Skip to main content

Physiological Adaptations in Nitrogen-fixing Nostoc–Plant Symbiotic Associations

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 8))

Abstract

Nostoc species establish nitrogen-fixing symbiotic associations with representatives of the four main lineages of terrestrial plants: bryophyte hornworts and liverworts, the pteridophyte fern Azolla, gymnosperm cycads, and the angiosperm genus Gunnera. However, the plant partners represent only narrowly selected groups within these lineages. The plant partner benefits by the acquisition of fixed nitrogen, but the benefits to the Nostoc partner are unclear. Thus, the associations are considered a commensal form of symbiosis. A working hypothesis of this chapter is that these associations evolved as the lineage of the plant partner emerged. Inherent in this hypothesis is that the plant partners may have evolved different regulatory signals and targets in control of the Nostoc partner. The physiological interactions between the two partners can be modeled as a two-step process. First is the establishment of an association and involves the differentiation and behavior of motile hormogonium filaments, the infective units. Hormogonium formation is essential, but not singularly sufficient for establishment of an association. Second is the development of a functional nitrogen-fixing association involving the differentiation and behavior of heterocysts, the functional units. Heterocysts are the cellular sites of nitrogen fixation, protecting nitrogenase from inactivation by oxygen. The symbiotic growth state of Nostoc spp. is characterized by a reduced rate of growth, depressed carbon dioxide and ammonium assimilation, transition to a heterotrophic metabolic mode, an elevated heterocyst frequency, and an enhanced rate of nitrogen fixation. In all but one association (cycads), dinitrogen-derived ammonium is made available to the plant partner. Physiological measurements indicate that different reactions of Nostoc photosynthetic carbon dioxide and ammonium assimilation are modulated by the various plant partners. These results appear to support the working hypothesis and indicate that different mechanisms may be operational, allowing for manipulation of different strategies in engineering new plant partners for symbiotic nitrogen fixation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DG (2000) Symbiotic interactions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria, their diversity in time and space. Kluwer, Dordrecht, pp 523–561

    Google Scholar 

  • Allen MM (1984) Cyanobacterial cell inclusions. Ann Rev Microbiol 38:1–25

    Article  CAS  Google Scholar 

  • Bergman B (2002) The Nostoc-Gunnera symbiosis. In: Rai A, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 207–232

    Google Scholar 

  • Bergman B, Matveyev A, Rasmussen U (1996) Chemical signaling in cyanobacterial–plant symbioses. Trends Plant Sci 1:191–197

    Article  Google Scholar 

  • Bergman B, Rai AN, Johansson C, Söderbäck E (1992) Cyanobacterial–plant symbiosis. Symbiosis 14:61–81

    Google Scholar 

  • Black K, Osborne B (2004) An assessment of photosynthetic downregulation in cyanobacteria from the Gunnera-Nostoc symbiosis. New Phytol 162:125–132

    Article  CAS  Google Scholar 

  • Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci USA 98:2729–2734

    Article  PubMed  CAS  Google Scholar 

  • Callahan SM, Buikema WJ (2001) The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol Microbiol 40:941–950

    Article  PubMed  CAS  Google Scholar 

  • Campbell EL, Meeks JC (1989) Characteristics of hormogonia formation by symbiotic Nostoc spp. in response to the presence of Anthoceros punctatus or its extracellular products. Appl Environ Microbiol 55:125–131

    PubMed  CAS  Google Scholar 

  • Campbell EL, Summers ML, Christman H, Martin ME, Meeks JC (2007) Global gene expression patterns of Nostoc punctiforme in steady state dinitrogen-grown heterocyst-containing cultures, and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 189:5247–5256

    Article  PubMed  CAS  Google Scholar 

  • Campbell EL, Wong FCY, Meeks JC (2003) DNA binding properties of the HrmR protein of Nostoc punctiforme responsible for transcriptional regulation of genes involved in hormogonium differentiation. Mol Microbiol 47:573–582

    Article  PubMed  CAS  Google Scholar 

  • Canini A, Grilli Caiola M, Mascini M (1990) Ammonium content, nitrogenase activity and heterocyst frequency with the leaf cavities of Azolla filiculoides Lam. FEMS Microbiol Lett 71:205–210

    Article  CAS  Google Scholar 

  • Carrapico F, Costa MH, Costa ML, Teixeira G, Frazão AA, Santos MCR, Baioa MV (1996) The uncontrolled growth of Azolla in the Guadiana River. Aquaphyte 16:11

