Skip to main content

How Bacteria Handle Copper

  • Chapter
  • First Online:
Molecular Microbiology of Heavy Metals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 6))

Abstract

Copper in biological systems presents a formidable problem: it is essential for life, yet highly reactive and a potential source of cell damage. Tight control of copper is thus a cellular necessity. To meet this challenge, cells have evolved pumps for transmembranous transport, chaperones for intracellular routing, oxidases and reductases to change the oxidation state of copper, and regulators to control gene expression in response to copper. These systems are complemented by specific mechanisms for the insertion of copper into enzymes. Copper homeostasis has evolved early in evolution and some components have been conserved from bacteria to humans. This has allowed researchers to apply knowledge across phyla and even involving human copper homeostatic diseases to elucidate the fundamental mechanism of cellular copper homeostasis. After an introduction to the properties of copper and its role in biological systems, some of the best studied bacterial systems for copper homeostasis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O'Halloran TV (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12:255–271

    Article  PubMed  CAS  Google Scholar 

  2. Ascone I, Longo A, Dexpert H, Ciriolo MR, Rotilio G, Desideri A (1993) An X-ray absorption study of the reconstitution process of bovine Cu, Zn superoxide dismutase by Cu(I)-glutathione complex. FEBS Lett 322:165–167

    Article  PubMed  CAS  Google Scholar 

  3. Bell PF, Chen Y, Potts WE, Chaney RL, Angle JS (1991) A reevaluation of the Fe(III), Ca(II), Zn(II), and proton formation constants of 4,7-diphenyl-1,10-phenanthrolinedisulfonate. Biol Trace Elem Res 30:125–144

    Article  PubMed  CAS  Google Scholar 

  4. Bissig K-D, Voegelin TC, Solioz M (2001a) Tetrathiomolybdate inhibition of the Enterococcus hirae CopB copper ATPase. FEBS Lett 507:367–370

    Article  PubMed  CAS  Google Scholar 

  5. Bissig K-D, Wunderli-Ye H, Duda P, Solioz M (2001b) Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochem J 357:217–223

    Article  PubMed  CAS  Google Scholar 

  6. Brewer GJ, Dick RD, Johnson V, Wang Y, Yuzbasiyan-Gurkan V, Kluin K, Fink JK, Aisen A (1994) Treatment of Wilson's disease with ammonium tetrathiomolybdate: I. Initial therapy in 17 neurologically affected patients. Arch Neurol 51:545–554

    PubMed  CAS  Google Scholar 

  7. Brewer GJ, Johnson V, Dick RD, Kluin KJ, Fink JK, Brunberg JA (1996) Treatment of Wilson disease with ammonium tetrathiomolybdate. II. Initial therapy in 33 neurologically affected patients and follow-up with zinc therapy. Arch Neurol 53:1017–1025

    PubMed  CAS  Google Scholar 

  8. Brown NL, Barrett SR, Camakaris J, Lee BTO, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166

    Article  PubMed  CAS  Google Scholar 

  9. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  PubMed  CAS  Google Scholar 

  10. Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88:8915–8919

    Article  PubMed  CAS  Google Scholar 

  11. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  PubMed  CAS  Google Scholar 

  12. Choi DW, Zea CJ, Do YS, Semrau JD, Antholine WE, Hargrove MS, Pohl NL, Boyd ES, Geesey GG, Hartsel SC, Shafe PH, McEllistrem MT, Kisting CJ, Campbell D, Rao V, de la Mora AM, DiSpirito AA (2006) Spectral, kinetic, and thermodynamic properties of Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b. Biochemistry 45:1442–1453

    Article  PubMed  CAS  Google Scholar 

  13. Ciriolo MR, Desideri A, Paci M, Rotilio G (1990) Reconstitution of Cu, Zn-superoxide dismutase by the Cu(I). glutathione complex. J Biol Chem 265:11030–11034

    PubMed  CAS  Google Scholar 

  14. Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30

    Article  PubMed  CAS  Google Scholar 

  15. Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002a) Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829

    Article  PubMed  CAS  Google Scholar 

  16. Cobine PA, Jones CE, Dameron CT (2002b) Role for zinc(II) in the copper(I) regulated protein CopY. J Inorg Biochem 88:192–196

