Skip to main content

Linear Protein-Primed Replicating Plasmids in Eukaryotic Microbes

  • Chapter
  • First Online:
Microbial Linear Plasmids

Part of the book series: Microbiology Monographs ((MICROMONO,volume 7))

Abstract

Linear plasmids of eukaryotic microbes are contemporary manifestations of ancient viruses, which have adjusted to two cellular compartments during evolution, i.e., to the mitochondrium or to the cytoplasm. In either case, infectious viral functions do not (any longer) exist. Mitochondrial as well as cytoplasmic elements display a minimized gene equipment and an archetypical mode of replication. Plasmids of filamentous fungi are selfish DNA elements routinely residing in the mitochondria, in which they underwent coevolution with their hosts. In addition to the archetypical viral B-type DNA polymerase, they typically exclusively encode a viral RNA polymerase. Usually, there are neither positive nor negative impacts on their hosts. In a few instances, however, symptoms redolent of a molecular disease, such as the accumulation of defective mitochondria and early onset of senescence, manifest in plasmid-harboring strains. Cytoplasmic localization, which applies for almost all yeast linear plasmids known so far, evidently enforced a more complex enzyme repertoire (of viral origin) to accomplish autonomous extranuclear and extramitochondrial replication and transcription, such as a helicase, ssDNA binding proteins, and a capping enzyme. Accompanying cytoplasmic plasmids relying functionally on an autonomous element are rather frequent; some encode protein toxins, which benefits the respective host while competing with other yeasts (killer phenotype). Such toxins assure autoselection of the plasmid system as well. Two distinct toxic principles are known up to the present: one was shown to be a tRNase, whereas the other clearly involves a DNA-damaging mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arganoza MT, Min J, Hu Z, Akins RA (1994) Distribution of seven homology groups of mitochondrial plasmids in Neurospora: evidence for widespread mobility between species in nature. Curr Genet 26:62–73

    PubMed  CAS  Google Scholar 

  2. Belnap DM, Steven AC (2000) “Déjà vu all over again”: the similar structures of bacteriophage PRD1 and adenovirus. Trends Microbiol 8:91–93

    PubMed  CAS  Google Scholar 

  3. Benson SD, Bamford JKH, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825–833

    PubMed  CAS  Google Scholar 

  4. Benson SD, Bamford JKH, Bamford DH, Burnett RM (2002) The X-ray crystal structure of P3, the major coat protein of the lipid-containing bacteriophage PRD1, at 1.65 Å resolution. Acta Crystallogr D Biol Crystallogr 58:39–59

    PubMed  Google Scholar 

  5. Bertrand H (2000) Role of mitochondrial DNA in the senescence and hypovirulence of fungi and potential for plant disease control. Annu Rev Phytopathol 38:397–422

    Google Scholar 

  6. Birkeland NK (1994) Cloning, molecular characterization, and expression of the genes encoding the lytic functions of lactococcal bacteriophage phi LC3: a dual lysis system of modular design. Can J Microbiol 40:658–665

    Article  PubMed  CAS  Google Scholar 

  7. Bisaillon M, Lemay G (1997) Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology 236:1–7

    PubMed  CAS  Google Scholar 

  8. Blaisonneau J, Nosek J, Fukuhara H (1999) Linear DNA plasmid pPK2 of Pichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast 15:781–791

    PubMed  CAS  Google Scholar 

  9. Bolen PL, Kurtzman CP, Ligon JM, Mannarelli BM, Bothast RJ (1992) Physical and genetic characterization of linear DNA plasmids from the heterothallic yeast Saccharomycopsis crataegensis. Antonie Van Leuwenhoek 61:195–295

    CAS  Google Scholar 

  10. Bolen PL, Eastman EM, Cihak PL, Hayman GT (1994) Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl-2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis. Yeast 10:403–414

    PubMed  CAS  Google Scholar 

  11. Butler AR, O'Donnell RW, Martin VJ, Gooday GW, Stark MJ (1991a) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483–488

    PubMed  CAS  Google Scholar 

  12. Butler AR, Porter M, Stark MJR (1991c) Intracellular expression of Kluyveromyces lactis toxin γ subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7:617–625

    PubMed  CAS  Google Scholar 

  13. Butler AR, White JH, Stark MJR (1991b) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137:1749–1757

    PubMed  CAS  Google Scholar 

  14. Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJR (1994) Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 14:6306–6316

    PubMed  CAS  Google Scholar 

  15. Cermakian N, Ikeda TM, Cedergren R, Gray MW (1996) Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res 24:648–654

    PubMed  CAS  Google Scholar 

  16. Cermakian N, Ikeda TM, Miramontes P, Lang BF, Gray MW, Cedergren R (1997) On the evolution of the single-subunit RNA polymerases. J Mol Evol 45:671–681

    PubMed  CAS  Google Scholar 

  17. Challberg MD, Kelly TJ (1982) Eukaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 51:901–934

    PubMed  CAS  Google Scholar 

  18. Chan BS, Court DA, Vierula PJ, Bertrand H (1991) The kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20:225–237