    Google Scholar 

  • Castenholz RW (2001) Phylux BX. Cyanobacteria oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey's manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic bacteria, 2nd edn. Springer, Berlin Heidelberg New York, pp 473–599

    Google Scholar 

  • Cohen MF, Meeks JC (1996) A hormogonium regulating locus, hrmUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatus. Mol Plant-Microbe Interact 10:280–289

    Article  Google Scholar 

  • Cohen MF, Wallis JG, Campbell EL, Meeks JC (1994) Transposon mutagenesis of Nostoc sp strain ATCC 29133, a filamentous cyanobacterium with multiple cellular differentiation alternatives. Microbiology 140:3233–3240

    Article  PubMed  CAS  Google Scholar 

  • Cohen MF, Yamasaki H (2000) Flavonoid-induced expression of a symbiosis-related gene in the cyanobacterium Nostoc punctiforme. J Bacteriol 182:4644–4646

    Article  PubMed  CAS  Google Scholar 

  • Costa J-L, Lindblad P (2002) Cyanobacteria in symbiosis with cycads. In: Rai A, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 195–205

    Google Scholar 

  • Costa J-L, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microbiol 67:4393–4396

    Article  PubMed  CAS  Google Scholar 

  • Ehira S, Ohmori M (2006) NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59:1692–1703

    Article  PubMed  CAS  Google Scholar 

  • Enderlin CS, Meeks JC (1983) Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158:157–165

    Article  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    PubMed  CAS  Google Scholar 

  • Flores E, Herrero A (1994) Assimilatory nitrogen metabolism. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 487–517

    Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122:571–609

    Article  CAS  Google Scholar 

  • Gantar M, Kerby NW, Rowell P (1993) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria; III. The role of a hormogonium-promoting factor. New Phytol 124:505–513

    Article  CAS  Google Scholar 

  • Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6:557–563

    Article  PubMed  CAS  Google Scholar 

  • Herdman M, Rippka R (1988) Cellular differentiation: hormogonia and baeocytes. Methods Enzymol 167:232–242

    Article  Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  PubMed  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Valladares A, Flores E (2004) Cellular differentiation and the NtcA trnscription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28:469–487

    Article  PubMed  CAS  Google Scholar 

  • Hill DJ (1975) The pattern of development of Anabaena in the Azolla-Anabaena symbiosis. Planta 122:179–184

    Article  Google Scholar 

  • Johansson C, Bergman B (1992) Early events during the establishment of the Gunnera/Nostoc symbiosis. Planta 188:403–413

    Article  Google Scholar 

  • Johansson C, Bergman B (1994) Reconstitution of the symbiosis of Gunnera mannicata Linden: cyanobacterial specificity. New Phytol 126:643–652

    Article  Google Scholar 

  • Jones KM, Buikema WJ, Haselkorn R (2003) Heterocyst-specific expression of patB, a gene required for nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 185:2306–2314

    Article  PubMed  CAS  Google Scholar 

  • Joseph CM, Meeks JC (1987) Regulation of expression of glutamine synthetase in a symbiotic Nostoc strain associated with Anthoceros punctatus. J Bacteriol 169:2471–2475

    PubMed  CAS  Google Scholar 

  • Kaplan D, Calvert HE, Peters GA (1986) The Azolla-Anabaena relationship. VII. Nitrogenase activity and phycobiliproteins of the endophyte as a function of leaf age and cell type. Plant Physiol 80:884–890

    Article  PubMed  CAS  Google Scholar 

  • Kaplan D, Peters GA (1988) Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis 6:53–68

    CAS  Google Scholar 

  • Kimura J, Nakano T (1990) Reconstitution of a Blasia-Nostoc symbiotic association under axenic conditions. Nova Hedwigia 50:191–200

    Google Scholar 

  • Knight CD, Adams DG (1996) A method for studying chemotaxis in nitrogen fixing cyanobacterium–plant symbioses. Physiol Mol Plant Path 49:73–77

    Article  Google Scholar 

  • Lazaroff N (1973) Photomorphogenesis and Nostocacean development. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 279–329

    Google Scholar 

  • Lee K-Y, Joseph CM, Meeks JC (1988) Glutamine synthetase specific activity and protein concentration in symbiotic Anabaena associated with Azolla caroliniana. Antonie van Leeuwenhoek 54:345–355

    Article  PubMed  CAS  Google Scholar 

  • Lindblad P, Bergman B (1986) Glutamine synthetase: activity and localization in cyanobacteria of the cycads Cycas revoluta and Zamia skinneri. Plant 169:1–7

