Skip to main content

Microbial Physiology of Nickel and Cobalt

  • Chapter
  • First Online:
Molecular Microbiology of Heavy Metals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 6))

Abstract

Nickel and cobalt are essential micronutrients for many microorganisms and serve as enzyme cofactors that catalyze a diverse array of reactions. One complication is that high concentrations of these transition metal ions are toxic to cells, leading some prokaryotes to evolve sophisticated homeostatic mechanisms to regulate their transmembrane uptake or efflux. The biosynthesis of nickel and cobalt metalloenzymes requires the intracellular allocation of the metals to the appropriate apoproteins, often in an intricate process that involves the cooperative activity of accessory proteins. Here, we highlight the molecular physiology of nickel and cobalt cation metabolism in Escherichia coli and summarize additional nickel- or cobalt-dependent processes and homeostatic mechanisms found in other microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham LO, Li Y, Zamble DB (2005) Metal-binding and DNA-binding activities of Helicobacter pylori NikR. J Inorg Biochem 100:1005–1014

    Article  PubMed  CAS  Google Scholar 

  2. Ahn B-E, Cha J, Lee E-J, Han A-R, Thompson CJ, Roe J-H (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Molec Microbiol 59:1848–1858

    Article  CAS  Google Scholar 

  3. Allan CB, Wu L-F, Gu Z, Choudhury SB, Al-Mjeni F, Sharma ML, Mandrand-Berthelot M-A, Maroney MJ (1998) An X-ray absorption spectroscopic structural investigation of the nickel site in Escherichia coli NikA protein. Inorg Chem 37:5952–5955

    Article  CAS  Google Scholar 

  4. Al-Mjeni F, Ju T, Pochapsky TC, Maroney MJ (2002) XAS investigation of the structure and function of Ni in acireductone dioxygenase. Biochemistry 41:6761–6769

    Article  PubMed  CAS  Google Scholar 

  5. Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiol 143:3633–3647

    CAS  Google Scholar 

  6. Aronsson A-C, Marmstål E, Mannervik B (1978) Glyoxalase I, a zinc metalloenzyme of mammals and yeast. Biochem Biophys Res Commun 81:1235–1240

    Article  PubMed  CAS  Google Scholar 

  7. Atanassova A, Zamble DB (2005) Escherichia coli HypA is a zinc metalloprotein with a weak affinity for nickel. J Bacteriol 187:4689–4697

    Article  PubMed  CAS  Google Scholar 

  8. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. BioMetals 14:271–313

    Article  PubMed  CAS  Google Scholar 

  9. Bagramyan K, Mnatsakanyan N, Poladian A, Vassilian A, Trchounian A (2002) The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178

    Article  PubMed  CAS  Google Scholar 

  10. Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    Article  PubMed  CAS  Google Scholar 

  11. Barondeau DP, Kassman CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43:8038–8047

    Article  PubMed  CAS  Google Scholar 

  12. Bartha R, Ordal EJ (1965) Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains. J Bacteriol 89:1015–1019

    PubMed  CAS  Google Scholar 

  13. Becker A, Schlichtling I, Kabsch W, Schultz S, Wagner AFV (1998) Structure of peptide deformylase and identification of the substrate binding site. J Biol Chem 273:11413–11416

    Article  PubMed  CAS  Google Scholar 

  14. Ben-Bassat A, Bauer K, Chang S-Y, Myambo K, Boosman A, Chang S (1987) Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 169:751–757

    PubMed  CAS  Google Scholar 

  15. Bender SL, Mehdi S, Knowles JR (1989) Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis. Biochemistry 28:7555–7560

    Article  PubMed  CAS  Google Scholar 

  16. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  PubMed  CAS  Google Scholar 

  17. Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SPJ (2004) The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 279:46686–46691

    Article  PubMed  CAS  Google Scholar 

  18. Blokesch M, Magalon A, Böck A (2001) Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases 1, 2, and 3 from Escherichia coli. J Bacteriol 183:2817–2822

    Article  PubMed  CAS  Google Scholar 

  19. Blokesch M, Paschos A, Theodoratou E, Bauer A, Hube M, Huth S, Böck A (2002) Metal insertion into NiFe-hydrogenases. Biochem Soc Trans 30:674–680

    Article  PubMed  CAS  Google Scholar 

  20. Blokesch M, Rohrmoser M, Rode S, Böck A (2004) HybF, a zinc-containing protein involved in NiFe hydrogenase biosynthesis. J Bacteriol 186:2603–2611

    Article  PubMed  CAS  Google Scholar 

  21. Bloom SB, Zamble DB (2004) The metal-selective DNA-binding response of Escherichia coli NikR. Biochemistry 43:10029–10038

    Article  PubMed  CAS  Google Scholar 

  22. Böck A, Sawers G (1996) Fermentation. In: Neidhardt FC (ed) Escherichia coli and Salmonella, Cellular and Molecular Biology, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  23. Bonam D, Ludden PW (1987) Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem 262:2980–2987

    PubMed  CAS  Google Scholar 

  24. Borths EL, Locher KP, Lee AT, Rees DC (2002) The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99:16642–16647

    Article  PubMed  CAS  Google Scholar 

  25. Borths EL, Poolman B, Hvorup RN, Locher KP, Rees DC (2005) In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44:16301–16309

