Skip to main content

Occurrence, Biosynthesis, and Biotechnological Production of Dipeptides

  • Chapter
  • First Online:
Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering

Part of the book series: Microbiology Monographs ((MICROMONO,volume 5))

Abstract

l-α-Dipeptides are not mere mixtures of amino acids. Some of them have their own properties which are not found in the corresponding amino acids. Despite such versatility, dipeptides have been poorly recognized, mainly due to the lack of an efficient manufacturing method. Though a variety of dipeptides, many of which contain unusual amino acids or have a cyclic form, have been found as metabolites of microorganisms, their biosynthetic routes had remained unclear. However, recent studies have revealed the existence of several ribosome-independent machineries capable of synthesizing dipeptides, such as nonribosomal peptide synthetases or the new enzyme, l-amino acid α-ligase . By using these activities, highly efficient methods for producing dipeptides have been devised. In this review, known functions and occurrence of dipeptides are reviewed first since many readers may not be familiar with dipeptides. Then a few important studies on the biosynthesis of dipeptides are summarized followed by a description of the emerging technologies for dipeptide manufacturing based on the recent findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumrad NN, Morse EL, Lochs H, Williams PE, Adibi SA (1989) Possible sources of glutamine for parental nutrition: Impact on glutamine metabolism. Am J Physiol 257:E228–E234

    PubMed  CAS  Google Scholar 

  2. Aboulmagd E, Oppermann-Sanio FB, Steinbuchel A (2000) Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strainPCC6308. Arch Microbiol 174:297–306

    Article  PubMed  CAS  Google Scholar 

  3. Allen CM Jr (1972) Biosynthesis of echinulin. Isoprenylation of cyclo-l-alanyl-l-tryptophanyl. Biochemistry 23:2154–2160

    Article  Google Scholar 

  4. Alvarez ME, Houck DR, White CB, Brownell JE, Bobko MA, Rodger CA, Stawicki MB, Sun HH, Gillum AM, Cooper R (1994) Isolation and structure elucidation of two new calpain inhibitors from Streptomyces griseus. J Antibiot (Tokyo) 47:1195–1201

    CAS  Google Scholar 

  5. de Armas RR, Diaz HG, Molina R, Conzalez MP, Uriarte E (2004) Stochastic-based descriptiors studying peptides biological properties: Modeling the bitter tasting threshold of dipeptides. Bioorg Med Chem 12:4815–4822

    Article  CAS  Google Scholar 

  6. Atkin CL, Neilands JB, Phaff HJ (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol 103:722–733

    PubMed  CAS  Google Scholar 

  7. Bauer K (2005) Carnosine and homocarnosine, the forgotten, enigmatic peptides of the brain. Neurochem Res 30:1339–1345

    Article  PubMed  CAS  Google Scholar 

  8. Begum G, Cunliffe A, Leveritt M (2005) Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab 15:493–514

    PubMed  CAS  Google Scholar 

  9. Belshaw PJ, Walsh CT, Stachelhaus T (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284:486–489

    Article  PubMed  CAS  Google Scholar 

  10. Birkinshaw JH, Mohammed YS (1962) Studies in the biochemistry of micro-organisms. Biochem J 85:523–527

    PubMed  CAS  Google Scholar 

  11. Bongers J, Heimer EP (1994) Recent applications of enzymatic peptide synthesis. Peptides 15:183–193

    Article  PubMed  CAS  Google Scholar 

  12. Bornscheuer UT (2000) Industrial biotransformations. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology second, completely revised edition, vol 8. Wiley, Weinheim, p 277–294

    Google Scholar 

  13. Burt WR (1982) Identification of coprogen B and its breakdown products from Histoplasma capsulatum. Infect Immun 35:990–996

    PubMed  CAS  Google Scholar 

  14. Byford MF, Baldwin JE, Shiau C, Schofield CJ (1997) The mechanism of ACV synthetase. Chem Rev 97:2631–2649

    Article  PubMed  Google Scholar 

  15. Caesar Von F, Jansson K, Mutschler E (1969) Uber nigragillin, ein neues alkaloid aus der Aspergillus niger-gruppe. Pharm Acta Helvet 44:676–690

    Google Scholar 

  16. Chen Y (1960) Studies on the metabolic products of Rosellinia necatrix Berlese, Part I. Isolation and characterization of several physiologically active neutral substances. Bull Agric Chem Soc Jpn 24:372–381

    CAS  Google Scholar 

  17. Chung M, Lee H, Chu H, Lee C, Kim S, Kho Y (1996) Bestatin analogue from Streptomyces neyagawaensis SL-387. Biosci Biotechnol Biochem 60:898–900

