMed  Google Scholar 

  • Dalbey RE, Lively MO, Bron S, van Dijl JM (1997) The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138

    PubMed  CAS  Google Scholar 

  • Daley DO, Clifton R, Whelan J (2002) Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci USA 99:10510–10515

    PubMed  CAS  Google Scholar 

  • Dan M, Wang AL, Wang CC (2000) Inhibition of pyruvate-ferredoxin oxidoreductase gene expression in Giardia lamblia by a virus-mediated hammerhead ribozyme. Mol Microbiol 36:447–456

    PubMed  CAS  Google Scholar 

  • Davis AJ, Ryan KR, Jensen RE (1998) Tim23p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Mol Biol Cell 9:2577–2593

    PubMed  CAS  Google Scholar 

  • Dekker PJ, Keil P, Rassow J, Maarse AC, Pfanner N, Meijer M (1993) Identification of MIM23, a putative component of the protein import machinery of the mitochondrial inner membrane. FEBS Lett 330:66–70

    PubMed  CAS  Google Scholar 

  • Dekker PJ, Ryan MT, Brix J, Muller H, Honlinger A, Pfanner N (1998) Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol Cell Biol 18:6515–6524

    PubMed  CAS  Google Scholar 

  • Delgadillo MG, Liston DR, Niazi K, Johnson PJ (1997) Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc Natl Acad Sci USA 94:4716–4720

    PubMed  CAS  Google Scholar 

  • Dietmeier K et al. (1997) Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388:195–200

    PubMed  CAS  Google Scholar 

  • Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318

    PubMed  CAS  Google Scholar 

  • Dolezal P et al. (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci USA 102:10924–10929

    PubMed  CAS  Google Scholar 

  • Dyall SD et al. (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497

    PubMed  CAS  Google Scholar 

  • Dyall SD et al. (2003) Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278:30548–30561

    PubMed  CAS  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004a) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    PubMed  CAS  Google Scholar 

  • Dyall SD et al. (2004b) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107

    PubMed  CAS  Google Scholar 

  • Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6:361–365

    PubMed  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    PubMed  CAS  Google Scholar 

  • Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361:1055–1067

    PubMed  CAS  Google Scholar 

  • Emtage JL, Jensen RE (1993) MAS6 encodes an essential inner membrane component of the yeast mitochondrial protein import pathway. J Cell Biol 122:1003–1012

    PubMed  CAS  Google Scholar 

  • Esser K, Jan PS, Pratje E, Michaelis G (2004) The mitochondrial IMP peptidase of yeast: functional analysis of domains and identification of Gut2 as a new natural substrate. Mol Genet Genomics 271:616–626

    PubMed  CAS  Google Scholar 

  • Falah M, Gupta RS (1994) Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J Bacteriol 176:7748–7753

    PubMed  CAS  Google Scholar 

  • Ferro M et al. (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  • Folsch H, Guiard B, Neupert W, Stuart RA (1996) Internal targeting signal of the BCS1 protein: a novel mechanism of import into mitochondria. EMBO J 15:479–487

    PubMed  CAS  Google Scholar 

  • Frazier AE et al. (2004) Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 11:226–233

    PubMed  CAS  Google Scholar 

  • Gabaldon T, Huynen MA (2003) Reconstruction of the proto-mitochondrial metabolism. Science 301:609

    PubMed  CAS  Google Scholar 

  • Gabaldon T, Huynen MA (2004) Shaping the mitochondrial proteome. Biochim Biophys Acta 1659:212–220

    PubMed  CAS  Google Scholar 

  • Gabriel K et al. (2007) Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J Mol Biol 365:612–620

    PubMed  CAS  Google Scholar 

  • Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophys Acta 1592:63–77

    PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez LJ, Gay AC, Pon LA (2007) Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J Cell Biol 176:197–207

    PubMed  CAS  Google Scholar 

  • Gavel Y, von Heijne G (1990) Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng 4:33–37

    PubMed  CAS  Google Scholar 

  • Geissler A et al. (2002) The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111:507–518