    Article  PubMed  CAS  Google Scholar 

  26. Bradbeer C, Reynolds PR, Bauler GM, Fernandez MT (1986) A requirement for calcium in the transport of cobalamin across the outer membrane of Escherichia coli. J Biol Chem 261:2520–2523

    PubMed  CAS  Google Scholar 

  27. Brayman TG, Hausinger RP (1996) Purification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus. J Bacteriol 178:5410–5416

    PubMed  CAS  Google Scholar 

  28. Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143

    Article  PubMed  CAS  Google Scholar 

  29. Cadieux N, Bradbeer C, Reeger-Schneider E, Köster W, Mohanty AK, Wiener MC, Kadner RJ (2002) Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. J Bacteriol 184:706–717

    PubMed  CAS  Google Scholar 

  30. Carrington PE, Chivers PT, Al-Mjeni F, Sauer RT, Maroney MJ (2003) Nickel coordination is regulated by the DNA-bound state of NikR. Nat Struct Biol 10:126–130

    Article  PubMed  CAS  Google Scholar 

  31. Casalot L, Rousset M (2001) Maturation of [NiFe] hydrogenases. Trends Microbiol 9:228–237

    Article  PubMed  CAS  Google Scholar 

  32. Cavet JS, Meng W, Pennella MA, Appelhoff RJ, Giedroc DP, Robinson NJ (2002) A nickel-cobalt sensing ArsR-SmtB family repressor: contributions of cytosol and effector binding sites to metal selectivity. J Biol Chem 277:38441–38448

    Article  PubMed  CAS  Google Scholar 

  33. Chang Z, Kuchar J, Hausinger RP (2004) Chemical crosslinking and mass spectrometric identification of sites of interaction for UreD, UreF, and urease. J Biol Chem 279:15305–15313

    Article  PubMed  CAS  Google Scholar 

  34. Cherrier MV, Martin L, Cavazza C, Jacquamet L, Lemaire D, Gaillard J, Fontecilla-Camps JC (2005) Crystallographic and spectroscopic evidence for high affinity binding of FeEDTA(H2O) to the periplasmic nickel transporter NikA. J Am Chem Soc 127:10075–10082

    Article  PubMed  CAS  Google Scholar 

  35. Chimento DP, Mohanty AK, Kadner RJ, Wiener MC (2003) Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat Struct Biol 10:394–401

    Article  PubMed  CAS  Google Scholar 

  36. Chivers PT, Sauer RT (1999) NikR is a ribbon-helix-helix DNA-binding protein. Prot Sci 8:2494–2500

    CAS  Google Scholar 

  37. Chivers PT, Sauer RT (2000) Regulation of high affinity nickel uptake in bacteria. Ni2+-dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem 275:19735–19741

    Article  PubMed  CAS  Google Scholar 

  38. Chivers PT, Sauer RT (2002) NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem Biol 9:1141–1148

    Article  PubMed  CAS  Google Scholar 

  39. Chivers PT, Tahirov TH (2005) Structure of Pyrococcus horikoshi NikR: nickel sensing and implications for the regulation of DNA recognition. J Mol Biol 348:597–607

    Article  PubMed  CAS  Google Scholar 

  40. Clugston SL, Barnard JFJ, Kinach R, Miedema D, Ruman R, Daub E, Honek JF (1998) Overproduction and characterization of a dimeric non-zinc glyoxylase I from Escherichia coli: evidence for optimal activation by nickel ions. Biochemistry 37:8754–8763

    Article  PubMed  CAS  Google Scholar 

  41. Clugston SL, Yajima R, Honek JF (2004) Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies. Biochem J 377:309–316

    Article  PubMed  CAS  Google Scholar 

  42. Colpas GJ, Hausinger RP (2000) In vivo and in vitro kinetics of metal transfer by the Klebsiella aerogenes urease nickel metallochaperone, UreE. J Biol Chem 275:10731–10737

    Article  PubMed  CAS  Google Scholar 

  43. Dai Y, Wensink PC, Abeles RH (1999) One protein, two enzymes. J Biol Chem 274:1193–1195

    Article  PubMed  CAS  Google Scholar 

  44. Dardel F, Ragusa S, Lazennec C, Blanquet S, Meinnel T (1998) Solution structure of nickel-peptide deformylase. J Mol Biol 280:501–513

    Article  PubMed  CAS  Google Scholar 

  45. Darnault C, Volbeda A, Kim EJ, Legrand P, Vernède X, Lindahl PA, Fontecilla-Camps JC (2003) NiZn[Fe4S4] and NiNi[Fe4S4] clusters in closed and open αsubunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10:271–279

    Article  PubMed  CAS  Google Scholar 

  46. Davidson G, Clugston SL, Honek JF, Maroney MJ (2000) XAS investigation of the nickel active site structure in Escherichia coli glyoxalase I. Inorg Chem 39:2962–2963

    Article  PubMed  CAS  Google Scholar 

  47. de Pina K, Desjardin V, Mandrand-Berthelot M-A, Giordano G, Wu L-F (1999) Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol 181:670–674

    PubMed  Google Scholar 

  48. de Pina K, Navarro C, McWalter L, Boxer DH, Price NC, Kelly SM, Mandrand-Berthelot M-A, Wu L-F (1995) Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12. Eur J Biochem 227:857–865