    Article  PubMed  Google Scholar 

  18. Cloninger MR, Baldwin RE (1970) Aspartylphenylalanine methyl ester: A low-calorie sweetner. Science 170:81–82

    Article  PubMed  CAS  Google Scholar 

  19. Cui C, Kakeya H, Okada G, Onose R, Osada H (1996) Novel mammalian cell cycle inhibitor, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus, vol I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 49:527–533

    CAS  Google Scholar 

  20. Daabees TT, Stegink LD (1978) l-Alanyl-l-tyrosine as a tyrosine source during intravenous nutrition of the rat. J Nutr 108:1104–1113

    PubMed  CAS  Google Scholar 

  21. Day JB, Mantle PG (1982) Biosynthesis of radiolabeled verruculogen by Penicillium simplicissimum. Appl Environ Microbiol 43:514–516

    PubMed  CAS  Google Scholar 

  22. Doekel S, Marahiel M (2000) Dipeptide formation on engineered hybrid peptide synthetases. Chem Biol 7:373–384

    Article  PubMed  CAS  Google Scholar 

  23. Doel MT, Eaton M, Cook EA, Lewis H, Patel T, Carey NH (1980) The expression in E. coli of synthetic repeating polymeric genes coding for poly(l-aspartyl-l-phenylalanine). Nucleic Acids Res 8:4575–4592

    Article  PubMed  CAS  Google Scholar 

  24. Duerfahrt T, Doekel S, Sonke T, Quaedflieg PJLM, Marahiel MA (2003) Construction of hybrid peptide synthetases for the production of α-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame. Eur J Biochem 270:4555–4563

    Article  PubMed  CAS  Google Scholar 

  25. Evers S, Casadwall B, Charles M, Dutka-Malen S, Galimand M, Courvalin P (1996) Evolution of structure and substrate specificity in d-alanine:d-alanine ligase and related enzymes. J Mol Evol 42:706–712

    Article  PubMed  CAS  Google Scholar 

  26. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  PubMed  CAS  Google Scholar 

  27. Fischer E, Fourneau E (1901) Ueber einige Derivate des Glykocolls. Ber Deutsch Chem Ges 34:2868–2877

    Article  Google Scholar 

  28. Fredenhagen A, Angst C, Peter HH (1995) Digestion of rhizocticins to (Z)-l-2-amino-5-phophono-3-pentenoic acid: Revision of the absolute configuration of plumbemycins A and B. J Antibiot (Tokyo) 48:1043–1045

    CAS  Google Scholar 

  29. Galperin MY, Koonin EV (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6:2639–2643

    Article  PubMed  CAS  Google Scholar 

  30. Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315

    Article  PubMed  CAS  Google Scholar 

  31. Gulewitsch W, Amiradzibi S (1900) Ueber das Carnosin, eine neue organishe Base des Fleischextractes. Ber Deutsch Chem Ges 33:1902–1903

    Article  CAS  Google Scholar 

  32. Hamasaki T, Nagayama K, Matsuda Y (1976) Structure of a new metabolite from Aspergillus chevalieri. Agric Biol Chem 40:203–205

    CAS  Google Scholar 

  33. Hashimoto S, Ozaki A (1999) Whole microbial cell processes for manufacturing amino acids, vitamins or ribonucleotides. Curr Opin Biotechnol 10:604–608

    Article  PubMed  CAS  Google Scholar 

  34. Healy FG, Wach M, Krasnoff SB, Gibson DM, Loria R (2000) The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol Microbiol 38:794–804

    Article  PubMed  CAS  Google Scholar 

  35. Higashide E, Horii S, Ono H, Mizokami N, Yamazaki T, Shibata M, Yoneda M (1985a) Alahopcin, a new dipeptide antibiotic produced by Streptomyces albulus subsp. ochragerus subsp. nov. J Antibiot (Tokyo) 38:285–295

    CAS  Google Scholar 

  36. Higashide E, Kanamaru T, Fukase H, Horii S (1985b) Isolation of dealanylalahopcin, a new amino acid, and its biological activity. J Antibiot (Tokyo) 38:296–301

    CAS  Google Scholar 

  37. Hines HM, Sutfin DC (1956) Physiologic properties of anserine and carnosine. Am J Physiol 186:286–288

    PubMed  CAS  Google Scholar 

  38. Horii S, Fukase H, Higashide E, Yoneda M (1985) Structure of alahopcin (nourseimycin), a new dipeptide antibiotic. J Antibiot (Tokyo) 38:302–311