    PubMed  CAS  Google Scholar 

  • Geli V, Yang MJ, Suda K, Lustig A, Schatz G (1990) The MAS-encoded processing protease of yeast mitochondria. Overproduction and characterization of its two nonidentical subunits. J Biol Chem 265:19216–19222

    PubMed  CAS  Google Scholar 

  • Gentle I, Gabriel K, Beech P, Waller R, Lithgow T (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24

    PubMed  CAS  Google Scholar 

  • Gentle IE, Burri L, Lithgow T (2005) Molecular architecture and function of the Omp85 family of proteins. Mol Microbiol 58:1216–1225

    Article  PubMed  CAS  Google Scholar 

  • Gentle IE et al. (2007) Conserved motifs reveal details of ancestry and structure in the small tim chaperones of the mitochondrial intermembrane space. Mol Biol Evol 24:1149–1160

    PubMed  CAS  Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci USA 93:14614–14617

    PubMed  CAS  Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasitol 87:159–168

    PubMed  CAS  Google Scholar 

  • Glaser E, Sjoling S, Tanudji M, Whelan J (1998) Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol Biol 38:311–338

    PubMed  CAS  Google Scholar 

  • Glick BS, Brandt A, Cunningham K, Muller S, Hallberg RL, Schatz G (1992) Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69:809–822

    PubMed  CAS  Google Scholar 

  • Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    PubMed  CAS  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    PubMed  CAS  Google Scholar 

  • Gupta RS (2000) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402

    PubMed  CAS  Google Scholar 

  • Gupta RS, Singh B (1994) Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol 4:1104–1114

    PubMed  CAS  Google Scholar 

  • Hahne K, Haucke V, Ramage L, Schatz G (1994) Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments. Cell 79:829–839

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hlodan R, Langer T (1994) Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci 19:20–25

    PubMed  CAS  Google Scholar 

  • Hausler T, Stierhof YD, Blattner J, Clayton C (1997) Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur J Cell Biol 73:240–251

    PubMed  CAS  Google Scholar 

  • Heins L, Schmitz UK (1996) A receptor for protein import into potato mitochondria. Plant J 9:829–839

    PubMed  CAS  Google Scholar 

  • Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW (2005) The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 21:68–74

    PubMed  CAS  Google Scholar 

  • Herrmann JM (2003) Converting bacteria to organelles: evolution of mitochondrial protein sorting. Trends Microbiol 11:74–79

    PubMed  CAS  Google Scholar 

  • Hill K et al. (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395:516–521

    PubMed  CAS  Google Scholar 

  • Honlinger A et al. (1995) The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol Cell Biol 15:3382–3389

    PubMed  CAS  Google Scholar 

  • Hoogenraad NJ, Ward LA, Ryan MT (2002) Import and assembly of proteins into mitochondria of mammalian cells. Biochim Biophys Acta 1592:97–105

    PubMed  CAS  Google Scholar 

  • Hoppins SC, Nargang FE (2004) The Tim8–Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J Biol Chem 279:12396–12405

    PubMed  CAS  Google Scholar 

  • Horner DS, Hirt RP, Kilvington S, Lloyd D, Embley TM (1996) Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc Biol Sci 263:1053–1059

    PubMed  CAS  Google Scholar 

  • Horst M, Oppliger W, Rospert S, Schonfeld HJ, Schatz G, Azem A (1997) Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:1842–1849

    PubMed  CAS  Google Scholar 

  • Hrdy I et al. (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622

    PubMed  CAS  Google Scholar 

  • Hrdy I, Muller M (1995a) Primary structure and eubacterial relationships of the pyruvate : ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J Mol Evol 41:388–396

    PubMed  CAS  Google Scholar 

  • Hrdy I, Muller M (1995b) Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J Eukaryot Microbiol 42:593–603

    PubMed  CAS  Google Scholar 

  • Ishikawa D, Yamamoto H, Tamura Y, Moritoh K, Endo T (2004) Two novel proteins in the mitochondrial outer membrane mediate beta-barrel protein assembly. J Cell Biol 166:621–627