    PubMed  CAS  Google Scholar 

  19. Chen WB, Han JF, Jong SC, Chang SC (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66:5348–5352

    PubMed  CAS  Google Scholar 

  20. Cong P, Shuman S (1992) Methyltransferase and subunit association domains of Vaccinia virus mRNA capping enzyme. J Biol Chem 267:16424–16429

    PubMed  CAS  Google Scholar 

  21. Cong P, Shuman S (1993) Covalent catalysis in nucleotidyl transfer: a KTDG motif essential for enzyme–GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases. J Biol Chem 268:7256–7260

    PubMed  CAS  Google Scholar 

  22. Cong YS, Yarrow D, Li YY, Fukuhara H (1994) Linear DNA plasmids from Pichia etchellsii, Debaryomyces hansenii and Wingea robertsiae. Microbiology 140:1327–1335

    PubMed  CAS  Google Scholar 

  23. Court DA, Bertrand H (1992) Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 22:385–397

    PubMed  CAS  Google Scholar 

  24. Davison AJ, Benko M, Harrach B (2003) Genetic content and evolution of adenoviruses. J Gen Virol 84:2895–2908

    Google Scholar 

  25. de la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24(5):192–198

    PubMed  Google Scholar 

  26. Deng L, Shuman S (1998) Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev 12:538–546

    PubMed  CAS  Google Scholar 

  27. Dufour E, Mendez J, Lazaro JM, de Vega M, Blanco L, Salas M (2000) An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. J Mol Biol 304:289–300

    PubMed  CAS  Google Scholar 

  28. Dufour E, Rodriguez I, Lazaro JM, de Vega M, Salas M (2003) A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation. J Mol Biol 331:781–794

    PubMed  CAS  Google Scholar 

  29. Düvell A, Hessberg-Stutzke H, Oeser B, Rogmann-Backwinkel P, Tudzynski P (1988) Structural and functional analysis of mitochondrial plasmids in Claviceps purpurea. Mol Gen Genet 214:128–134

    PubMed  Google Scholar 

  30. Esberg A, Huang B, Johansson MJ, Bystrom AS (2006) Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 24:139–148

    PubMed  CAS  Google Scholar 

  31. Fichtner L, Schaffrath R (2002) KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44:865–875

    PubMed  CAS  Google Scholar 

  32. Fichtner L, Frohloff F, Burkner K, Larsen M, Breunig KD, Schaffrath R (2002a) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43:783–791

    PubMed  CAS  Google Scholar 

  33. Fichtner L, Frohloff F, Jablonowski D, Stark MJ, Schaffrath R (2002b) Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 45:817–826

    PubMed  CAS  Google Scholar 

  34. Fichtner L, Jablonowski D, Schierhorn A, Kitamoto HK, Stark MJ, Schaffrath R (2003) Elongator's toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49:1297–1307

    PubMed  CAS  Google Scholar 

  35. Francou F (1981) Isolation and characterization of a linear DNA molecule in the fungus Ascobolus immersus. Mol Gen Genet 184:440–444

    CAS  Google Scholar 

  36. Frohloff F, Fichtner L, Jablonowski D, Breuning KD, Schaffrath R (2001) Saccharomyces cerevisiae elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20:1993–2003

    PubMed  CAS  Google Scholar 

  37. Frohloff F, Jablonowski D, Fichtner L, Schaffrath R (2003) Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (γ toxin target (TOT)) complex. J Biol Chem 278:956–961

    PubMed  CAS  Google Scholar 

  38. Fukuda K, Maebuchi M, Takata H, Gunge N (1997) The linear plasmid pDHL1 from Debaryomyces hansenii encodes a protein highly homologous to the pGKL1-plasmid DNA polymerase. Yeast 13:613–620

    PubMed  CAS  Google Scholar 

  39. Fukuda K, Jin-Shan C, Kawano M, Sudo K, Gunge N (2004) Stress responses of linear plasmids from Debaryomyces hansenii. FEMS Microbiol Lett 237:243–248

    PubMed  CAS  Google Scholar 

  40. Fukuhara H (1995) Linear DNA plasmids of yeasts. FEMS Microbiol Lett 131:1–9

    PubMed  CAS  Google Scholar 

  41. Galligan JT, Kennell JC (2007) Retroplasmids: Linear and circular plasmids that replicate via reverse transcription. In: Meinhardt F, Klassen R (eds) Microbiology Monographs, vol 7: Microbial linear plasmids. Springer, Berlin Heidelberg (in press)

    Google Scholar 

  42. Giese H, Christiansen SK, Jensen HP (1990) Extrachromosomal plasmid-like DNA in the obligate parasitic fungus Erysiphe graminis f. sp. hordei. Theor Appl Genet 79:56–64

    CAS  Google Scholar 

  43. Giese H, Lyngkjaer MF, Stummann BM, Grell MN, Christiansen SK (2003) Analysis of the structure and inheritance of a linear plasmid from the obligate biotrophic fungus Blumeria graminis f. sp. hordei Mol Genet Genomics 269:699–705