    Article  PubMed  CAS  Google Scholar 

  17. Cooksey DA (1994) Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev 14:381–386

    Article  PubMed  CAS  Google Scholar 

  18. Crichton RR, Pierre J-L (2001) Old iron, young copper: from Mars to Venus. Biometals 14:99–112

    Article  PubMed  CAS  Google Scholar 

  19. Dameron CT, George GN, Arnold P, Santhanagopalan V, Winge DR (1993) Distinct metal binding configurations in ACE1. Biochemistry 32:7294–7301

    Article  PubMed  CAS  Google Scholar 

  20. Egler M, Grosse C, Grass G, Nies DH (2005) Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli. J Bacteriol 187:2297–2307

    Article  PubMed  CAS  Google Scholar 

  21. Fan B, Grass G, Rensing C, Rosen BP (2001) Escherichia coli CopA N-terminal Cys(X)2Cys motifs are not required for copper resistance or transport. Biochem Biophys Res Commun 286:414–418

    Article  PubMed  CAS  Google Scholar 

  22. Ferreira AM, Ciriolo MR, Marcocci L, Rotilio G (1993) Copper(I) transfer into metallothionein mediated by glutathione. Biochem J 292:673–676

    PubMed  CAS  Google Scholar 

  23. Finney LA, O'Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    Article  PubMed  CAS  Google Scholar 

  24. Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    PubMed  CAS  Google Scholar 

  25. Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  CAS  Google Scholar 

  26. Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    PubMed  CAS  Google Scholar 

  27. Freedman JH, Peisach J (1989a) Intracellular copper transport in cultured hepatoma cells. Biochem Biophys Res Commun 164:134–140

    Article  PubMed  CAS  Google Scholar 

  28. Freedman JH, Peisach J (1989b) Resistance of cultured hepatoma cells to copper toxicity. Purification and characterization of the hepatoma metallothionein. Biochim Biophys Acta 992:145–154

    PubMed  CAS  Google Scholar 

  29. Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10:110–116

    Article  PubMed  CAS  Google Scholar 

  30. Giard JC, Rince A, Capiaux H, Auffray Y, Hartke A (2000) Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotrophic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. J Bacteriol 182:4512–4520

    Article  PubMed  CAS  Google Scholar 

  31. Gitlin JD (2003) Wilson disease. Gastroenterology 125:1868–1877

    Article  PubMed  Google Scholar 

  32. Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908

    Article  PubMed  CAS  Google Scholar 

  33. Grass G, Thakali K, Klebba PE, Thieme D, Muller A, Wildner GF, Rensing C (2004) Linkage between catecholate siderophores and the multi-copper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833

    Article  PubMed  CAS  Google Scholar 

  34. Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188

    Article  PubMed  CAS  Google Scholar 

  35. Harrison MD, Jones CE, Solioz M, Dameron CT (2000) Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32

    Article  PubMed  CAS  Google Scholar 

  36. Heyse S, Wuddel I, Apell HJ, Sturmer W (1994) Partial reactions of the Na, K-ATPase: determination of rate constants. J Gen Physiol 104:197–240

    Article  PubMed  CAS  Google Scholar 

  37. Himeno T, Imanaka T, Aiba S (1986) Nucleotide sequence of the penicillinase repressor gene penI of Bacillus licheniformis and regulation of penP and penI by the repressor. J Bacteriol 168:1128–1132

    PubMed  CAS  Google Scholar 

  38. Huang SH, Chen YH, Fu Q, Stins M, Wang Y, Wass C, Kim KS (1999) Identification and characterization of an Escherichia coli invasion gene locus, ibeB, required for penetration of brain microvascular endothelial cells. Infect Immun 67:2103–2109

    PubMed  CAS  Google Scholar 

  39. Huffman DL, Huyett J, Outten FW, Doan PE, Finney LA, Hoffman BM, O'Halloran TV (2002) Spectroscopy of Cu(II)-PcoC and the multi-copper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41:10046–10055

    Article  PubMed  CAS  Google Scholar 

  40. Huffman DL, O'Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701

    Article  PubMed  CAS  Google Scholar 

  41. Kaim W, Rall J (1996) Copper-a “modern” bioelement. Angew Chem Int Ed Engl 35:43–60

    Article  CAS  Google Scholar 

  42. Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science 261:701–708

    Article  PubMed  CAS  Google Scholar 

  43. Kershaw CJ, Brown NL, Constantinidou C, Patel MD, Hobman JL (2005) The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151:1187–1198

    Article  PubMed  CAS  Google Scholar 

  44. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615

    Article  PubMed  CAS  Google Scholar 

  45. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    Article  PubMed  CAS  Google Scholar 