    Article  PubMed  Google Scholar 

  49. Delany I, Ieva R, Soragni A, Hilleringmann M, Rappuoli R, Scarlato V (2005) In vitro analysis of protein-operator interactions of the NikR and Fur metal-responsive regulators of coregulated genes in Helicobacter pylori. J Bacteriol 187:7703–7715

    Article  PubMed  CAS  Google Scholar 

  50. DeVeaux LC, Clevenson DS, Bradbeer C, Kadner RJ (1986) Identification of the BtuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli. J Bacteriol 167:920–927

    CAS  Google Scholar 

  51. Dian C, Schauer K, Kapp U, McSweeney SM, Labigne A, Terradot L (2006) Structural basis of the nickel response in Helicobacter pylori: Crystal structures of HpNikR in apo and nickel-bound states. J Mol Biol 361:715–730

    Article  PubMed  CAS  Google Scholar 

  52. Dias AV, Zamble DB (2005) Protease digestion analysis of E. coli NikR: Evidence for conformational stabilization with Ni(II). J Biol Inorg Chem 10:605–612

    Article  PubMed  CAS  Google Scholar 

  53. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293:1281–1285

    Article  PubMed  CAS  Google Scholar 

  54. Dosanjh NS, Michel SLJ (2006) Microbial nickel metalloregulation: NikRs for nickel ions. Curr Opin Chem Biol 10:123–130

    Article  PubMed  CAS  Google Scholar 

  55. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298:567–572

    Article  PubMed  CAS  Google Scholar 

  56. Drennan CL, Doukov TI, Ragsdale SW (2004) The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. J Biol Inorg Chem 9:511–515

    Article  PubMed  CAS  Google Scholar 

  57. Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW (2001) Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc Natl Acad Sci USA 98:11973–11978

    Article  PubMed  CAS  Google Scholar 

  58. D'souza VM, Holz RC (1999) The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry 38:11079–11085

    Article  PubMed  CAS  Google Scholar 

  59. Eberz G, Eitinger T, Friedrich B (1989) Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus. J Bacteriol 171:1340–1345

    PubMed  CAS  Google Scholar 

  60. Eitinger T (2004) In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase. J Bacteriol 186:7812–7825

    Article  CAS  Google Scholar 

  61. Eitinger T, Degen O, Böhnke U, Müller M (2000) Nic1p, a relative of bacterial transition metal permeases in Schizosaccharomyces pombe, provides nickel ion for urease biosynthesis. J Biol Chem 275:18029–18033

    Article  PubMed  CAS  Google Scholar 

  62. Eitinger T, Friedrich B (1991) Cloning, nucleotide sequence, and heterologous expression of the high-affinity nickel transport gene from Alcaligenes eutrophus. J Biol Chem 266:3222–3227

    PubMed  CAS  Google Scholar 

  63. Eitinger T, Mandrand-Berthelot M-A (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9

    Article  PubMed  CAS  Google Scholar 

  64. Eitinger T, Suhr J, Moore L, Smith JAC (2005) Secondary transporters for nickel and cobalt ions: theme and variations. BioMetals 18:399–405

    Article  PubMed  CAS  Google Scholar 

  65. Epting KL, Vieille C, Zeikus JG, Kelly RM (2005) Influence of divalent cations on the structural stability and thermal inactivation kinetics of class II xylose isomerases. FEBS J 272:1454–1464

    Article  PubMed  CAS  Google Scholar 

  66. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462

    Article  PubMed  CAS  Google Scholar 

  67. Ernst FD, Kuipers EJ, Heijens A, Sarwari R, Stoof J, Penn CW, Kusters JG, van Vliet AH (2005) The nickel-responsive regulator NikR controls activation and repression of gene transcription in Helicobacter pylori. Infect Immun 73:7252–7258

    Article  PubMed  CAS  Google Scholar 

  68. Fauquant C, Diederix RE, Rodrigue A, Dian C, Kapp U, Terradot L, Mandrand-Berthelot MA, Michaud-Soret I (2006) pH dependent Ni(II) binding and aggregation of Escherichia coli and Helicobacter pylori NikR. Biochimie 88:1693–1705

    Article  PubMed  CAS  Google Scholar 

  69. Fritsche E, Paschos A, Beisel H-G, Böck A, Huber R (1999) Crystal structure of the hydrogenase maturating endopeptidase HydD from Escherichia coli. J Mol Biol 288:989–998

    Article  PubMed  CAS  Google Scholar 

  70. Fu C, Javedan S, Moshiri F, Maier RJ (1994) Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme. Proc Natl Acad Sci USA 91:5099–5103

    Article  PubMed  CAS  Google Scholar 

  71. Fu C, Olson JW, Maier RJ (1995) HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Proc Natl Acad Sci USA 92:2333–2337

    Article  PubMed  CAS  Google Scholar 

  72. Gasper R, Scrima A, Wittinghofer A (2006) Structural insights into HypB, a GTP-binding protein that regulates metal binding. J Biol Chem 281:27492–27502

    Article  PubMed  CAS  Google Scholar 

  73. Ge R, Watt RM, Sun X, Tanner JA, He Q-Y, Huang J-D, Sun H (2006) Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J 393:285–293