    PubMed  CAS  Google Scholar 

  44. Graille M, Mora L, Buckingham RH, van Tilbeurgh H, de Zamaroczy M (2004) Structural inhibition of the colicin D tRNase by the tRNA-mimicking immunity protein. EMBO J 23:1474–1482

    PubMed  CAS  Google Scholar 

  45. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    PubMed  CAS  Google Scholar 

  46. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    PubMed  CAS  Google Scholar 

  47. Griffiths AJF (1992) Fungal senescence. Annu Rev Genet 26:351–372

    PubMed  CAS  Google Scholar 

  48. Griffiths AJF (1995) Natural plasmids of filamentous fungi. Microbiol Rev 59:673–685

    PubMed  CAS  Google Scholar 

  49. Gunge N (1995) Plasmid DNA and the killer phenomenon in Kluyveromyces. In: Kück U (ed) Genetics and biotechnology: the mycota, vol 2. Springer, Berlin, pp 189–209

    Google Scholar 

  50. Gunge N, Sakaguchi K (1981) Intergeneric transfer of deoxyribonucleic acid killer plasmids, pGKl1 and pGKl2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion. J Bacteriol 147:155–160

    PubMed  CAS  Google Scholar 

  51. Gunge N, Tokunaga M (2004) Linear DNA plasmids and killer system in Kluyveromyces lactis. In: Kück U (ed) Genetics and biotechnology: the mycota II, 2nd edn. Springer, Berlin, pp 199–217

    Google Scholar 

  52. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382–390

    PubMed  CAS  Google Scholar 

  53. Gunge N, Murata K, Sakaguchi K (1982) Transformation of Saccharomyces cerevisiae with linear DNA killer plasmids from Kluyveromyces lactis. J Bacteriol 151:462–464

    PubMed  CAS  Google Scholar 

  54. Gunge N, Takata H, Matsuura A, Fukuda K (2003) Progressive rearrangement of telomeric sequences added to both the ITR ends of the yeast linear pGKL plasmid. Biol Proced Online 5:29–42

    PubMed  CAS  Google Scholar 

  55. Hashiba T, Nagasaka A (2007) Hairpin plasmids from the plant pathogenic fungus Rhizoctonia solani and Fusarium oxysporum. In: Meinhardt F, Klassen R (eds) Microbiology Monographs, vol 7: Microbial linear plasmids. Springer, Berlin Heidelberg (in press)

    Google Scholar 

  56. Hayman GT, Bolen BL (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Curr Genet 19:389–393

    PubMed  CAS  Google Scholar 

  57. Hermanns J, Osiewacz HD (1992) The linear mitochondrial plasmid pAL2–1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet 22:491–500

    PubMed  CAS  Google Scholar 

  58. Hermanns J, Asseburg A, Osiewacz HD (1994) Evidence for a life span-prolonging effect of a linear plasmid in a longevity mutant of Podospora anserina. Mol Gen Genet 243:297–307

    PubMed  CAS  Google Scholar 

  59. Hermanns J, Asseburg A, Osiewacz HD (1995) Evidence for giant linear plasmids in the ascomycete Podospora anserina. Curr Genet 27:379–386

    PubMed  CAS  Google Scholar 

  60. Hertwig S (2007) Linear Plasmids and Prophages in Gram Negative Bacteria. In: Meinhardt F, Klassen R (eds) Microbiology Monographs, vol 7: Microbial linear plasmids. Springer, Berlin Heidelberg (in press)

    Google Scholar 

  61. Higman HA, Bourgeois N, Niles EG (1992) The Vaccinia virus mRNA (guanine-N7-)-methyltransferase requires both subunits of the mRNA capping enzyme for activity. J Biol Chem 267:16430–16437

    PubMed  CAS  Google Scholar 

  62. Higman MA, Christen LA, Niles EG (1994) The mRNA (guanine-7)methyltransferase domain of the Vaccinia virus mRNA capping enzyme: expression in Escherichia coli and structural and kinetic comparison to the intact capping enzyme. J Biol Chem 269:14974–14981

    PubMed  CAS  Google Scholar 

  63. Hishinuma F, Hirai K (1991) Genome organization of the linear plasmid, pSKL, isolated from Saccharomyces kluyveri. Mol Gen Genet 226:97–106

    PubMed  CAS  Google Scholar 

  64. Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequence of the DNA killer plasmids from yeast. Nucleic Acids Res 12:7581–7597

    PubMed  CAS  Google Scholar 

  65. Huang B, Johansson MJ, Bystrom AS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424–436

    PubMed  CAS  Google Scholar 

  66. Ito J, Braithwaite DK (1991) Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res 19:4045–4057

    PubMed  CAS  Google Scholar 

  67. Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, Schaffrath R (2001a) Saccharomyces cerevisiae cell wall chitin, the potential Kluyveromyces lactis zymocin receptor. Yeast 18:1285–1299

    PubMed  CAS  Google Scholar 

  68. Jablonowski D, Butler AR, Fichtner L, Gardiner D, Schaffrath R, Stark MJR (2001b) Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 159:1479–1489