  46. Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G (2004) Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430:803–806

    Article  PubMed  CAS  Google Scholar 

  47. Lee SM, Grass G, Rensing C, Barrett SR, Yates CJ, Stoyanov JV, Brown NL (2002) The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem Biophys Res Commun 295:616–620

    Article  PubMed  CAS  Google Scholar 

  48. Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132

    PubMed  CAS  Google Scholar 

  49. Loftin IR, Franke S, Roberts SA, Weichsel A, Heroux A, Montfort WR, Rensing C, McEvoy MM (2005) A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry 44:10533–10540

    Article  PubMed  CAS  Google Scholar 

  50. Lu ZH, Dameron CT, Solioz M (2003) The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. Biometals 16:137–143

    Article  PubMed  CAS  Google Scholar 

  51. Lu ZH, Solioz M (2001) Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem 276:47822–47827

    PubMed  CAS  Google Scholar 

  52. Magnani D, Solioz M (2005) Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae. Biometals 18:407–412

    Article  PubMed  CAS  Google Scholar 

  53. McLaggan D, Logan TM, Lynn DG, Epstein W (1990) Involvement of gamma-glutamyl peptides in osmoadaptation of Escherichia coli. J Bacteriol 172:3631–3636

    PubMed  CAS  Google Scholar 

  54. McPhail DB, Goodman BA (1984) Tris buffer—a case for caution in its use in copper-containing systems (letter). Biochem J 221:559–560

    PubMed  CAS  Google Scholar 

  55. Mellano MA, Cooksey DA (1988a) Induction of the copper resistance operon from Pseudomonas syringae. J Bacteriol 170:4399–4401

    PubMed  CAS  Google Scholar 

  56. Mellano MA, Cooksey DA (1988b) Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 170:2879–2883

    PubMed  CAS  Google Scholar 

  57. Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69

    Article  PubMed  CAS  Google Scholar 

  58. Mills SD, Lim C-K, Cooksey DA (1994) Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae. Mol Gen Genet 244:341–351

    Article  PubMed  CAS  Google Scholar 

  59. Multhaup G, Strausak D, Bissig K-D, Solioz M (2001) Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288:172–177

    Article  PubMed  CAS  Google Scholar 

  60. Munson GP, Lam DL, Outten FW, O'Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871

    Article  PubMed  CAS  Google Scholar 

  61. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  62. O'Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  PubMed  Google Scholar 

  63. Odermatt A, Krapf R, Solioz M (1994) Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem Biophys Res Commun 202:44–48

    Article  PubMed  CAS  Google Scholar 

  64. Odermatt A, Suter H, Krapf R, Solioz M (1992) An ATPase operon involved in copper resistance by Enterococcus hirae. Ann NY Acad Sci 671:484–486

    Article  PubMed  CAS  Google Scholar 

  65. Odermatt A, Suter H, Krapf R, Solioz M (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268:12775–12779

    PubMed  CAS  Google Scholar 

  66. Outten FW, Huffman DL, Hale JA, O'Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  PubMed  CAS  Google Scholar 

  67. Outten FW, Outten CE, Hale J, O'Halloran TV (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275:31024–31029

    Article  PubMed  CAS  Google Scholar 

  68. Petersen C, Moller LB (2000) Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261:289–298

    Article  PubMed  CAS  Google Scholar 

  69. Pickart CM, Jencks WP (1984) Energetics of the calcium-transporting ATPase. J Biol Chem 259:1629–1643

    PubMed  CAS  Google Scholar 

  70. Portmann R, Magnani D, Stoyanov JV, Schmechel A, Multhaup G, Solioz M (2004) Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae. J Biol Inorg Chem 9:396–402

    Article  PubMed  CAS  Google Scholar 

  71. Portmann R, Poulsen KR, Wimmer R, Solioz M (2006) CopY-like copper inducible repressors are putative “winged helix” proteins. Biometals 19:61–70

    Article  PubMed  CAS  Google Scholar 

  72. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  PubMed  CAS  Google Scholar 

  73. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  PubMed  CAS  Google Scholar 

  74. Raivio TL, Silhavy TJ (2001) Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55:591–624

    Article  PubMed  CAS  Google Scholar 

  75. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656

    Article  PubMed  CAS  Google Scholar 

  76. Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    Article  PubMed  CAS  Google Scholar 

  77. Rodriguez-Montelongo L, Volentini SI, Farias RN, Massa EM, Rapisarda VA (2006) The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys 451:1–7