    Article  CAS  Google Scholar 

  • Lindblad P, Hällbom L, Bergman B (1985) The cyanobacterium-Zamia symbiosis: C2H2-reduction and heterocyst frequency. Symbiosis 1:19–28

    CAS  Google Scholar 

  • Lindblad P, Rai AN, Bergman B (1987) The Cycas revoluta-Nostoc symbiosis: Enzyme activities of nitrogen and carbon metabolism in the cyanobiont. J Gen Microbiol 133:1695–1699

    CAS  Google Scholar 

  • Meeks JC (1990) Cyanobacterial-bryophyte associations. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC, Boca Raton, FL, pp 43–63

    Google Scholar 

  • Meeks JC (1998) Symbiosis between nitrogen-fixing cyanobacteria and plants. BioScience 48:266–276

    Article  Google Scholar 

  • Meeks JC (2003) Symbiotic interactions between Nostoc punctiforme, a multicellular cyanobacterium, and the hornwort Anthoceros punctatus. Symbiosis 34:55–71

    Google Scholar 

  • Meeks JC (2005a) Molecular mechanisms in the nitrogen-fixing Nostoc-Bryophyte symbiosis. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin Heidelberg New York, pp 165–196

    Google Scholar 

  • Meeks JC (2005b) The genome of the filamentous cyanobacterium Nostoc punctiforme, what can we learn from it about free-living and symbiotic nitrogen fixation? In: Palacios R, Newton WE (eds) Nitrogen fixation: 1888–2001, vol VI: Genomes and genomics of nitrogen-fixing organisms. Springer, Berlin Heidelberg New York, pp 27–70

    Google Scholar 

  • Meeks JC, Campbell EL, Summers ML, Wong FC (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178:395–403

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant associated symbiotic growth states. Microbiol Mol Biol Rev 65:94–121

    Article  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosyn Res 70:85–106

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Enderlin CS, Joseph CM, Chapman JS, Lollar MWL (1985). Fixation of [13 N]N2 and transfer of fixed nitrogen in the Anthoceros-Nostoc association. Planta 164:406–414

    Article  CAS  Google Scholar 

  • Meeks JC, Joseph CM, Haselkorn R (1988) Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch Microbiol 150:61–71

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Steinberg N, Enderlin CS, Joseph CN, Peters GA (1987) Azolla-Anabaena relationship. XIII. Fixation of [13 N]N2. Plant Physiol 84:883–886

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Wycoff KL, Chapman JS, Enderlin CS (1982) Regulation of expression of nitrate and dinitrogen assimilation by Anabaena species. Appl Environ Microbiol 45:1351–1359

    Google Scholar 

  • Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon pyriforme (Kutz.) v. Wettstein, a unique encocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kutz.). Hariot Protoplasma 193:3–9

    Article  Google Scholar 

  • Muro-Pastor MI, Reyes HC, Florencio FJ (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276:38320–38328

    PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer SA, Haselkorn R (1986) Differences in mRNA levels in Anabaena living freely or in symbiotic association with Azolla. EMBO J 5:29–35

    PubMed  CAS  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55:382–390

    Article  PubMed  CAS  Google Scholar 

  • Ow MC, Gantar M, Elhai J (1999) Reconstitution of a cycad-cyanobacterial association. Symbiosis 27:125–134

    Google Scholar 

  • Pate JS, Lindblad P, Atkins CA (1988) Pathways of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 176:461–471

    Article  CAS  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (1998) Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytol 139:517–524

    Article  CAS  Google Scholar 

  • Peters GA, Meeks JC (1989) The Azolla-Anabaena symbiosis: basic biology. Annu Rev Plant Physiol Plant Mol Biol 40:193–210

    Article  Google Scholar 

  • Peters GA, Toia RE Jr, Evans WR, Crist DK, Mayne BC, Poole RE (1980) Characterization and comparisons of five N2-fixing Azolla-Anabaena associations, I. Optimization of growth conditions for biomass increase and N content in a controlled environment. Plant Cell Environ 3:261–269

    Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (2002) Cyanobacteria in symbiosis. Kluwer, Dordrecht

    Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium—plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Rasmussen U, Johansson C, Bergman B (1994) Early communication in the Gunnera-Nostoc symbiosis: plant induced cell differentiation and protein synthesis in the cyanobacterium. Mol Plant-Microbe Interact 7:696–702