    PubMed  CAS  Google Scholar 

  69. Jablonowski D, Frohloff F, Fichtner L, Stark MJR, Schaffrath R (2001c) Kluyveromyces lactis zymocin mode of actin is linked to RNA polymerase II function via Elongator. Mol Microbiol 42:1095–1105

    PubMed  CAS  Google Scholar 

  70. Jablonowski D, Fichtner L, Stark MJ, Schaffrath R (2004) The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Mol Biol Cell 15:1459–1469

    PubMed  CAS  Google Scholar 

  71. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Mol Microbiol 59:677–688

    PubMed  CAS  Google Scholar 

  72. Jankowsky E, Bowers H (2006) Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res 34:4181–4188

    PubMed  CAS  Google Scholar 

  73. Jeske S, Meinhardt F (2006) Autonomous cytoplasmic linear plasmid pPac1-1 of Pichia acaciae: molecular structure and expression studies. Yeast 23:476–486

    Google Scholar 

  74. Jeske S, Meinhardt F, Klassen R (2006a) Extranuclear inheritance: virus-like DNA elements in yeast. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany, vol 68. Springer, Berlin Heidelberg New York, pp 98–129

    Google Scholar 

  75. Jeske S, Tiggemann M, Meinhardt F (2006b) Yeast autonomous linear plasmid pGKL2 ORF9 is an actively transcribed essential gene with multiple transcription start points. FEMS Microbiol Lett 255:321–327

    PubMed  CAS  Google Scholar 

  76. Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23:9283–9292

    PubMed  CAS  Google Scholar 

  77. Kämper J, Meinhardt F, Gunge N, Esser K (1989a) New recombinant linear DNA elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res 17(4):1781

    PubMed  Google Scholar 

  78. Kämper J, Meinhardt F, Gunge N, Esser K (1989b) In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol 9(9):3931–3937

    PubMed  Google Scholar 

  79. Kämper J, Esser K, Gunge N, Meinhardt F (1991) Heterologous gene expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr Genet 19:109–118

    PubMed  Google Scholar 

  80. Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA (2004) Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Mol Cell 16:609–618

    PubMed  CAS  Google Scholar 

  81. Kamtekar S, Ho RS, Cocco MJ, Li W, Wenwieser SV, Boocock MR, Grindley ND, Steitz TA (2006) Implications of structures of synaptic tetramers of gamma delta resolvase for the mechanism of recombination. Proc Natl Acad Sci USA 103:10642–10647

    PubMed  CAS  Google Scholar 

  82. Kawamoto S, Sasaki T, Itahashi S, Hatsuyama Y, Ohno T (1993) A mutant allele skt5 affecting protoplast regeneration and killer toxin resistance has double mutations in its wild-type structural gene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 57:1391–1393

    PubMed  CAS  Google Scholar 

  83. Kempken F, Meinhardt F, Esser K (1989) In organello replication and viral affinity of linear, extrachromosomal DNA of the ascomycete Ascobolus immersus. Mol Gen Genet 218:523–530

    PubMed  CAS  Google Scholar 

  84. Kempken F, Hermanns J, Osiewacz HD (1992) Evolution of linear plasmids. J Mol Evol 35:502–513

    PubMed  CAS  Google Scholar 

  85. Kim EK, Jeong JH, Youn HS, Koo YB, Roe JH (2000) The terminal protein of a linear mitochondrial plasmid is encoded in the N-terminus of the DNA polymerase gene in white-rot fungus Pleurotus ostreatus. Curr Genet 38:283–290

    PubMed  CAS  Google Scholar 

  86. Kishida M, Tokunaga M, Katayose Y, Yajima H, Kawamura-Watabe A, Hishinuma F (1996) Isolation and genetic characterization of pGKL killer-insensitive mutants (iki) from Saccharomyces cerevisiae. Biosci Biotechnol Biochem 60:798–801

    Article  PubMed  CAS  Google Scholar 

  87. Kitada K, Gunge N (1988) Palindrome-hairpin linear plasmids possessing only a part of the ORF1 gene of the yeast killer plasmid pGKL1. Mol Gen Genet 215:46–52

    PubMed  CAS  Google Scholar 

  88. Kitada K, Hishinuma H (1987) A new linear plasmid isolated from the yeast Saccharomyces kluyveri. Mol Gen Genet 206:377–381

    CAS  Google Scholar 

  89. Klassen R, Meinhardt F (2002) Linear plasmids pWR1A and pWR1B of the yeast Wingea robertsiae are associated with a killer phenotype. Plasmid 48:142–148

    PubMed  CAS  Google Scholar 

  90. Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1-3 from Pichia inositovora. Mol Genet Genomics 270:190–199

    PubMed  CAS  Google Scholar 

  91. Klassen R, Meinhardt F (2005) Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 7:393–401

    PubMed  CAS  Google Scholar 

  92. Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 18:953–961

    PubMed  CAS  Google Scholar 

  93. Klassen R, Jablonowski D, Schaffrath R, Meinhardt F (2002) Genome organization of the linear Pichia etchellsii plasmid pPE1A: evidence for expression of an extracellular chitin binding protein homologous to the α-subunit of the Kluyveromyces lactis killer toxin. Plasmid 47:224–233