    PubMed  CAS  Google Scholar 

  • Jarosch E, Rodel G, Schweyen RJ (1997) A soluble 12-kDa protein of the mitochondrial intermembrane space, Mrs11p, is essential for mitochondrial biogenesis and viability of yeast cells. Mol Gen Genet 255:157–165

    PubMed  CAS  Google Scholar 

  • Johnson PJ, d'Oliveira CE, Gorrell TE, Muller M (1990) Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc Natl Acad Sci USA 87:6097–6101

    PubMed  CAS  Google Scholar 

  • Katinka MD et al. (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    PubMed  CAS  Google Scholar 

  • Kerscher O, Holder J, Srinivasan M, Leung RS, Jensen RE (1997) The Tim54p–Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J Cell Biol 139:1663–1675

    PubMed  CAS  Google Scholar 

  • Kerscher O, Sepuri NB, Jensen RE (2000) Tim18p is a new component of the Tim54p–Tim22p translocon in the mitochondrial inner membrane. Mol Biol Cell 11:103–116

    PubMed  CAS  Google Scholar 

  • Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, Ito A (2007) A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol 189:844–850

    PubMed  CAS  Google Scholar 

  • Koehler CM (2004a) New developments in mitochondrial assembly. Annu Rev Cell Dev Biol 20:309–335

    PubMed  CAS  Google Scholar 

  • Koehler CM (2004b) The small Tim proteins and the twin Cx3C motif. Trends Biochem Sci 29:1–4

    PubMed  CAS  Google Scholar 

  • Koehler CM et al. (2000) Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol Cell Biol 20:1187–1193

    PubMed  CAS  Google Scholar 

  • Kovermann P et al. (2002) Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol Cell 9:363–373

    PubMed  CAS  Google Scholar 

  • Kozany C, Mokranjac D, Sichting M, Neupert W, Hell K (2004) The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol 11:234–241

    PubMed  CAS  Google Scholar 

  • Kozjak V et al. (2003) An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 278:48520–48523

    PubMed  CAS  Google Scholar 

  • Krogh A, Brown M, Mian IS, Sjolander K, Haussler D (1994) Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol 235:1501–1531

    PubMed  CAS  Google Scholar 

  • Kunkele KP et al. (1998) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93:1009–1019

    PubMed  CAS  Google Scholar 

  • LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149:3519–3530

    PubMed  CAS  Google Scholar 

  • Lahti CJ, d' Oliveira CE, Johnson PJ (1992) β-Succinyl-coenzyme-A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174:6822–6830

    PubMed  CAS  Google Scholar 

  • Lahti CJ, Bradley PJ, Johnson PJ (1994) Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl coA synthetase. Mol Biochem Parasitol 66:309–318

    PubMed  CAS  Google Scholar 

  • Land KM et al. (2004) Targeted gene replacement of a ferredoxin gene in Trichomonas vaginalis does not lead to metronidazole resistance. Mol Microbiol 51:115–122

    PubMed  CAS  Google Scholar 

  • Lange S, Rozario C, Muller M (1994) Primary structure of the hydrogenosomal adenylate kinase of Trichomonas vaginalis and its phylogenetic relationships. Mol Biochem Parasitol 66:297–308

    PubMed  CAS  Google Scholar 

  • Lee CM, Sedman J, Neupert W, Stuart RA (1999) The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J Biol Chem 274:20937–20942

    PubMed  CAS  Google Scholar 

  • Li Y, Dudek J, Guiard B, Pfanner N, Rehling P, Voos W (2004) The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J Biol Chem 279:38047–38054

    PubMed  CAS  Google Scholar 

  • Likic VA et al. (2005) Patterns that define the four domains conserved in known and novel isoforms of the protein import receptor Tom20. J Mol Biol 347:81–93

    PubMed  CAS  Google Scholar 

  • Lister R, Hulett JM, Lithgow T, Whelan J (2005) Protein import into mitochondria: origins and functions today (review). Mol Membr Biol 22:87–100

    PubMed  CAS  Google Scholar 

  • Loftus B et al. (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    PubMed  CAS  Google Scholar 

  • Lucattini R, Likic VA, Lithgow T (2004) Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol 21:652–658