    CAS  Google Scholar 

  39. Ikeda H, Yagasaki M, Hashimoto S (2006) Methods for manufacturing dipeptides or their derivatives. WO 2006/001382

    Google Scholar 

  40. Inaoka T, Takahashi K, Ohnishi-Kameyama M, Yoshida M, Ochi K (2003) Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J Biol Chem 278:2169–2176

    Article  PubMed  CAS  Google Scholar 

  41. Ishige K, Hamamoto T, Shiba T, Noguchi T (2001) Novel method for enzymatic synthesis of CMP-NeuAc. Biosci Biotechnol Biochem 65:1736–1740

    Article  PubMed  CAS  Google Scholar 

  42. Kakinuma K, Rinehart KL Jr (1974) Tryptophan-dehydrobutyrine diketopiperazine, a metabolite of Streptomyces spectabilis. J Antibiot (Tokyo) 27:733–737

    CAS  Google Scholar 

  43. Kalyankar G, Meister A (1959) Enzymatic synthesis of carnosine and related β-alanyl and γ-aminobutyryl peptides. J Biol Chem 234:3210–3218

    PubMed  CAS  Google Scholar 

  44. Kamiya T, Maeno S, Hashimoto M, Mine Y (1972) Bicyclomycin, a new antibiotic, vol II. Structural elicidation and acyl derivatives. J Antibiot 25:576–581

    PubMed  CAS  Google Scholar 

  45. Kanzaki H, Imura D, Sashida R, Kobayashi A, Kawazu K (1999) Effective production of dehydro cyclic dipeptide albonoursin exhibiting pronuclear fusion inhibitory activity, vol I. Taxonomy and fermentation. J Antibiot (Tokyo) 52:1017–1022

    CAS  Google Scholar 

  46. Keller U, Schauweeker F (2003) Combinatorial biosynthesis of non-ribosomal peptides. Comb Chem High Throughput Screen 6:527–540

    PubMed  CAS  Google Scholar 

  47. Khavinson VK, Anisimov VN (2000) Synthetic dipeptide vilon (l-Lys-l-Glu) increases life span and inhibits a development of spontaneous tumors in mice. Doklady Akad Nauk 372:421–423

    CAS  Google Scholar 

  48. Khokhlov AS, Lokshin GB (1963) The structure of albonoursin. Tetrahedron Lett 27:1881–1885

    Article  Google Scholar 

  49. King RR, Lawrence CH, Calhoun LA (1992) Chemistry of phytotoxins associated with Streptomyces scabies, the causal organism of potato common scab. J Agric Food Chem 40:834–837

    Article  CAS  Google Scholar 

  50. King RR, Lawrence CH, Clark MC, Calhoun LA (1989) Isolation and characterization of phytotoxins associated with Streptomyces scabies. J Chem Soc Chem Commun 13:849–850

    Article  Google Scholar 

  51. Kinoshita S, Udaka S, Simono M (1957) Studies on the amino acid fermentation. J Gen Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  52. Kobaru S, Tsunakawa M, Hanada M, Konishi M, Tomita K, Kawaguchi H (1983) Bu-2743E, a leucine aminopeptidase inhibitor, produced by Bacillus circulans. J Antibiot (Tokyo) 36:1396–1398

    CAS  Google Scholar 

  53. Kodaira Y (1961) Toxic substances to insects, produced by Aspergillus ochraceus and Oopra destructor. Agric Biol Chem 25:261–262

    CAS  Google Scholar 

  54. Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: Approaches and applications. Appl Microbiol Biotechnol 68:726–736

    Article  PubMed  CAS  Google Scholar 

  55. Kuroda Y, Okuhara M, Goto T, Yamashita M, Iguchi E, Kohsaka M, Aoki H, Imanaka H (1980) FR-900148, a new antibiotic I. Taxonomy, fermentation, isolation and characterization. J Antibiot (Tokyo) 33:259–266

    CAS  Google Scholar 

  56. Lautru S, Gondry M, Genet R, Pernodet J-L (2002) The albonoursin gene cluster of S. noursei: Biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. Chem Biol 9:1355–1364

    Article  PubMed  CAS  Google Scholar 

  57. Lee MD, Fantini AA, Kuck NA, Greenstein M, Testa RT, Borders DB (1987) New antitumor antibiotic, LL-D05139β fermentation, isolation, structure determination and biological activities. J Antibiot (Tokyo) 40:1657–1663

    CAS  Google Scholar 

  58. Li Y, Wei G, Chen J (2004) Glutathione: A review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  PubMed  CAS  Google Scholar 