    Article  PubMed  CAS  Google Scholar 

  74. Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789

    PubMed  CAS  Google Scholar 

  75. Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J Mol Biol 309:315–330

    Article  PubMed  CAS  Google Scholar 

  76. Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U (2000) Comparison of three methyl-coenzyme M reductases from phylogenetically distant microorganisms: unusual amino acid modification, conservation, and adaptation. J Mol Biol 303:329–344

    Article  PubMed  CAS  Google Scholar 

  77. Grass G, Franke S, Taudte N, Nies DH, Kucharski LM, Maguire ME, Rensing C (2005) The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611

    Article  PubMed  CAS  Google Scholar 

  78. Hall PR, Zheng R, Anthony L, Pusztai-Carey M, Carey PR, Yee VC (2004) Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit. EMBO J 23:3621–3631

    Article  PubMed  CAS  Google Scholar 

  79. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    Article  PubMed  CAS  Google Scholar 

  80. Haney CJ, Grass G, Frake S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Indust Microbiol Biotechnol 32:215–226

    Article  CAS  Google Scholar 

  81. Hausinger RP (1987) Nickel utilization by microorganisms. Microbiol Rev 51:22–42

    PubMed  CAS  Google Scholar 

  82. Hausinger RP, Colpas GJ, Soriano A (2001) Urease: a paradigm for protein-assisted metallocenter assembly. ASM News 67:78–84

    Google Scholar 

  83. Hausinger RP, Karplus PA (2001) Urease. In: Wieghardt K, Huber R, Poulos TL, Messerschmidt A (eds) Handbook of Metalloproteins. Wiley, Chichester, West Sussex, UK, p 867–879

    Google Scholar 

  84. He MM, Clugston SL, Honek JF, Matthews BW (2000) Determination of the structure of Escherichia coli glyoxylase I suggests a structural basis for differential metal activation. Biochemistry 39:8719–8727

    Article  PubMed  CAS  Google Scholar 

  85. Heddle J, Scott DJ, Unzai S, Park S-Y, Tame JRH (2003) Crystal structures of the liganded and unliganded nickel-binding protein NikA from Escherichia coli. J Biol Chem 278:50322–50329

    Article  PubMed  CAS  Google Scholar 

  86. Hemker J, Kleinschmitdt L, Witzel H (1987) Glucoseisomerase, obviously the first native cobalt enzyme. Reueil des Traveaux Chemiques des Pays-Bas 106:350

    Google Scholar 

  87. Higgins CF (2001) ABC transporters: physiology, structure and mechanism - an overview. Res Microbiol 152:205–210

    Article  PubMed  CAS  Google Scholar 

  88. Hmiel SP, Snavely MD, Miller CG, Maguire ME (1986) Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168:1444–1450

    PubMed  CAS  Google Scholar 

  89. Holm-Hansen O, Gerloff G, Skoog F (1954) Cobalt as an essential element for blue-green algae. Physiol Plant 7:665–675

    Article  CAS  Google Scholar 

  90. Hottenrott S, Schumann T, Pluckthun A, Fischer G, Rahfeld JU (1997) The Escherichia coli SlyD is a metal ion-regulated peptidyl-prolyl cis/trans-isomerase. J Biol Chem 272:15697–15701

    Article  PubMed  CAS  Google Scholar 

  91. Hube M, Blokesch M, Böck A (2002) Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184:3879–3885

    Article  PubMed  CAS  Google Scholar 

  92. Itoh N, Kawanami T, Liu J-Q, Dairi T, Miyakoshi M, Nitta C, Kimoto Y (2001) Cloning and biochemical characterization of Co2+-activated bromoperoxidase-esterase (perhydrolase) from Pseudomonas putida IF-3 strain. Biochim Biophys Acta 1545:53–66

    PubMed  CAS  Google Scholar 

  93. Itoh N, Morinaga N, Kouzai T (1994) Purification and characterization of a novel metal-containing nonheme bromoperoxidase from Pseudomonas putida. Biochim Biophys Acta 1207:208–216

    PubMed  CAS  Google Scholar 

  94. Iwig JS, Row JL, Chivers PT (2006) Nickel homeostasis in Escherichia coli – the rcnRrcnA efflux pathway and its linkage to NikR function. Molec Microbiol 62:252–262

    Article  CAS  Google Scholar 

  95. Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) The crystal structure of urease from Klebsiella aerogenes. Science 268:998–1004

    Article  PubMed  CAS  Google Scholar 

  96. Jacobi A, Rossman R, Böck A (1992) The hyp operon gene products are required for maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158:444–451

    Article  PubMed  CAS  Google Scholar 

  97. Jeon WB, Cheng J, Ludden PW (2001) Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum. J Biol Chem 276:38602–38609

    Article  PubMed  CAS  Google Scholar 

  98. Kadner RJ (1978) Repression of synthesis of the vitamin B12 receptor in Escherichia coli. J Bacteriol 136:1050–1057

    PubMed  CAS  Google Scholar 

  99. Kansau I, Guillain F, Thiberge J-M, Labigne A (1996) Nickel binding and immunological properties of the C-terminal domain of the Helicobacter pylori GroES homologue (HspA). Molec Microbiol 22:1013–1023