    PubMed  CAS  Google Scholar 

  • Luciano P, Geli V (1996) The mitochondrial processing peptidase: function and specificity. Experientia 52:1077–1082

    PubMed  CAS  Google Scholar 

  • Maarse AC, Blom J, Grivell LA, Meijer M (1992) MPI1, an essential gene encoding a mitochondrial membrane protein, is possibly involved in protein import into yeast mitochondria. EMBO J 11:3619–3628

    PubMed  CAS  Google Scholar 

  • Maarse AC, Blom J, Keil P, Pfanner N, Meijer M (1994) Identification of the essential yeast protein MIM17, an integral mitochondrial inner membrane protein involved in protein import. FEBS Lett 349:215–221

    PubMed  CAS  Google Scholar 

  • Macasev D, Whelan J, Newbigin E, Silva-Filho MC, Mulhern TD, Lithgow T (2004) Tom22′, an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol Biol Evol 21:1557–1564

    PubMed  CAS  Google Scholar 

  • Maduke M, Roise D (1993) Import of a mitochondrial presequence into protein-free phospholipid vesicles. Science 260:364–367

    PubMed  CAS  Google Scholar 

  • Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (crypton) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205

    PubMed  CAS  Google Scholar 

  • Manning-Krieg UC, Scherer PE, Schatz G (1991) Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J 10:3273–3280

    PubMed  CAS  Google Scholar 

  • Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991a) Chaperonin-mediated protein folding at the surface of groEL through a molten globule-like intermediate. Nature 352:36–42

    PubMed  CAS  Google Scholar 

  • Martin J, Mahlke K, Pfanner N (1991b) Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J Biol Chem 266:18051–18057

    PubMed  CAS  Google Scholar 

  • Martinez-Caballero S, Grigoriev SM, Herrmann JM, Campo ML, Kinnally KW (2007) Tim17p regulates the twin-pore structure and voltage gating of the mitochondrial protein import complex TIM23. J Biol Chem 282:3584–3593

    PubMed  CAS  Google Scholar 

  • Marvin-Sikkema FD, Pedro Gomes TM, Grivet JP, Gottschal JC, Prins RA (1993) Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch Microbiol 160:388–396

    PubMed  CAS  Google Scholar 

  • McArthur AG et al. (2000) The Giardia genome project database. FEMS Microbiol Lett 189:271–273

    PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2:513–519

    PubMed  CAS  Google Scholar 

  • Meier S, Neupert W, Herrmann JM (2005) Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. J Biol Chem 280:7777–7785

    PubMed  CAS  Google Scholar 

  • Meinecke M et al. (2006) Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312:1523–1526

    PubMed  CAS  Google Scholar 

  • Meisinger C et al. (2001) Protein import channel of the outer mitochondrial membrane: a highly stable Tom40–Tom22 core structure differentially interacts with preproteins, small tom proteins, and import receptors. Mol Cell Biol 21:2337–2348

    PubMed  CAS  Google Scholar 

  • Meisinger C et al. (2004) The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev Cell 7:61–71

    PubMed  CAS  Google Scholar 

  • Meisinger C et al. (2007) The morphology proteins Mdm12/Mmm1 function in the major beta-barrel assembly pathway of mitochondria. EMBO J 26:2229–2239

    PubMed  CAS  Google Scholar 

  • Mesecke N et al. (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069

    PubMed  CAS  Google Scholar 

  • Milenkovic D et al. (2004) Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J Biol Chem 279:22781–22785

    PubMed  CAS  Google Scholar 

  • Mitra K et al. (2005) Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438:318–324

    PubMed  CAS  Google Scholar 

  • Mokranjac D et al. (2003a) Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 22:816–825

    PubMed  CAS  Google Scholar 

  • Mokranjac D, Sichting M, Neupert W, Hell K (2003b) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 22:4945–4956

    PubMed  CAS  Google Scholar 

  • Morrison HG, Roger AJ, Nystul TG, Gillin FD, Sogin ML (2001) Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol 18:530–541

