Skip to main content

Part of the book series: Microbiology Monographs ((MICROMONO,volume 5))

Abstract

This review focuses on the principles and recent progress in production of the essential amino acid l-threonine. Behind glutamic acid, methionine and lysine, threonine is one of the most important amino acids almost exclusively used in the feed industry. Basic principles of threonine producers, like amplified genes coding for enzymes involved in the biosynthesis, are explained. Possible modifications of parts of the metabolism that are not directly related and a section about recent findings on global regulation round up the review of strain improvement or strain breeding. In a second section important necessities of the bioprocess industry, such as reduction of gradient formation and other scale-up related topics, are discussed. Strategies for avoiding such problems by improved reactor design or process modifications are presented and discussed in relation to recent advances in strain improvements. Finally, future steps are presented and discussed at the end of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akesson M, Hagander P, Axelsson JP (2001) Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 73:223–230

    Article  PubMed  CAS  Google Scholar 

  2. Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19

    Article  CAS  PubMed  Google Scholar 

  3. Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

    Article  PubMed  CAS  Google Scholar 

  4. Camajova J, Camaj P, Minarik P, Timko J, Turna J (2002a) Stabilization of threonine production in an Escherichia coli overproducing strain using tightly regulated T7 promoter system. Biotechnol Lett 24:1893–1897

    Article  CAS  Google Scholar 

  5. Camajova J, Camaj P, Timko J (2002b) Biosynthesis and transport of threonine in Escherichia coli. Biol Bratislava 57:695–705

    CAS  Google Scholar 

  6. Campolo M, Paglianti A, Soldati A (2002) Fluid dynamic efficiency and scale-up of a retreated blade impeller CSTR. Ind Eng Chem Res 41:164–172

    Article  CAS  Google Scholar 

  7. Debabov VG (2003) The threonine story. In: Scheper T (ed) Advances in biochemical engineering, vol 79. Springer, Berlin Heidelberg New York, pp 113–136

    Google Scholar 

  8. Degussa (2006a) AminoDat 3.0. www.aminoacidsandmore.com

    Google Scholar 

  9. Degussa (2006b) Facts and figures poultry No.12. www.aminoacidsandmore.com

    Google Scholar 

  10. Delvigne F, Destain F, Thonart P (2005) Bioreactor hydrodynamic effect on Escherichia coli physiology: experimental results and stochastic simulations. Bioprocess Biosyst Eng 28:131–137

    Article  PubMed  CAS  Google Scholar 

  11. Ebner H (1995) Process and system for increasing the gas uptake by a liquid being aerated. US Patent 5,332,534

    Google Scholar 

  12. Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O'Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A (2001) Physiological responses to mixing in large-scale bioreactors. J Biotechnol 85:175–185

    Article  PubMed  CAS  Google Scholar 

  13. Galvao TC, de Lorenzo V (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17:34–42

    Article  PubMed  CAS  Google Scholar 

  14. Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186:3516–3524

    Article  PubMed  CAS  Google Scholar 

  15. Gyaneshwar P, Paliy O, McAuliffe J, Jones A, Jordan MI, Kustu S (2005) Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation. Proc Natl Acad Sci USA 102:3453–3458

    Article  PubMed  CAS  Google Scholar 

  16. Hengge-Aronis R (2002) Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4:341–346

    PubMed  CAS  Google Scholar 

  17. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  PubMed  CAS  Google Scholar 

  18. Hermann T (2004) Using functional genomics to improve productivity in the manufacture of industrial biochemicals. Curr Opin Biotechnol 15:444–448

    Article  PubMed  CAS  Google Scholar 

  19. Hermann T, Rieping M (2003) Fermentation process for the preparation of l-threonine. US Patent 6,562,601

    Google Scholar 

  20. Hermann T, Kruse D, Rieping M, Thierbach G (2005) Verfahren zur Herstellung von l-Threonin. German Patent Application DE 2004/028859

    Google Scholar 

  21. Ikeda M (2003) Amino acid production processes. In: Scheper T (ed) Advances in biochemical engineering, vol 79. Springer, Berlin Heidelberg New York, pp 1–36

    Google Scholar 

  22. Jin JH, Choi KK, Jung US, In YH, Lee SY, Lee J (2004) Regulatory analysis of amino acid synthesis pathway in Escherichia coli: aspartate family. Enzyme Microb Technol 35:694–706