    Article  PubMed  CAS  Google Scholar 

  78. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112

    PubMed  CAS  Google Scholar 

  79. Rouch D, Camakaris J, Lee BT, Luke RK (1985) Inducible plasmid-mediated copper resistance in Escherichia coli. J Gen Microbiol 131:939–943

    PubMed  CAS  Google Scholar 

  80. Rouch DA, Brown NL (1997) Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143(Pt 4):1191–1202

    Article  PubMed  CAS  Google Scholar 

  81. Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66

    Article  PubMed  CAS  Google Scholar 

  82. Samuni A, Chevion M, Czapski G (1981) Unusual copper-induced sensitization of the biological damage due to superoxide radicals. J Biol Chem 256:12632–12635

    PubMed  CAS  Google Scholar 

  83. Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647

    Article  PubMed  CAS  Google Scholar 

  84. Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817

    Article  PubMed  CAS  Google Scholar 

  85. Solioz M, Camakaris J (1997) Acylphosphate formation by the Menkes copper ATPase. FEBS Lett 412:165–168

    Article  PubMed  CAS  Google Scholar 

  86. Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221

    Article  PubMed  CAS  Google Scholar 

  87. Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    PubMed  CAS  Google Scholar 

  88. Stoyanov JV, Brown NL (2003) The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278:1407–1410

    Article  PubMed  CAS  Google Scholar 

  89. Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–512

    Article  PubMed  CAS  Google Scholar 

  90. Stoyanov JV, Magnani D, Solioz M (2003) Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546:391–394

    Article  PubMed  CAS  Google Scholar 

  91. Strausak D, Solioz M (1997) CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272:8932–8936

    Article  PubMed  CAS  Google Scholar 

  92. Suzuki E, Kuwahara Arai K, Richardson JF, Hiramatsu K (1993) Distribution of mec regulator genes in methicillin-resistant Staphylococcus clinical strains. Antimicrob Agents Chemother 37:1219–1226

    PubMed  CAS  Google Scholar 

  93. Teng F, Nannini EC, Murray BE (2005) Importance of gls24 in virulence and stress response of Enterococcus faecalis and use of the Gls24 protein as a possible immunotherapy target. J Infect Dis 191:472–480

    Article  PubMed  CAS  Google Scholar 

  94. Tetaz TJ, Luke RK (1983) Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 154:1263–1268

    PubMed  CAS  Google Scholar 

  95. Tylecote RF (1992) A history of metallurgy. Institute of Materials, London

    Google Scholar 

  96. Wang Y, Kim KS (2002) Role of OmpA and IbeB in Escherichia coli K1 invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr Res 51:559–563

    Article  PubMed  CAS  Google Scholar 

  97. Wimmer R, Herrmann T, Solioz M, Wüthrich K (1999) NMR structure and metal interactions of the CopZ copper chaperone. J Biol Chem 274:22597–22603

    Article  PubMed  CAS  Google Scholar 

  98. Wittman V, Wong HC (1988) Regulation of the penicillinase genes of Bacillus licheniformis: interaction of the pen repressor with its operators. J Bacteriol 170:3206–3212

    PubMed  CAS  Google Scholar 

  99. Wunderli-Ye H, Solioz M (1999) Effects of promoter mutations on the in vivo regulation of the cop operon of Enterococcus hirae by copper(I) and copper(II). Biochem Biophys Res Commun 259:443–449

    Article  PubMed  CAS  Google Scholar 

  100. Wunderli-Ye H, Solioz M (2001) Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae. Biochem Biophys Res Commun 280:713–719

    Article  PubMed  CAS  Google Scholar 

  101. Yamamoto K, Ishihama A (2005) Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56:215–227

    Article  PubMed  CAS  Google Scholar 

  102. Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci USA 102:11179–11184

    Article  PubMed  CAS  Google Scholar 

  103. Yoshida Y, Furuta S, Niki E (1993) Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim Biophys Acta 1210:81–88

    PubMed  CAS  Google Scholar 

  104. Zgurskaya HI, Nikaido H (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225

    Article  PubMed  CAS  Google Scholar 

  105. Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG (2006) Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded Cu(I)Cu(II) forms. J Am Chem Soc 128:5834–5850

    Article  PubMed  CAS  Google Scholar 

  106. Zhou PB, Thiele DJ (1991) Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:6112–6116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Solioz .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magnani, D., Solioz, M. (2007). How Bacteria Handle Copper. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_081

Download citation

Publish with us

Policies and ethics