    PubMed  CAS  Google Scholar 

  • Mukherjee M, Brown MT, McArthur AG, Johnson PJ (2006a) Proteins of the glycine decarboxylase complex in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 5:2062–2071

    PubMed  CAS  Google Scholar 

  • Mukherjee M, Seivers SA, Brown MT, Johnson PJ (2006b) Identification and biochemical characterization of serine hydroxymethyl transferase in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 5:2072–2078

    PubMed  CAS  Google Scholar 

  • Muller A, Rassow J, Grimm J, Machuy N, Meyer TF, Rudel T (2002) VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways. EMBO J 21:1916–1929

    PubMed  CAS  Google Scholar 

  • Murcha MW et al. (2007) Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. Plant Physiol 143:199–212

    PubMed  CAS  Google Scholar 

  • Murcha MW, Millar AH, Whelan J (2005a) The N-terminal cleavable extension of plant carrier proteins is responsible for efficient insertion into the inner mitochondrial membrane. J Mol Biol 351:16–25

    PubMed  CAS  Google Scholar 

  • Murcha MW, Rudhe C, Elhafez D, Adams KL, Daley DO, Whelan J (2005b) Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. Plant Physiol 138:2134–2144

    PubMed  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    PubMed  CAS  Google Scholar 

  • Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    PubMed  CAS  Google Scholar 

  • Nixon JE et al. (2002a) Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica. Eukaryot Cell 1:181–190

    PubMed  CAS  Google Scholar 

  • Nixon JE et al. (2002b) A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci USA 99:3701–3705

    PubMed  CAS  Google Scholar 

  • Nomura H, Athauda SB, Wada H, Maruyama Y, Takahashi K, Inoue H (2006) Identification and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode. J Biochem (Tokyo) 139:967–979

    CAS  Google Scholar 

  • Nunnari J, Fox TD, Walter P (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004

    PubMed  CAS  Google Scholar 

  • Osborne AR, Rapoport TA, van den Berg B (2005) Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21:529–550

    PubMed  CAS  Google Scholar 

  • Paschen SA, Neupert W, Rapaport D (2005) Biogenesis of beta-barrel membrane proteins of mitochondria. Trends Biochem Sci 30:575–582

    PubMed  CAS  Google Scholar 

  • Paschen SA et al. (2003) Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature 426:862–866

    PubMed  CAS  Google Scholar 

  • Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187–198

    PubMed  CAS  Google Scholar 

  • Perry AJ, Hulett JM, Likic VA, Lithgow T, Gooley PR (2006) Convergent evolution of receptors for protein import into mitochondria. Curr Biol 16:221–229

    PubMed  CAS  Google Scholar 

  • Peyretaillade E, Broussolle V, Peyret P, Metenier G, Gouy M, Vivares CP (1998) Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin. Mol Biol Evol 15:683–689

    PubMed  CAS  Google Scholar 

  • Pfanner N, Craig EA, Honlinger A (1997) Mitochondrial preprotein translocase. Annu Rev Cell Dev Biol 13:25–51

    PubMed  CAS  Google Scholar 

  • Pfanner N, Geissler A (2001) Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2:339–349

    PubMed  CAS  Google Scholar 

  • Plumper E, Bradley PJ, Johnson PJ (2000) Competition and protease sensitivity assays provide evidence for the existence of a hydrogenosomal protein import machinery in Trichomonas vaginalis. Mol Biochem Parasitol 106:11–20

    PubMed  CAS  Google Scholar 

  • Pool MR (2005) Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review). Mol Membr Biol 22:3–15

    PubMed  CAS  Google Scholar 

  • Putignani L et al. (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 129:1–18

    PubMed  CAS  Google Scholar 

  • Rassow J, Dekker PJ, van Wilpe S, Meijer M, Soll J (1999) The preprotein translocase of the mitochondrial inner membrane: function and evolution. J Mol Biol 286:105–120

    PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228

    Article  PubMed  CAS  Google Scholar 

  • Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, Hehl AB (2005) Protein import, replication and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563

    PubMed  CAS  Google Scholar 

  • Rehling P et al. (2003a) Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:1747–1751