    Article  CAS  Google Scholar 

  100. Karpowich NK, Huang HH, Smith PC, Hunt JF (2003) Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J Biol Chem 278:8429–8434

    Article  PubMed  CAS  Google Scholar 

  101. Katayama Y, Hoshimoto K, Nakayama H, Mino H, Nojiri M, Ono TA, Nyunoya H, Yohda M, Takio K, Odaka M (2006) Thiocyanate hydrolase is a cobalt-containing metalloenzyme with a cysteine-sulfinic acid ligand. J Am Chem Soc 128:728–729

    Article  PubMed  CAS  Google Scholar 

  102. Kawanami T, Miyakoshi M, Dairi T, Itoh N (2002) Reaction mechanism of the Co2+-activated multifunctional bromoperoxidase-esterase from Pseudomonas putida IF-3. Arch Biochem Biophys 398:94–100

    Article  PubMed  CAS  Google Scholar 

  103. Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The Nramp proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. J Bacteriol 36:1085–1100

    CAS  Google Scholar 

  104. Kerby RL, Ludden PW, Roberts GP (1997) In vivo nickel insertion into carbon monoxide dehydrogenase of Rhodosprillum rubrum: molecular and physiological characterization of cooCTJ. J Bacteriol 179:2259–2266

    PubMed  CAS  Google Scholar 

  105. Kim JK, Mulrooney SB, Hausinger RP (2005) Biosynthesis of active Bacillus subtilis urease in the absence of known urease accessory proteins. J Bacteriol 187:7150–7154

    Article  PubMed  CAS  Google Scholar 

  106. Kim J-S, Kang S-O, Lee J-K (2003) The protein complex composed of nickel-binding SrnQ and DNA binding motif-bearing SrnR of Streptomyces griseus represses sodF trnascription in the presence of nickel ions. J Biol Chem 278:18455–18463

    Article  PubMed  CAS  Google Scholar 

  107. Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol 16:733–736

    Article  PubMed  CAS  Google Scholar 

  108. Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1–9

    Article  PubMed  CAS  Google Scholar 

  109. Koch D, Nies DH, Grass G (2007) The RcnA (YohLM) system of Escherichia coli: a connection between nickel, cobalt and iron homeostasis. BioMetals (in press)

    Google Scholar 

  110. Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt transport. Proc Natl Acad Sci USA 94:36–41

    Article  PubMed  CAS  Google Scholar 

  111. Kovács KL, Kovács AT, Maróti G, Mészáros LS, Balogh J, Latinovics D, Fülöp A, Dávid R, Dorogházi E, Rákhely G (2005) The hydrogenases of Thiocapsa roseopersicina. Biochem Soc Trans 33:61–63

    Article  PubMed  Google Scholar 

  112. Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Böcher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881

    Article  PubMed  CAS  Google Scholar 

  113. Kuchar J, Hausinger RP (2004) Biosynthesis of metal sites. Chem Rev 104:509–526

    Article  PubMed  CAS  Google Scholar 

  114. Lawrence JG, Roth JR (1995) The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli. J Bacteriol 177:6371–6380

    PubMed  CAS  Google Scholar 

  115. Leach MR, Sandal S, Sun H, Zamble DB (2005) Metal binding activity of the Escherichia coli hydrogenase maturation factor HypB. Biochemistry 44:12229–12238

    Article  PubMed  CAS  Google Scholar 

  116. Leclere V, Boiron P, Blondeau R (1999) Diversity of superoxide-dismutases among clinical and soil isolates of Streptomyces species. Curr Microbiol 39:365–368

    Article  PubMed  CAS  Google Scholar 

  117. Lee JH, Patel P, Sankar P, Shanmugam KT (1985) Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism. J Bacteriol 162:344–352

    PubMed  CAS  Google Scholar 

  118. Lee MH, Mulrooney SB, Renner MJ, Markowicz Y, Hausinger RP (1992) Klebsiella aerogenes urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J Bacteriol 174:4324–4330

    PubMed  CAS  Google Scholar 

  119. Lee MH, Pankratz HS, Wang S, Scott RA, Finnegan MG, Johnson MK, Ippolito JA, Christianson DW, Hausinger RP (1993) Purification and characterization of Klebsiella aerogenes UreE protein: a nickel-binding protein that functions in urease metallocenter assembly. Prot Sci 2:1042–1052

    CAS  Google Scholar 

  120. Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry 41:2097–2105

    Article  PubMed  CAS  Google Scholar 

  121. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    Article  PubMed  CAS  Google Scholar 

  122. Loke H-K, Bennett GN, Lindahl PA (2000) Active acetyl-CoA synthase from Clostridium thermoaceticum obtained by cloning and heterologous expression of acsAB in Escherichia coli. Proc Natl Acad Sci USA 97:12530–12535

    Article  PubMed  CAS  Google Scholar 

  123. Loke H-K, Lindahl PA (2003) Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum. J Inorg Biochem 93:33–40

    Article  PubMed  CAS  Google Scholar 

  124. Lundrigan MD, Kadner RJ (1989) Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB gene regulation. J Bacteriol 171:154–161