    Article  CAS  Google Scholar 

  23. Jin-Ho L, Oh JW, Noh KS, Lee HH, Lee JH (1992) Construction of l-threonine overproducing Escherichia coli by cloning of the threonine operon. J Microbiol Biotechnol 2:243–247

    CAS  Google Scholar 

  24. Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G (2005) Shikimic acid production by a modified strain of E. coli (W3110shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 92:384–392

    Article  CAS  Google Scholar 

  25. Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2:328–338

    Article  PubMed  CAS  Google Scholar 

  26. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  PubMed  CAS  Google Scholar 

  27. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337

    Article  PubMed  CAS  Google Scholar 

  28. Kidd MT, Lerner SP, Allard JP, Rao SK, Halley JT (1999) Threonine needs for finishing broilers: growth, carcass, and economic responses. J Appl Poultry Res 8:160–169

    CAS  Google Scholar 

  29. Kim BS, Lee SC, Lee YS, Chang YC, Chang HN (2004a) High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess Biosyst Eng 26:147–150

    Article  PubMed  CAS  Google Scholar 

  30. Kim YH, Park JS, Cho JY, Cho KM, Park YH, Lee J (2004b) Proteomic response analysis of a threonine-overproducing mutant of Escherichia coli. Biochem J 381:823–829

    Article  PubMed  CAS  Google Scholar 

  31. Kruse D, Six S, Krämer R, Burkovski A (2001) Analysis of threonine uptake in Escherichia coli threonine production strains. Biotechnol Lett 23:401–404

    Article  CAS  Google Scholar 

  32. Kruse D, Krämer R, Eggeling L, Rieping M, Pfefferle W, Tchieu JH, Chung YJ, Saier MH Jr, Burkovski A (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59:205–210

    Article  PubMed  CAS  Google Scholar 

  33. Kruse D, Hermann T, Rieping M, Thierbach G (2005a) Verfahren zur Herstellung von l-Threonin. German Patent Application DE 2004/029340

    Google Scholar 

  34. Kruse D, Hermann T, Thierbach G, Rieping M (2005b) Verfahren zur Herstellung von l-Threonin. German Patent Application DE 2004/029639

    Google Scholar 

  35. Kruse D, Hermann T, Rieping M (2005c) Verfahren zur Herstellung von l-Threonin. German Patent Application DE 2004/030417

    Google Scholar 

  36. Lara AR, Leal L, Flores N, Gosset G, Bolívar G, Ramírez OT (2005) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol Bioeng 93:6–13

    Google Scholar 

  37. Lee JH, Lee DE, Lee BU, Kim HS (2003) Global analysis of transcriptomes and proteomes of a parent strain and an l-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451

    Article  PubMed  CAS  Google Scholar 

  38. Lee MH, Lee HW, Park JH, Ahn JO, Jung JK, Hwang YI (2006) Improved l-threonine production of Escherichia coli mutant by optimization of culture conditions. J Biosci Bioeng 101:127–130

    Article  PubMed  CAS  Google Scholar 

  39. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  PubMed  CAS  Google Scholar 

  40. Levanon SS, San KY, Bennett GN (2005) Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng 89:556–564

    Article  PubMed  CAS  Google Scholar 

  41. Livshits VA, Zakataeva NP, Aleshin VV, Vitushkina MV (2003) Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Res Microbiol 154:123–135

    Article  PubMed  CAS  Google Scholar 

  42. Ogawa-Miyata Y, Kojima H, Sano K (2001) Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in l-threonine production. Biosci Biotechnol Biochem 65:1149–1154

    Article  PubMed  CAS  Google Scholar 

  43. Okamoto K, Kino K, Ikeda M (1997) Hyperproduction of l-threonine by an Escherichia coli mutant with impaired l-threonine uptake. Biosci Biotechnol Biochem 61:1877–1882

    Article  PubMed  CAS  Google Scholar 

  44. Okamoto K, Ikeda M (2000) Development of an industrial stable process for l-threonine fermentation by an l-methionine-auxotrophic mutant of Escherichia coli. J Biosci Bioeng 89:87–89

    Article  PubMed  CAS  Google Scholar 

  45. Park EY, Kim JH, Hyun HH, Lee HH (2002) Removal of attenuator region of thr operon increases the production of threonine in Escherichia coli. Biotechnol Lett 24:1815–1819