    PubMed  CAS  Google Scholar 

  • Rehling P, Pfanner N, Meisinger C (2003b) Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane – a guided tour. J Mol Biol 326:639–657

    PubMed  CAS  Google Scholar 

  • Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147

    PubMed  CAS  Google Scholar 

  • Roger AJ, Clark CG, Doolittle WF (1996) A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci USA 93:14618–14622

    PubMed  CAS  Google Scholar 

  • Roger AJ et al. (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci USA 95:229–234

    PubMed  CAS  Google Scholar 

  • Rohl T, Motzkus M, Soll J (1999) The outer envelope protein OEP24 from pea chloroplasts can functionally replace the mitochondrial VDAC in yeast. FEBS Lett 460:491–494

    PubMed  CAS  Google Scholar 

  • Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5:1327–1334

    PubMed  CAS  Google Scholar 

  • Rospert S, Junne T, Glick BS, Schatz G (1993) Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett 335:358–360

    PubMed  CAS  Google Scholar 

  • Rospert S, Looser R, Dubaquie Y, Matouschek A, Glick BS, Schatz G (1996) Hsp60-independent protein folding in the matrix of yeast mitochondria. EMBO J 15:764–774

    PubMed  CAS  Google Scholar 

  • Ryan KR, Menold MM, Garrett S, Jensen RE (1994) SMS1, a high-copy suppressor of the yeast mas6 mutant, encodes an essential inner membrane protein required for mitochondrial protein import. Mol Biol Cell 5:529–538

    PubMed  CAS  Google Scholar 

  • Rye HS et al. (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    PubMed  CAS  Google Scholar 

  • Sandoval P et al. (2004) Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324:139–147

    PubMed  CAS  Google Scholar 

  • Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    PubMed  CAS  Google Scholar 

  • Schleyer M, Schmidt B, Neupert W (1982) Requirement of a membrane potential for the posttranslational transfer of proteins into mitochondria. Eur J Biochem 125:109–116

    PubMed  CAS  Google Scholar 

  • Schneider A, Behrens M, Scherer P, Pratje E, Michaelis G, Schatz G (1991) Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. EMBO J 10:247–254

    PubMed  CAS  Google Scholar 

  • Sirrenberg C, Bauer MF, Guiard B, Neupert W, Brunner M (1996) Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384:582–585

    PubMed  CAS  Google Scholar 

  • Slapeta J, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell 3:483–494

    PubMed  CAS  Google Scholar 

  • Sollner T, Griffiths G, Pfaller R, Pfanner N, Neupert W (1989) MOM19, an import receptor for mitochondrial precursor proteins. Cell 59:1061–1070

    PubMed  CAS  Google Scholar 

  • Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8:195–208

    PubMed  CAS  Google Scholar 

  • Stojanovski D, Pfanner N, Wiedemann N (2007) Import of proteins into mitochondria. Methods Cell Biol 80C:783–806

    Google Scholar 

  • Stuart R (2002) Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim Biophys Acta 1592:79–87

    PubMed  CAS  Google Scholar 

  • Stuart RA, Cyr DM, Craig EA, Neupert W (1994) Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem Sci 19:87–92

    PubMed  CAS  Google Scholar 

  • Sutak R et al. (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA 101:10368–10373

    PubMed  CAS  Google Scholar 

  • Szabo A, Langer T, Schroder H, Flanagan J, Bukau B, Hartl FU (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci USA 91:10345–10349

    PubMed  CAS  Google Scholar 

  • Tachezy J, Sanchez LB, Muller M (2001) Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928

    PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    PubMed  CAS  Google Scholar 

  • Tovar J et al. (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176

    PubMed  CAS  Google Scholar 

  • Truscott KN et al. (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol 8:1074–1082

    PubMed  CAS  Google Scholar 

  • Truscott KN et al. (2003) A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J Cell Biol 163:707–713

    PubMed  CAS  Google Scholar 

  • van der Giezen M et al. (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20:1051–1061

    PubMed  Google Scholar 

  • van der Giezen M, Kiel JA, Sjollema KA, Prins RA (1998) The hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast Hansenula polymorpha. Curr Genet 33:131–135

