Skip to main content

New Transport Deals for Old Iron

  • Chapter
  • First Online:
Book cover Molecular Microbiology of Heavy Metals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 6))

  • 2210 Accesses

Abstract

Maintaining iron homeostasis is a necessity for almost all organisms. Microorganisms such as Escherichia coli possess several systems for iron acquisition and storage. In recent years further systems have been discovered. These systems comprise the first characterized bacterial ZIP transporter, ZupT. ZupT is a transporter with broad substrate specificity and beside iron and zinc ZupT also transports cobalt or probably other divalent metal cations. Another novel bacterial iron transporter, EfeU, was recently found in E. coli and Bacillus subtilis. These EfeU permeases are the first characterized bacterial members of the OFeT-family of iron transporters that are well studied in yeast and in other lower eukaryotes.

Enterobactin, the primary catecholate-type siderophore from E. coli and other bacteria, is secreted from the cell in a two-step mechanism, functionally connecting the major facilitator protein EntS and an efflux-complex comprising the outer membrane exit channel protein TolC. Our knowledge of iron-transport systems was extended by the identification and characterization of an iron-efflux transporter, FieF, from E. coli. FieF is a member of the largest subfamily of cation diffusion facilitators (CDF). CDF proteins were previously known to be involved in detoxification of divalent transition metal cations such as Zn(II) or Cd(II) but probably participate in efflux of ferrous iron as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anton A et al. (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metalliduransCH34 and Escherichia coli. J Bacteriol 186:7499–7507

    Article  PubMed  CAS  Google Scholar 

  2. Askwith C et al. (1994) The FET3 gene of S. cerevisiaeencodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410

    Article  PubMed  CAS  Google Scholar 

  3. Askwith C, Kaplan J (1997) An oxidase-permease-based iron transport system in Schizosaccharomyces pombeand its expression in Saccharomyces cerevisiae. J Biol Chem 272:401–405

    Article  PubMed  CAS  Google Scholar 

  4. Bäumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, Heffron F (1996) Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207–213

    Article  PubMed  Google Scholar 

  5. Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414

    Article  PubMed  CAS  Google Scholar 

  6. Binet R, Wandersman C (1996) Cloning of the Serratia marcescens hasFgene encoding the HasABC exporter outer membrane component: a TolC analogue. Mol Microbiol 22:265–273

    Article  PubMed  CAS  Google Scholar 

  7. Bleuel C et al. (2005) TolC is involved in enterobactin efflux across the outer membrane of E. coli. J Bacteriol 187:6701–6707

    Article  PubMed  CAS  Google Scholar 

  8. Braun V (2003) Iron uptake by Escherichia coli. Front Biosci 8:s1409–1421

    Article  PubMed  CAS  Google Scholar 

  9. Chao Y, Fu D (2004) Kinetic study of the antiport mechanism of an Escherichia colizinc transporter, ZitB. J Biol Chem 279:12043–12050

    Article  PubMed  CAS  Google Scholar 

  10. Coulton JW, Braun V (1979) Protein II influences ferrichrome-iron transport in Escherichia coliK12. J Gen Microbiol 110:211–220

    PubMed  CAS  Google Scholar 

  11. de Lorenzo V, Bindereif A, Paw BH, Neilands JB (1986) Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J Bacteriol 165:570–578

    PubMed  Google Scholar 

  12. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  13. Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447:796–800

    Article  PubMed  CAS  Google Scholar 

  14. Furrer JL, Sanders DN, Hook-Barnard IG, McIntosh MA (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234

    Article  PubMed  CAS  Google Scholar 

  15. Gaither LA, Eide DJ (2000) Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275:5560–5564

    Article  PubMed  CAS  Google Scholar 

  16. Gaither LA, Eide DJ (2001) The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem 276:22258–22264

    Article  PubMed  CAS  Google Scholar 

  17. Grass G (2006) Iron transport in Escherichia coli: All has not been said and done. Biometals 19:159–172

    Article  PubMed  CAS  Google Scholar 

  18. Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C (2001) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183:4664–4667

    Article  PubMed  CAS  Google Scholar 

  19. Grass G et al. (2005a) The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611

    Article  PubMed  CAS  Google Scholar 

  20. Grass G et al. (2005b) FieF (YiiP) from Escherichia colimediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    Article  PubMed  CAS  Google Scholar 

  21. Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866

    Article  PubMed  CAS  Google Scholar 

  22. Grosse C, Scherer J, Koch D, Otto M, Taudte N, Grass G (2006) A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol 62:120–131

    Article  PubMed  CAS  Google Scholar 

  23. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    Article  PubMed  Google Scholar 

  24. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  PubMed  CAS  Google Scholar 

  25. Guffanti AA, Wei Y, Rood SV, Krulwich TA (2002) An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 45:145–153

    Article  PubMed  CAS  Google Scholar 

  26. Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophilagut immunity. Science 310:847–850

    Article  PubMed  CAS  Google Scholar 

  27. Hantke K (1983) Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol Gen Genet 191:301–306

    Article  PubMed  CAS  Google Scholar 

  28. Hantke K (1984) Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet 197:337–341

    Article  PubMed  CAS  Google Scholar 

  29. Hantke K (1990) Dihydroxybenzoylserine–a siderophore for E. coli. FEMS Microbiol Lett 55:5–8

    PubMed  CAS  Google Scholar 

  30. Hantke K (1997) Ferrous iron uptake by a magnesium transport system is toxic for Escherichia coliand Salmonella typhimurium. J Bacteriol 179:6201–6204