    PubMed  CAS  Google Scholar 

  125. Lundrigan MD, Köster W, Kadner RJ (1991) Transcribed sequences of the Escherichia coli butB gene control its expression and regulation by vitamin B12. Proc Natl Acad Sci USA 88:1479–1483

    Article  PubMed  CAS  Google Scholar 

  126. Lutz A, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Molec Microbiol 5:123–135

    Article  CAS  Google Scholar 

  127. Maeda M, Hidaka M, Nakamura A, Masaki H, Uozumi T (1994) Cloning, sequencing, and expression of thermophilic Bacillus strain TB-90 urease gene complex in Escherichia coli. J Bacteriol 176:432–442

    PubMed  CAS  Google Scholar 

  128. Magalan A, Böck A (2000) Dissection of the maturation reactions of the [NiFe] hydrogenase 3 from Escherichia coli taking place after nickel incorporation. FEBS Lett 473:254–258

    Article  Google Scholar 

  129. Maher MJ, Ghosh M, Grunden AM, Menon AO, Adams MW, Freeman HC, Guss JM (2004) Structure of the prolidase from Pyrococcus furiosus. Biochemistry 43:2771–2783

    Article  PubMed  CAS  Google Scholar 

  130. Maier T, Binder U, Böck A (1996) Analysis of the hydA locus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism. Arch Microbiol 165:333–341

    Article  PubMed  CAS  Google Scholar 

  131. Maier T, Jacobi A, Sauter M, Böck A (1993) The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J Bacteriol 175:630–635

    PubMed  CAS  Google Scholar 

  132. Maier T, Lottspeich F, Böck A (1995) GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J Biochem 230:133–138

    Article  PubMed  CAS  Google Scholar 

  133. Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MFM (2000) Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Molec Microbiol 35:1065–1078

    Article  CAS  Google Scholar 

  134. Maynard EL, Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 121:9221–9222

    Article  CAS  Google Scholar 

  135. Meinnel T, Blanquet S (1995) Enzymatic properties of Escherichia coli peptide deformylase. J Bacteriol 177:7387–7390

    Google Scholar 

  136. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288:1169–1174

    Article  PubMed  CAS  Google Scholar 

  137. Mobley HLT, Garner RM, Bauerfeind P (1995) Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Molec Microbiol 16:97–109

    Article  CAS  Google Scholar 

  138. Moncrief MBC, Hausinger RP (1996) Purification and activation properties of UreD-UreF-urease apoprotein complexes. J Bacteriol 178:5417–5421

    PubMed  CAS  Google Scholar 

  139. Moncrief MBC, Maguire ME (1999) Magnesium transport in prokaryotes. J Biol Inorg Chem 4:523–527

    Article  PubMed  CAS  Google Scholar 

  140. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    Article  PubMed  CAS  Google Scholar 

  141. Mulrooney SB, Ward SK, Hausinger RP (2005) Purification and properties of the Klebsiella aerogenes UreE metal-binding domain, a functional metallochaperone of urease. J Bacteriol 187:3581–3585

    Article  PubMed  CAS  Google Scholar 

  142. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049

    Article  PubMed  CAS  Google Scholar 

  143. Nakano M, Iida T, Honda T (2004) Urease activity of enterohaemorrhagic Escherichia coli depends on a specific one-base substitution in ureD. Microbiol 150:3483–3489

    Article  CAS  Google Scholar 

  144. Nakano M, Iida T, Ohnishi M, Kurokawa K, Takahashi A, Tsukamoto T, Yasunaga T, Hayashi T, Honda T (2001) Association of the urease gene with enterohemorrhagic Escherichia coli strains irrespective of their serogroups. J Clin Microbiol 39:4541–4543

    Article  PubMed  CAS  Google Scholar 

  145. Navarro C, Wu L-F, Mandrand-Berthelot M-A (1993) The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Molec Microbiol 9:1181–1191

    Article  CAS  Google Scholar 

  146. Neu HC (1967) The 5′-nucleotidase of Escherichia coli. J Biol Chem 242:3896–3904

    PubMed  CAS  Google Scholar 

  147. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  148. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  149. Northrop DB, Wood HG (1969) Transcarboxylase. V. The presence of bound zinc and cobalt. J Biol Chem 244:5801–5807

    PubMed  CAS  Google Scholar 

  150. Nou X, Kadner RJ (1998) Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli. J Bacteriol 180:6719–6728

    PubMed  CAS  Google Scholar 

  151. Nou X, Kadner RJ (2000) Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 97:7190–7195

    Article  PubMed  CAS  Google Scholar 

  152. Olson JW, Fu C, Maier RJ (1997) The HypB protein from Bradyrhizobium japonicum can store nickel and is required for the nickel-dependent transcriptional regulation of hydrogenase. Molec Microbiol 24:119–128

    Article  CAS  Google Scholar 

  153. Olson JW, Maier RJ (2002) Molecular hydrogen as an energy source for Helicobacter pylori. Science 298:1788–1790

    Article  PubMed  CAS  Google Scholar 

  154. Olson JW, Mehta NS, Maier RJ (2001) Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Molec Microbiol 39:176

    Article  CAS  Google Scholar 

  155. Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  PubMed  CAS  Google Scholar 

  156. Park I-S, Carr MB, Hausinger RP (1994) In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly. Proc Natl Acad Sci USA 91:3233–3237