    PubMed  CAS  Google Scholar 

  94. Klassen R, Teichert S, Meinhardt F (2004) Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53:263–273

    PubMed  CAS  Google Scholar 

  95. Klassen R, Jablonowski D, Stark MJR, Schaffrath R, Meinhardt F (2006) Mating type locus control of killer toxins from Kluyveromyces lactis and Pichia acaciae. FEMS Yeast Res 6:404–413

    PubMed  CAS  Google Scholar 

  96. Kobryn K (2007) The linear hairpin replicons of Borrelia burgdorferi. In: Meinhardt F, Klassen R (eds) Microbiology Monographs, vol 7: Microbial linear plasmids. Springer, Berlin Heidelberg (in press)

    Google Scholar 

  97. Kuzmin EV, Levchenko IV, Zaitseva GN (1988) S2 plasmid from cms-S-maize mitochondria potentially encodes a specific RNA polymerase. Nucleic Acids Res 16:4177

    PubMed  CAS  Google Scholar 

  98. Larsen M, Meinhardt F (2000) Kluyveromyces lactis killer system: identification of a new gene encoded by pGKL2. Curr Genet 38:271–275

    PubMed  CAS  Google Scholar 

  99. Larsen M, Gunge N, Meinhardt F (1998) Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by OFR3. Plasmid 40:243–246

    PubMed  CAS  Google Scholar 

  100. Leffers H, Gropp F, Lottspeich F, Zillig W, Garrett RA (1989) Sequence, organisation, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. J Mol Biol 206:1–17

    PubMed  CAS  Google Scholar 

  101. Levings CS, Sederoff RR (1983) Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize. Proc Natl Acad Sci USA 80:4055–4059

    Google Scholar 

  102. Ligon JM, Bolen PL, Hill DS, Bothast RJ, Kurtzman CP (1989) Physical and biological characterization of linear DNA plasmids of the yeast Pichia inositovora. Plasmid 2:185–194

    Google Scholar 

  103. Lu J, Huang B, Esberg A, Johansson MJ, Bystrom AS (2005) The Kluyveromyces lactis γ toxin targets tRNA anticodons. RNA 11:1648–1654

    PubMed  CAS  Google Scholar 

  104. Maas MF, de Boer HJ, Debets AJ, Hoekstra RF (2004) The mitochondrial plasmid pAL2-1 reduces calorie restriction mediated life span extension in the filamentous fungus Podospora anserina. Fungal Genet Biol 41:865–871

    PubMed  CAS  Google Scholar 

  105. Maas MF, van Mourik A, Hoekstra RF, Debets AJ (2005) Polymorphism for pKALILO based senescence in Hawaiian populations of Neurospora intermedia and Neurospora tetrasperma. Fungal Genet Biol 42:224–232

    PubMed  CAS  Google Scholar 

  106. Mao X, Shuman S (1994) Intrinsic RNA (guanine-7)methyltransferase activity of the Vaccinia capping enzyme D1 subunit is stimulated by the D12 subunit: identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J Biol Chem 269:24472–24479

    PubMed  CAS  Google Scholar 

  107. Martin SA, Paoletti E, Moss B (1975) Purification of mRNA guanylyltransferase and mRNA (guanine-7)methyltransferase from Vaccinia virions. J Biol Chem 250:9322–9329

    PubMed  CAS  Google Scholar 

  108. Masaki H, Ogawa T (2002) The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie 84:433–438

    PubMed  CAS  Google Scholar 

  109. Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99

    PubMed  CAS  Google Scholar 

  110. McCracken DA, Martin VJ, Stark MJ, Bolen PL (1994) The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiology 140:425–431

    PubMed  CAS  Google Scholar 

  111. McNeel DG, Tamanoi F (1991) Terminal region recognition factor 1, a DNA-binding protein recognizing the inverted terminal repeats of the pGKl linear DNA plasmids. Proc Natl Acad Sci USA 88:11398–11402

    PubMed  CAS  Google Scholar 

  112. Mehlgarten C, Schaffrath R (2003) Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactis zymocin in budding yeast. Mol Genet Genomics 269:188–196

    PubMed  CAS  Google Scholar 

  113. Mehlgarten C, Schaffrath R (2004) After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 6:569–580

    PubMed  CAS  Google Scholar 

  114. Meijer WJ, Horcajadas JA, Salas M (2001) Phi29 family of phages. Microbiol Mol Biol Rev 65:261–287

    PubMed  CAS  Google Scholar 

  115. Meinhardt F, Rohe R (1993) Extranuclear inheritance: linear protein-primed replicating genomes in plants and microorganisms. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany, vol 54. Springer, Heidelberg, pp 51–70

    Google Scholar 

  116. Meinhardt F, Schaffrath R (2001) Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany, vol 62. Springer, Heidelberg, pp 51–70