    PubMed  Google Scholar 

  • van der Giezen M, Leon-Avila G, Tovar J (2005) Characterization of chaperonin 10 (Cpn10) from the intestinal human pathogen Entamoeba histolytica. Microbiology 151:3107–3115

    PubMed  Google Scholar 

  • van der Giezen M et al. (1997) A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Mol Microbiol 23:11–21

    PubMed  Google Scholar 

  • van der Giezen M et al. (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J 21:572–579

    PubMed  Google Scholar 

  • van der Laan M et al. (2005) Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor. Mol Cell Biol 25:7449–7458

    PubMed  Google Scholar 

  • van der Laan M, Rissler M, Rehling P (2006a) Mitochondrial preprotein translocases as dynamic molecular machines. FEMS Yeast Res 6:849–861

    PubMed  Google Scholar 

  • van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N (2006b) A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr Biol 16:2271–2276

    PubMed  Google Scholar 

  • van Wilpe S et al. (1999) Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401:485–489

    PubMed  Google Scholar 

  • von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201

    Google Scholar 

  • von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Google Scholar 

  • Voncken FG et al. (2002) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 284:103–112

    PubMed  CAS  Google Scholar 

  • Voos W, Rottgers K (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592:51–62

    PubMed  CAS  Google Scholar 

  • Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    PubMed  CAS  Google Scholar 

  • Waizenegger T et al. (2004) Tob38, a novel essential component in the biogenesis of beta-barrel proteins of mitochondria. EMBO Rep 5:704–709

    PubMed  CAS  Google Scholar 

  • Waizenegger T, Schmitt S, Zivkovic J, Neupert W, Rapaport D (2005) Mim1, a protein required for the assembly of the TOM complex of mitochondria. EMBO Rep 6:57–62

    PubMed  CAS  Google Scholar 

  • Werhahn W, Niemeyer A, Jansch L, Kruft V, Schmitz UK, Braun H (2001) Purification and characterization of the preprotein translocase of the outer mitochondrial membrane from Arabidopsis. Identification of multiple forms of TOM20. Plant Physiol 125:943–954

    PubMed  CAS  Google Scholar 

  • Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456

    PubMed  CAS  Google Scholar 

  • Wiedemann N, Pfanner N, Ryan MT (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J 20:951–960

    PubMed  CAS  Google Scholar 

  • Wiedemann N et al. (2003) Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–571

    PubMed  CAS  Google Scholar 

  • Wiedemann N, Truscott KN, Pfannschmidt S, Guiard B, Meisinger C, Pfanner N (2004) Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J Biol Chem 279:18188–18194

    PubMed  CAS  Google Scholar 

  • Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    PubMed  CAS  Google Scholar 

  • Williams BA, Keeling PJ (2005) Microsporidian mitochondrial proteins: expression in Antonospora locustae spores and identification of genes coding for two further proteins. J Eukaryot Microbiol 52:271–276

    Article  PubMed  CAS  Google Scholar 

  • Wimley WC (2003) The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13:404–411

    PubMed  CAS  Google Scholar 

  • Xu P et al. (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    PubMed  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    PubMed  CAS  Google Scholar 

  • Yaffe MP, Ohta S, Schatz G (1985) A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides. EMBO J 4:2069–2074

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Esaki M, Kanamori T, Tamura Y, Nishikawa S, Endo T (2002) Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111:519–528

    PubMed  CAS  Google Scholar 

  • Zara V et al. (2007) Biogenesis of eel liver citrate carrier (cic): negative charges can substitute for positive charges in the presequence. J Mol Biol 365:958–967

    PubMed  CAS  Google Scholar 

  • Zara V, Palmieri F, Mahlke K, Pfanner N (1992) The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J Biol Chem 267:12077–12081

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina D. Dyall .

Editor information

Jan Tachezy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dyall, S.D., Dolezal, P. (2007). Protein Import into Hydrogenosomes and Mitosomes. In: Tachezy, J. (eds) Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Microbiology Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_105

Download citation

Publish with us

Policies and ethics