    PubMed  CAS  Google Scholar 

  31. Heesemann J et al. (1993) Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Mol Microbiol 8:397–408

    Article  PubMed  CAS  Google Scholar 

  32. Kammler M, Schön C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219

    PubMed  CAS  Google Scholar 

  33. Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coliare selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100

    Article  PubMed  CAS  Google Scholar 

  34. Koronakis V (2003) TolC–the bacterial exit duct for proteins and drugs. FEBS Lett 555:66–71

    Article  PubMed  CAS  Google Scholar 

  35. Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thalianais a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  36. Kwon SJ, Petri R, DeBoer AL, Schmidt-Dannert C (2004) A high-throughput screen for porphyrin metal chelatases: application to the directed evolution of ferrochelatases for metalloporphyrin biosynthesis. Chembiochem 5:1069–1074

    Article  PubMed  CAS  Google Scholar 

  37. Lee SM et al. (2002) Functional analysis of the Escherichia colizinc transporter ZitB. FEMS Microbiol Lett 215:273–278

    Article  PubMed  CAS  Google Scholar 

  38. Li L, Kaplan J (1997) Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J Biol Chem 272:28485–28493

    Article  PubMed  CAS  Google Scholar 

  39. Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF (2000) Identification of the Escherichia coliK-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35:1065–1078

    Article  PubMed  CAS  Google Scholar 

  40. Marlovits TC, Haase W, Herrmann C, Aller SG, Unger VM (2002) The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci USA 99:16243–16248

    Article  PubMed  CAS  Google Scholar 

  41. McHugh JP et al. (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278:29478–29486

    Article  PubMed  CAS  Google Scholar 

  42. Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043

    Article  PubMed  CAS  Google Scholar 

  43. Ollinger J, Song K-B, Antelmann H, Hecker M, Helmann JD (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188:3664–3673

    Article  PubMed  CAS  Google Scholar 

  44. Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  PubMed  CAS  Google Scholar 

  45. Ouyang Z, Isaacson R (2006) Identification and characterization of a novel ABC iron transport system, fit, in Escherichia coli. Infect Immun 74:6949–6956

    Article  PubMed  CAS  Google Scholar 

  46. Papp KM, Maguire ME (2004) The CorA Mg2+ transporter does not transport Fe2+. J Bacteriol 186:7653–7658

    Article  PubMed  CAS  Google Scholar 

  47. Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  PubMed  CAS  Google Scholar 

  48. Robey M, Cianciotto NP (2002) Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70:5659–5669

    Article  PubMed  CAS  Google Scholar 

  49. Sabri M, Leveille S, Dozois CM (2006) A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152:745–758

    Article  PubMed  CAS  Google Scholar 

  50. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–186

    Article  PubMed  CAS  Google Scholar 

  51. Saken E, Rakin A, Heesemann J (2000) Molecular characterization of a novel siderophore-independent iron transport system in Yersinia. Int J Med Microbiol 290:51–60

    PubMed  CAS  Google Scholar 

  52. Stojiljkovic I, Cobeljic M, Hantke K (1993) Escherichia coli K-12 ferrous iron uptake mutants are impaired in their ability to colonize the mouse intestine. FEMS Microbiol Lett 108:111–115

    Article  PubMed  CAS  Google Scholar 

  53. Sturm A, Schierhorn A, Lindenstrauss U, Lilie H, Bruser T (2006) YcdB from Escherichia colireveals a novel class of Tat-dependently translocated hemoproteins. J Biol Chem 281:13972–13978

    Article  PubMed  CAS  Google Scholar 

  54. Torres AG, Payne SM (1997) Haem iron-transport system in enterohaemorrhagic Escherichia coliO157:H7. Mol Microbiol 23:825–833

    Article  PubMed  CAS  Google Scholar 

  55. Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 64:4549–4556

    PubMed  CAS  Google Scholar 

  56. Valdebenito M, Bister B, Reissbrodt R, Hantke K, Winkelmann G (2005) The detection of salmochelin and yersiniabactin in uropathogenic Escherichia colistrains by a novel hydrolysis-fluorescence-detection (HFD) method. Int J Med Microbiol 295:99–107

    Article  PubMed  CAS  Google Scholar 

  57. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia colistrain Nissle 1917. Int J Med Microbiol 296:513–520

    Article  PubMed  CAS  Google Scholar 

  58. Velayudhan J et al. (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37:274–286

    Article  PubMed  CAS  Google Scholar 

  59. Wagegg W, Braun V (1981) Ferric citrate transport in Escherichia coli requires outer membrane receptor protein FecA. J Bacteriol 145:156–163

    PubMed  CAS  Google Scholar 

  60. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  61. Wei Y, Fu D (2005) Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). J Biol Chem 280:33716–33724

    Article  PubMed  CAS  Google Scholar 

  62. Wookey P, Rosenberg H (1978) Involvement of inner and outer membrane components in the transport of iron and in colicin B action in Escherichia coli. J Bacteriol 133:661–666

    PubMed  CAS  Google Scholar 

  63. Zhao H, Eide D (1996a) The yeast ZRT1gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458

    Article  PubMed  CAS  Google Scholar 

  64. Zhao H, Eide D (1996b) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J. Biol Chem 271:23203–23210

    Article  CAS  Google Scholar 

  65. Zhou D, Hardt WD, Galan JE (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun 67:1974–1981

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Grass .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grass, G. (2007). New Transport Deals for Old Iron. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_079

Download citation

Publish with us

Policies and ethics