    Google Scholar 

  117. Meinhardt F, Kempken F, Esser K (1986) Proteins are attached to the ends of a linear plasmid in the filamentous fungus Ascobolus immersus. Curr Genet 11:243–246

    CAS  Google Scholar 

  118. Meinhardt F, Kempken F, Kamper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17:89–95

    PubMed  CAS  Google Scholar 

  119. Mendez J, Blanco L, Esteban JA, Bernad A, Salas M (1992) Initiation of phi29 DNA replication occurs at the second 3′ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc Natl Acad Sci USA 89(20):9579–9583

    PubMed  CAS  Google Scholar 

  120. Mendez J, Blanco L, Salas M (1997) Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase. EMBO J 16:2519–27

    PubMed  CAS  Google Scholar 

  121. Mogen KL, Siegel MR, Schardl CL (1991) Linear DNA plasmids of the perennial ryegrass choke pathogen, Epichloe typhina (Clavicipitaceae). Curr Genet 20:519–526

    PubMed  CAS  Google Scholar 

  122. Myers CJ, Griffiths AJ, Bertrand H (1989) Linear kalilo DNA is a Neurospora mitochondrial plasmid that integrates into the mitochondrial DNA. Mol Gen Genet 220:113–120

    PubMed  CAS  Google Scholar 

  123. Niwa O, Sakaguchi K, Gunge N (1981) Curing of the killer deoxyribonucleic acid plasmids of Kluyveromyces lactis. J Bacteriol 148:988–990

    PubMed  CAS  Google Scholar 

  124. Oeser B (1988) S2 plasmid from Zea mays encodes a specific RNA polymerase: an alternative alignment. Nucleic Acids Res 16:8729

    PubMed  CAS  Google Scholar 

  125. Oeser B, Tudzynski P (1989) The linear mitochondrial plasmid pClK1 of the phytopathogenic fungus Claviceps purpurea may code for a DNA polymerase and an RNA polymerase. Mol Gen Genet 217:132–140

    PubMed  CAS  Google Scholar 

  126. Oeser B, Rogmann-Backwinkel P, Tudzynski P (1993) Interaction between mitochondrial DNA and mitochondrial plasmids in Claviceps purpure: analysis of plasmid-homologous sequences upstream of the lrRNA gene. Curr Genet 23:315–322

    PubMed  CAS  Google Scholar 

  127. Ogawa T, Tomita K, Ueda T, Watanabe K, Uozumi T, Masaki H (1999) A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science 283:2097–2100

    PubMed  CAS  Google Scholar 

  128. Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3:109–118

    PubMed  CAS  Google Scholar 

  129. Paillard M, Sederoff RR, Levings CS (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize. EMBO J 4:1125–1128

    PubMed  CAS  Google Scholar 

  130. Pontig CP, Aravind L, Schultz J, Bork P, Koonin EV (1999) Eukaryotic signalling domain homologues in archaea and bacteria: ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745

    Google Scholar 

  131. Pring DR, Levings CS III, Hu WWL, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 74:2904–2908

    PubMed  CAS  Google Scholar 

  132. Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17:841–853

    PubMed  CAS  Google Scholar 

  133. Raths S, Rohrer J, Crausaz F, Riezman H (1993) end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J Cell Biol 120:55–65

    PubMed  CAS  Google Scholar 

  134. Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358

    PubMed  CAS  Google Scholar 

  135. Rodriguez I, Lazaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M (2005) A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. Proc Natl Acad Sci USA 102:6407–6412

    PubMed  CAS  Google Scholar 

  136. Rohe M, Schrage K, Meinhardt F (1991) The linear plasmid pMC3-2 from Morchella conica is structurally related to adenoviruses. Curr Genet 20:527–533

    PubMed  CAS  Google Scholar 

  137. Rohe M, Schründer J, Tudzynski P, Meinhardt F (1992) Phylogenetic relationships of linear protein-primed replicating genomes. Curr Genet 21:173–176

    PubMed  CAS  Google Scholar 

  138. Romanos M, Boyd A (1988) A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 of Kluyveromyces lactis: evidence that native k1 has novel promoters. Nucleic Acids Res 16:7333–7350

    PubMed  CAS  Google Scholar 

  139. Salas M (1991) Protein priming of DNA replication. Annu Rev Biochem 60:39–71

    Google Scholar 

  140. Samac DA, Leong SA (1988) Two linear plasmids in mitochondria of Fusarium solani f. sp. cucurbitae. Plasmid 19:57–67

    PubMed  CAS  Google Scholar 

  141. San Martin C, Burnett RM (2003) Structural studies on adenoviruses. Curr Top Microbiol Immunol 272:57–94

    Google Scholar 

  142. Schaffrath R, Meacock PA (2001) An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18:1239–1247

    PubMed  CAS  Google Scholar 

  143. Schaffrath R, Meinhardt F (2004) Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Schmitt M, Schaffrath R (eds) Topics in current genetics, vol 11: microbial protein toxins. Springer, Heidelberg, pp 133–155