    Article  CAS  Google Scholar 

  46. Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187:3171–3179

    Article  PubMed  CAS  Google Scholar 

  47. Pósfai G, Plunkett G III, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    Article  PubMed  CAS  Google Scholar 

  48. Rahman M, Hasan MR, Oba T, Shimizu K (2006) Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol Bioeng 94:585–595

    Article  PubMed  CAS  Google Scholar 

  49. Raman B, Nandakumar MP, Muthuvijayan V, Marten MR (2005) Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions. Biotechnol Bioeng 92:384–392

    Article  PubMed  CAS  Google Scholar 

  50. Research Disclosure Journal (2006) RD 505054

    Google Scholar 

  51. Rieping M, Siebelt N (2003) Amino acid-producing bacteria and a process for preparing l-amino acids. WO Patent Application 03/74719

    Google Scholar 

  52. Rieping M, Bastuck C, Hermann T, Thierbach G (2003) Fermentation process for the preparation of l-amino acids using strains of the family Enterobacteriaceae. US Patent 6,916,637

    Google Scholar 

  53. Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C, Collado-Vides J (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 32:D303–D306

    Article  PubMed  CAS  Google Scholar 

  54. Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M, Penaloza-Spinola IM, Martinez-Antonio A, Karp PD, Collado-Vides J (2006) The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinformatics 7:5

    Article  PubMed  CAS  Google Scholar 

  55. Salmon K, Hung S, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli. J Biol Chem 278:29837–29855

    Article  PubMed  CAS  Google Scholar 

  56. Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W, Deckwer W-D (1999) A special reactor design for investigations of mixing time effects in a scaled-down industrial l-lysine fed-batch fermentation process. Biotechnol Bioeng 64:599–606

    Article  PubMed  CAS  Google Scholar 

  57. Schmidt FR (2005) Optimization and scale-up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    Article  PubMed  CAS  Google Scholar 

  58. Schweder T, Kruger E, Xu B, Jurgen B, Blomsten G, Enfors SO, Hecker M (1999) Monitoring of genes that respond to process-related stress in large-scale bioprocesses. Biotechnol Bioeng 65:151–159

    Article  PubMed  CAS  Google Scholar 

  59. Ståhl-Wernersson E, Trägårdh C (1999) Scale-up of Rushton turbine-agitated tanks. Chem Eng Sci 54:4245–4256

    Article  Google Scholar 

  60. Svensson M, Svensson I, Enfors SO (2005) Osmotic stability of the cell membrane of Escherichia coli from a temperature-limited fed-batch process. Appl Microbiol Biotechnol 67:345–350

    Article  PubMed  CAS  Google Scholar 

  61. Thiry M, Cingolani D (2002) Optimizing scale-up fermentation processes. Trends Biotechnol 20:103–105

    Article  PubMed  CAS  Google Scholar 

  62. Wang MD, Bradshaw JS, Swisher SL, Liaw HJ, Hanke PD, Binder TP (1999) Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production. US Patent 5,939,307

    Google Scholar 

  63. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  PubMed  CAS  Google Scholar 

  64. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  PubMed  CAS  Google Scholar 

  65. Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130:437–60

    Article  PubMed  CAS  Google Scholar 

  66. Xu B, Jahic M, Blomsten G, Enfors SO (1999a) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol 51:564–571

    Article  PubMed  Google Scholar 

  67. Xu B, Jahic M, Enfors SO (1999b) Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol Prog 15:81–90

    Article  PubMed  Google Scholar 

  68. Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA (1999) The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett 452:228–232

    Article  PubMed  CAS  Google Scholar 

  69. Zelić B, Bolf N, Vasić-Rački Ð (2006) Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models. Bioprocess Biosyst Eng 29:39–47

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187:980–990

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Klaus Huthmacher for continuous support and discussion. Furthermore, we are grateful to Patrick Lettner for providing previously unpublished data. We thank Nils Niedner, Reiner Beste and Ralf Kelle for many helpful comments and Stephan Hans for providing drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hermann .

Editor information

Volker F. Wendisch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rieping, M., Hermann, T. (2006). l-Threonine. In: Wendisch, V.F. (eds) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering. Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_065

Download citation

Publish with us

Policies and ethics