    Article  CAS  Google Scholar 

  • Rasmussen U, Nilsson M (2002) Cyanobacterial diversity and specificity in plant symbioses. In: Rai A, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 313–328

    Google Scholar 

  • Rasmussen U, Svenning MM (2001) Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch Microbiol 176:204–210

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2002) Evolution of cyanobacterial symbioses. In: Rai A, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 329–346

    Google Scholar 

  • Ray TB, Peters GA, Toia RE Jr, Mayne BC (1978) Azolla-Anabaena relationship. VII. Distribution of ammonia-assimilating enzymes, protein and chlorophyll between host and symbiont. Plant Physiol 62:463–467

    Article  PubMed  CAS  Google Scholar 

  • Ray TB, Mayne BC, Toia RE Jr, Peters GA (1979) Azolla-Anabaena relationship. VIII. Photosynthetic characterization of the association and individual partners. Plant Physiol 64:791–795

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rippka R, Herdman M (1992) Pasteur culture collection of cyanobacteria in axenic culture. Institute Pasteur, Paris

    Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria, their diversity in time and space. Kluwer, Dordrecht, pp 13–35

    Google Scholar 

  • Silvester WB, Parsons R, Watt PW (1996) Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol 132:617–625

    Article  CAS  Google Scholar 

  • Söderbäck E, Bergman B (1992) The Nostoc-Gunnera magellanica symbiosis: Phycobiliproteins, carboxysomes and rubisco in the cyanobiont. Physiol Planta 84:425–432

    Article  Google Scholar 

  • Söderbäck E, Bergman B (1993) The Nostoc-Gunnera symbiosis: Carbon fixation and translocation. Physiol Planta 89:125–132

    Article  Google Scholar 

  • Söderbäck E, Lindblad P, Bergman B (1990) Developmental patterns related to nitrogen fixation in the Nostoc-Gunnera magellanica Lam. symbiosis. Planta 182:355–362

    Article  Google Scholar 

  • Steinberg NA, Meeks JC (1989) Photosynthetic CO2 fixation and ribulose bisphosphate carboxylase/oxygenase activity of Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol 171:6227–6233

    PubMed  CAS  Google Scholar 

  • Steinberg NA, Meeks JC (1991) Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol 173:7324–7329

    PubMed  CAS  Google Scholar 

  • Stewart WDP, Rodgers GA (1977) The cyanophyte-hepatic symbiosis II. Nitrogen fixation and the interchange of nitrogen and carbon. New Phytol 78:459–471

    Article  CAS  Google Scholar 

  • Summers ML, Wallis JG, Campbell EL, Meeks JC (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium/Nostoc/sp. strain ATCC 29133. J Bacteriol 177:6184–6194

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1994) Differentiation of hormogonia and relationships with other biological processes. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Boston, pp 825–842

    Google Scholar 

  • Tang LF, Watanabe I, Liu CC (1990) Limited multiplication of symbiotic cyanobacteria of Azolla spp. on artificial media. Appl Environ Microbiol 56:3623–3626

    PubMed  CAS  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Bermudez MF, Herrero A, Flores E (2002) 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter. FEBS Lett 512:71–74

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15:340–349

    Article  PubMed  CAS  Google Scholar 

  • West N, Adams DG (1997) Phenotypic and genotypic comparisons of symbiotic and free-living cyanobacteria from a single field site. Appl Environ Microbiol 63:4479–4484

    PubMed  CAS  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 769–823

    Google Scholar 

  • Wong FC, Meeks JC (2001) The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme. J Bacteriol 183:2654–2661

    Article  PubMed  CAS  Google Scholar 

  • Wong FC, Meeks JC (2002) Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte hornwort Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiol 148:315–323

    CAS  Google Scholar 

  • Yoon H-S, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938

    Article  PubMed  CAS  Google Scholar 

  • Yoon H-S, Golden JW (2001) PatS and products of nitrogen fixation control heterocyst pattern. J Bacteriol 183:2605–2613

    Article  PubMed  CAS  Google Scholar 

  • Zhang C-C, Laurent S, Sakr S, Peng L, Bédu S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59:367–375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Meeks .

Editor information

Katharina Pawlowski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meeks, J.C. (2007). Physiological Adaptations in Nitrogen-fixing Nostoc–Plant Symbiotic Associations. In: Pawlowski, K. (eds) Prokaryotic Symbionts in Plants. Microbiology Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_101

Download citation

Publish with us

Policies and ethics