    Article  PubMed  CAS  Google Scholar 

  157. Park I-S, Hausinger RP (1995a) Evidence for the presence of urease apoprotein complexes containing UreD, UreF, and UreG in cells that are competent for in vivo enzyme activation. J Bacteriol 177:1947–1951

    PubMed  CAS  Google Scholar 

  158. Park I-S, Hausinger RP (1995b) Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science 267:1156–1158

    Article  PubMed  CAS  Google Scholar 

  159. Park I-S, Hausinger RP (1996) Metal ion interactions with urease and UreD-urease apoproteins. Biochemistry 35:5345–5352

    Article  PubMed  CAS  Google Scholar 

  160. Pochapsky TC, Pochapsky SS, Ju T, Mo H, Al-Mjeni F, Maroney MJ (2002) Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae. Nat Struct Biol 9:966–972

    Article  PubMed  CAS  Google Scholar 

  161. Proudfoot M, Kuznetsova K, Brown G, Rao NN, Kitagawa M, Mori H, Savchenko A, Yakunin AF (2004) General enzymatic screens identify three new nucleotidases in Escherichia coli. J Biol Chem 279:54687–54694

    Article  PubMed  CAS  Google Scholar 

  162. Rajagopalan PTR, Yu XC, Pei D (1997) Peptide deformylase: a new type of mononuclear iron protein. J Am Chem Soc 119:12418–12419

    Article  CAS  Google Scholar 

  163. Reynolds PR, Mottur GP, Bradbeer C (1980) Transport of vitamin B12 in Escherichia coli. Some observations on the roles of the gene products of BtuC and TonB. J Biol Chem 255:4313–4319

    PubMed  CAS  Google Scholar 

  164. Robson R (2001) The assembly line. In: Robson R (ed) Hydrogen as a fuel: Learning from nature. Taylor and Francis, New York, pp 57–72

    Google Scholar 

  165. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327

    Article  PubMed  CAS  Google Scholar 

  166. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159

    Article  PubMed  CAS  Google Scholar 

  167. Rodrigue A, Batia N, Müller M, Fayet O, Böhm R, Mandrand-Berthelot M-A, Wu L-F (1996) Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli. J Bacteriol 178:4453–4460

    PubMed  CAS  Google Scholar 

  168. Rodrigue A, Effantin G, Mandrand-Bethelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916

    Article  PubMed  CAS  Google Scholar 

  169. Roof WD, Horne SM, Young KD, Young R (1994) slyD, a host gene required for PhiX174 lysis, is related to the FK506-binding protein family of peptidyl-prolyl cis-trans-isomerases. J Biol Chem 269:2902–2910

    PubMed  CAS  Google Scholar 

  170. Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181

    Article  PubMed  CAS  Google Scholar 

  171. Rowe JL, Starnes GL, Chivers PT (2005) Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli. J Bacteriol 187:6317–6323

    Article  PubMed  CAS  Google Scholar 

  172. Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107

    Article  PubMed  Google Scholar 

  173. Schreiter ER, Sintchak MD, Guo Y, Chivers PT, Sauer RT, Drennan CL (2003) Crystal structure of the nickel-reponsive transcriptional factor NikR. Nat Struct Biol 10:794–799

    Article  PubMed  CAS  Google Scholar 

  174. Schreiter ER, Wang SC, Zamble DB, Drennan CL (2006) NikR-operator complex structure and the mechanism of repressor activation by metal ions. Proc Natl Acad Sci USA 103:13676–13681

    Article  PubMed  CAS  Google Scholar 

  175. Self WT, Hasona A, Shanmugam KT (2004) Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 186:580–587

    Article  PubMed  CAS  Google Scholar 

  176. Seravalli J, Ragsdale SW (2000) Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39:1274–1277

    Article  PubMed  CAS  Google Scholar 

  177. Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and anaerobic oxidation of methane in methanotrophic archaea. Curr Opin Microbiol 8:643–648

    PubMed  CAS  Google Scholar 

  178. Skibinski DAG, Golby P, Chang Y-S, Sargent F, Hoffman R, Harper R, Guest JR, Attwood MM, Berks BC, Andrews SC (2002) Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184:6642–6653

    Article  PubMed  CAS  Google Scholar 

  179. Song HK, Mulrooney SB, Huber R, Hausinger RP (2001) Crystal structure of Klebsiella aerogenes UreE, a nickel-binding metallochaperone for urease activation. J Biol Chem 276:49359–49364

    Article  PubMed  CAS  Google Scholar 

  180. Soriano A, Colpas GJ, Hausinger RP (2000) UreE stimulation of GTP-dependent urease activation in the UreD-UreF-UreG-urease apoprotein complex. Biochemistry 39:12435–12440

    Article  PubMed  CAS  Google Scholar 

  181. Soriano A, Hausinger RP (1999) GTP-dependent activation of urease apoprotein in complex with the UreD, UreF, and UreG accessory proteins. Proc Natl Acad Sci USA 96:11140–11144

    Article  PubMed  CAS  Google Scholar 

  182. Sukdeo N, Clugston SL, Daub E, Honek JF (2004) Distinct classes of glyoxylase I: Metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes. Biochem J 384:111–117