    Google Scholar 

  144. Schaffrath R, Stark MJR, Gunge N, Meinhardt F (1992) Kluyveromyces lactis killer system: ORF1 of pGKL2 has no function in immunity expression and is dispensable for killer plasmid replication and maintenance. Curr Genet 21:357–363

    PubMed  CAS  Google Scholar 

  145. Schaffrath R, Soond SM, Meacock PA (1995) The DNA and RNA polymerase genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141:2591–2599

    Article  PubMed  CAS  Google Scholar 

  146. Schaffrath R, Meinhardt F, Meacock PA (1996) Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Mol Gen Genet 250:286–294

    Article  PubMed  CAS  Google Scholar 

  147. Schaffrath R, Meinhardt F, Meacock PA (1997) ORF7 of yeast plasmid pGKL2: analysis of gene expression in vivo. Curr Genet 31:190–192

    PubMed  CAS  Google Scholar 

  148. Schickel J, Helmig C, Meinhardt F (1996) Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of linear plasmids. Nucleic Acids Res 24:1879–1886

    PubMed  CAS  Google Scholar 

  149. Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276

    PubMed  CAS  Google Scholar 

  150. Schründer J, Meinhardt F (1995) An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids. Plasmid 33:139–151

    PubMed  Google Scholar 

  151. Schründer J, Gunge N, Meinhardt F (1996) Extranuclear expression of the bacterial xylose isomerase (xylA) and the UDP-glucose dehydrogenase (hasB) genes in yeast with Kluyveromyces lactis linear killer plasmids as vectors. Curr Microbiol 33:323–330

    PubMed  Google Scholar 

  152. Schwer B (2001) A new twist on RNA helicases: DExH/D box proteins as RNPases. Nat Struct Biol 8:113–116

    PubMed  CAS  Google Scholar 

  153. Shepherd HS (1992) Linear, non-mitochondrial plasmids of Alternaria alternata. Curr Genet 21:169–172

    PubMed  CAS  Google Scholar 

  154. Shuman S, Hurwitz J (1981) Mechanism of mRNA capping by Vaccinia virus guanylyltransferase: characterization of an enzyme-guanylate intermediate. Proc Natl Acad Sci USA 78:187–191

    PubMed  CAS  Google Scholar 

  155. Shuman S, Schwer B (1995) RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyltransferases. Mol Microbiol 17:405–410

    PubMed  CAS  Google Scholar 

  156. Shutt TE, Gray MW (2006) Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet 22:90–95

    PubMed  CAS  Google Scholar 

  157. Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9:147–155

    CAS  Google Scholar 

  158. Stam JC, Kwakman J, Meijer M, Stuitje AR (1986) Efficient isolation of the linear DNA killer plasmid of Kluyveromyces lactis: evidence for location and expression in the cytoplasm and characterization of their terminally bound proteins. Nucleic Acids Res 14:6871–6884

    PubMed  CAS  Google Scholar 

  159. Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995–2002

    Google Scholar 

  160. Stark MJ, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12:6011–6030

    PubMed  CAS  Google Scholar 

  161. Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29

    PubMed  CAS  Google Scholar 

  162. Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki M, Tamura G (1985) Transfer of DNA killer plasmids from Kluyveromyces lactis to Kluyveromyces fragilis and Candida pseudotropicalis. J Bacteriol 164:1373–1375

    PubMed  CAS  Google Scholar 

  163. Sun TP, Webster RE (1987) Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J Bacteriol 169:2667–2674

    PubMed  CAS  Google Scholar 

  164. Takeda M, Hiraishi H, Takesako T, Tanase S, Gunge N (1996) The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain with the plasmid encoded DNA polymerase. Yeast 12:241–246

    PubMed  CAS  Google Scholar 

  165. Takita MA, Castilho-Valavicius B (1993) Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast 9:589–598

    PubMed  CAS  Google Scholar 

  166. Tanguy-Rougeau C, Wesolowski-Louvel M, Fukuhara H (1988) The Kluyveromyces lactis KEX1 gene encodes a subtilisin-type serine proteinase. FEBS Lett 234:464–470

    PubMed  CAS  Google Scholar 

  167. Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262

    PubMed  CAS  Google Scholar 

  168. Thuriaux P, Sentenac A (1992) Yeast nuclear RNA polymerases. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor, New York, pp 1–48

    Google Scholar 

  169. Tiggemann M, Jeske S, Larsen M, Meinhardt F (2001) Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA triphosphatase activities. Yeast 18:815–825

    PubMed  CAS  Google Scholar 

  170. Tiranti V, Savoia A, Forti F, D'Apolito MF, Centra M, Rocchi M, Zeviani M (1997) Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum Mol Genet 6:615–625

    PubMed  CAS  Google Scholar 

  171. Tokunaga M, Wada N, Hishinuma F (1987) Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15:1031–1046

    PubMed  CAS  Google Scholar 

  172. Tokunaga M, Wada N, Hishinuma F (1988) A novel yeast secretion signal isolated from 28K killer precursor protein encoded on the linear DNA plasmid pGKL1. Nucleic Acids Res 16:7499–7511