    Article  PubMed  CAS  Google Scholar 

  183. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Römer P, Huber R, Meyer O (2004) A functional Ni-Ni-[4Fe-4S]y cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci USA 101:446–451

    Article  PubMed  CAS  Google Scholar 

  184. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884

    Article  PubMed  CAS  Google Scholar 

  185. Tam R, Saier MHJ (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346

    PubMed  CAS  Google Scholar 

  186. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiol 144:2377–2406

    Article  CAS  Google Scholar 

  187. Thauer RK, Bonacker LG (1994) Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp 180:210–227

    PubMed  CAS  Google Scholar 

  188. Theodoratou E, Böck A (2005) [NiFe]-hydrogenase maturation endopeptidase: structure and function. Biochem Soc Trans 33:108–111

    Article  PubMed  CAS  Google Scholar 

  189. Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defense against glycation. Biochem Soc Trans 31:1343–1348

    Article  PubMed  CAS  Google Scholar 

  190. Tsumura N, Hagi M, Sato T (1967) Enzymatic conversion of D-glucose to D-fructose. III. Propagation of Streptomyces phaeochromogenes in the presence of cobaltous ion. Agric Biol Chem 31:902–907

    CAS  Google Scholar 

  191. Uffen RL (1976) Anaerobic growth of Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci USA 73:3298–3302

    Article  PubMed  CAS  Google Scholar 

  192. van Vliet AHM, Ernst FD, Kusters JG (2004) NikR-mediated regulation of Helicobacter pylori acid adaptation. Trends Microbiol 12:489–494

    Article  PubMed  CAS  Google Scholar 

  193. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  194. Vignais PM, Colbeau A (2004) Molecular biology of microbial hydrogenases. Curr Issues Molec Biol 6:159–188

    CAS  Google Scholar 

  195. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20:44–50

    Article  PubMed  CAS  Google Scholar 

  196. Volbeda A, Fontecilla-Camps JC (2003) The active site and catalytic mechanism of NiFe hydrogenases. Dalton Trans: 4030–4038

    Google Scholar 

  197. Wang SC, Dias AV, Bloom SL, Zamble DB (2004) The selectivity of metal binding and the metal-induced stability of Escherichia coli NikR. Biochemistry 43:10018–10028

    Article  PubMed  CAS  Google Scholar 

  198. Watt RK, Ludden PW (1998) The identification, purification and characterization of CooJ. A nickel-binding protein that is co-regulated with the Ni-containing CO dehydrogenase from Rhodospirillum rubrum. J Biol Chem 273:10019–10025

    Article  PubMed  CAS  Google Scholar 

  199. Waugh R, Boxer DH (1986) Pleiotropic hydrogenase mutants of Escherichia coli K-12: growth in the presence of nickel can restore hydrogenase activity. Biochimie 68:157–166

    PubMed  CAS  Google Scholar 

  200. Winter G, Buhrke T, Lenz O, Jones AK, Forqber M, Friedrich B (2005) A model system for [NiFe] hydrogenase maturation studies: Purification of an active site-containing hydrogenase large subunit with small subunit. FEBS Lett 579:4292–4296

    Article  PubMed  CAS  Google Scholar 

  201. Wu L-F, Mandrand-Berthelot M-A (1986) Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity. Biochimie 68:167–179

    Article  PubMed  CAS  Google Scholar 

  202. Wu L-F, Mandrand-Berthelot M-A, Waugh R, Edmonds CJ, Holt SE, Boxer DH (1989) Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli. Molec Microbiol 3:1709–1718

    Article  CAS  Google Scholar 

  203. Wu L-F, Navarro C, de Pina K, Quénard M, Mandrand-Berthelot M-A (1994) Antagonistic effect of nickel on the fermentative growth of Escherichia coli K-12 and comparison of nickel and cobalt toxicity on the aerobic and anerobic growth. Environ Health Persp 102:297–300

    Article  CAS  Google Scholar 

  204. Wu L-F, Navarro C, Mandrand-Berthelot M-A (1991) The hydC region contains a multicistronic operon (nik) involved in nickel transport in Escherichia coli. Gene 107:37–42

    Article  PubMed  CAS  Google Scholar 

  205. Wuerges J, Lee J-W, Yim Y-I, Kang SO, Carugo KD (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101:8569–8574

    Article  PubMed  CAS  Google Scholar 

  206. Wülfing C, Lombardero J, Plückthun A (1994) An Escherichia coli protein consisting of a domain homologous to FK506-binding proteins (FKBP) and a new metal binding motif. J Biol Chem 269:2895–2901

    PubMed  Google Scholar 

  207. Youn H-D, Kim E-J, Roe J-H, Hah YC, Kang S-O (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896

    PubMed  CAS  Google Scholar 

  208. Zhang JW, Butland G, Greenblatt JF, Emili A, Zamble DB (2005) A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem 280:4360–4366

    Article  PubMed  CAS  Google Scholar 

  209. Zheng Y, Roberts RJ, Kasif S, Guan C (2005) Characterization of two new aminopeptidases in Escherichia coli. J Bacteriol 187:3671–3677

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Hausinger .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hausinger, R.P., Zamble, D.B. (2007). Microbial Physiology of Nickel and Cobalt. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_082

Download citation

Publish with us

Policies and ethics