    PubMed  CAS  Google Scholar 

  173. Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435–3446

    PubMed  CAS  Google Scholar 

  174. Tokunaga M, Kawamura A, Kitada K, Hishinuma F (1990) Secretion of killer toxin encoded on the linear DNA plasmid pGKL1 from Saccharomyces cerevisiae. J Biol Chem 265:17274–17280

    PubMed  CAS  Google Scholar 

  175. Tokunaga M, Kawamura A, Omori A, Hishinuma F (1991) Purification and determination of the NH2-terminal amino acid sequence of mouse alpha-amylase secreted from Saccharomyces cerevisiae: correct processing of the secretion signal from pGKL killer 28-kDa precursor protein. Biochim Biophys Acta 1080:135–137

    PubMed  CAS  Google Scholar 

  176. Tokunaga M, Kawamura A, Omori A, Hishinuma F (1992) Structure of yeast pGKL 128-kDa killer-toxin secretion signal sequence. Processing of the 128-kDa killer-toxin-secretion-signal-alpha-amylase fusion protein. Eur J Biochem 203:415–423

    Google Scholar 

  177. Tomita K, Ogawa T, Uozumi T, Watanabe K, Masaki H (2000) A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci USA 97:8278–8283

    PubMed  CAS  Google Scholar 

  178. Tommasino M (1991) Killer system of Kluyveromyces lactis: the open reading frame 10 of the pGK12 plasmid encodes a putative DNA binding protein. Yeast 7:245–252

    PubMed  CAS  Google Scholar 

  179. Tommasino M, Ricci S, Galeotti C (1988) Genome organization of the killer plasmid pGKL2 from Kluyveromyces lactis. Nucleic Acids Res 16:5863–5978

    PubMed  CAS  Google Scholar 

  180. Tudzynski P, Esser K (1986) Extrachromosomal genetics of Claviceps purpurea. II. Plasmids in various wild strains and integrated plasmid sequences in mitochondrial genomic DNA. Curr Genet 10:463–467

    CAS  Google Scholar 

  181. Tudzynski P, Düvell A, Esser K (1983) Extrachromosomal genetics of Claviceps purpurea. I. Mitochondrial DNA and mitochondrial plasmids. Curr Genet 7:145–150

    CAS  Google Scholar 

  182. van der Gaag M, Debets AJ, Osiewacz HD, Hoekstra RF (1998) The dynamics of pAL2-1 homologous linear plasmids in Podospora anserina. Mol Gen Genet 258:521–529

    PubMed  Google Scholar 

  183. Vierula PJ, Cheng CK, Court DA, Humphrey RW, Thomas DY, Bertrand H (1990) The kalilo senescence plasmid of Neurospora intermedia has covalently linked 5′ terminal proteins. Curr Genet 17:195–201

    CAS  Google Scholar 

  184. Weihe A, Hedtke B, Borner T (1997) Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album. Nucleic Acids Res 25:2319–2325

    PubMed  CAS  Google Scholar 

  185. Wésolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4:71–81

    PubMed  Google Scholar 

  186. Wesp A, Hicke L, Palecek J, Lombardi R, Aust T, Munn AL, Riezman H (1997) End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 8:2291–2306

    PubMed  CAS  Google Scholar 

  187. White JH, Butler AR, Stark MJR (1989) Kluyveromyces lactis toxin does not inhibit yeast adenylyl cylcase. Nature 341:666–668

    CAS  Google Scholar 

  188. Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid encoded RNA polymerase of unique structure. Nucleic Acids Res 16:8097–8112

    PubMed  CAS  Google Scholar 

  189. Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2001) RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276:32743–32749

    PubMed  CAS  Google Scholar 

  190. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4:123–128

    PubMed  CAS  Google Scholar 

  191. Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77–80

    PubMed  CAS  Google Scholar 

  192. Xu Y, Yang S, Turitsa I, Griffiths A (1999) Divergence of a linear and a circular plasmid in disjunct natural isolates of the fungus Neurospora. Plasmid 42:115–125

    PubMed  CAS  Google Scholar 

  193. Yang X, Griffiths AJ (1993) Plasmid diversity in senescent and nonsenescent strains of Neurospora. Mol Gen Genet 237:177–186

    PubMed  CAS  Google Scholar 

  194. Yuewang W, Yang X, Griffiths AJ (1996) Structure of a Gelasinospora linear plasmid closely related to the kalilo plasmid of Neurospora intermedia. Curr Genet 29:150–158

    PubMed  CAS  Google Scholar 

  195. Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJR, Schaffrath R (2005) Mannosyl-diinositolphosphoceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryot Cell 4:879–889

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Meinhardt .

Editor information

Friedhelm Meinhardt Roland Klassen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klassen, R., Meinhardt, F. (2007). Linear Protein-Primed Replicating Plasmids in Eukaryotic Microbes. In: Meinhardt, F., Klassen, R. (eds) Microbial Linear Plasmids. Microbiology Monographs, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_095

Download citation

Publish with us

Policies and ethics