  59. MacDonald JC, Slater GP (1966) The utilization of tryptophan in the biosynthesis of echinulin. Can J Microbiol 12:455–463

    Article  PubMed  CAS  Google Scholar 

  60. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetase involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2673

    Article  PubMed  CAS  Google Scholar 

  61. Matsui T, Hayashi A, Tamaya K, Matsumoto K, Kawasaki T, Murakami K, Kimoto K (2003) Depressor effect induced by dipeptide, Val-Tyr, in hypertensive transgenic mice is due, in part, to the suppression of human circulating rennin-angiotensin system. Clin Exp Pharmacol Physiol 30:262–265

    Article  PubMed  CAS  Google Scholar 

  62. Mazur RH, Schlatter JM, Goldkamp AH (1969) Structure-taste relationships of some dipeptides. J Am Chem Soc 91:2684–2691

    Article  PubMed  CAS  Google Scholar 

  63. Merrifield B (1986) Solid phase synthesis. Science 232:341–347

    Article  PubMed  CAS  Google Scholar 

  64. Miyoshi T, Miyairi N, Aoki H, Kohsaka M, Sakai H, Imanaka H (1972) Bicyclomycin, a new antibiotic, I. Taxonomy, isolation and characterization. J Antibiot (Tokyo) 25:569–575

    CAS  Google Scholar 

  65. Morihara K (1987) Using proteases in peptide synthesis. Trends Biotechnol 5:164–170

    Article  CAS  Google Scholar 

  66. Munekata M, Tamura G (1981) Selective inhibition of SV40-transformed cell growth by diketopiperazines. Agric Biol Chem 45:2613–2618

    CAS  Google Scholar 

  67. Murata T, Horinouchi S, Beppu T (1993) Production of poly(l-aspartyl-l-phenylalanine) in Escherichia coli. J Biotechnol 28:301–312

    Article  PubMed  CAS  Google Scholar 

  68. Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91–118

    Article  PubMed  CAS  Google Scholar 

  69. Nishikiori T, Kawahara F, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1984) Production of acetyl-l-leucyl-l-argininal, inhibitor of dipeptidyl aminopeptidase III by bacteria. J Antibiot (Tokyo) 37:680–681

    CAS  Google Scholar 

  70. Opris D, Diudea MV (2001) Peptide property modeling by Cluj indices. SAR QASR Environ Res 12:159–179

    Article  CAS  Google Scholar 

  71. Poetsch M, Zahaner H (1985) Metabolic products from microorganisms. 230 amiclenomycin-peptides, new antimetabolites of biotin. Taxonomy, fermentation and biological properties. J Antibiot (Tokyo) 38:312–320

    CAS  Google Scholar 

  72. Prasad C (1995) Bioactive cyclic dipeptides. Peptides 16:151–164

    Article  PubMed  CAS  Google Scholar 

  73. Rapp C, Jung G, Kugler M, Loeffler W (1988) Rhizocticins – new phosphono-oligopeptides with antifungal activity. Liebigs Annu Chem 1988:655–661

    Article  Google Scholar 

  74. Rausch C, Weber T, Kohlbacher O, Wohleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetase (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808

    Article  PubMed  CAS  Google Scholar 

  75. Rogers HJ, Newton GGF, Abraham EP (1965a) Production and purification of bacilysin. Biochem J 97:573–577

    PubMed  CAS  Google Scholar 

  76. Rogers HJ, Lomakina N, Abraham EP (1965b) Observation on the structure of bacilysin. Biochem J 97:579–586

    PubMed  CAS  Google Scholar 

  77. Sakajoh M, Solomon NA, Demain AL (1987) Cell-free synthesis of the dipeptide antibiotic bacilysin. J Ind Microbiol 2:201–208

    Article  CAS  Google Scholar 

  78. Schiffman SS (1976) Taste of dipeptides. Physiol Behav 17:523–525

    Article  PubMed  CAS  Google Scholar 

  79. Schnurer J, Magunsson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78

    Article  CAS  Google Scholar 

  80. Schwarzer D, Mootz HD, Marahiel MA (2001) Exploring the impact of different thioesterase domain for the design of hybrid peptide synthetases. Chem Biol 8:997–1010

    Article  PubMed  CAS  Google Scholar 

  81. Shiba T, Tsutsumi K, Ishige K, Noguchi T (2000) Inorganic polyphosphate and polyphosphate kinase: Their novel biological functions and applications. Biochemistry (Mosc) 65:315–323

    CAS  Google Scholar 

  82. Shoji J, Hinoo H, Kato T, Nakauchi K, Matsuura S, Mayama M, Yasuda Y, Kawamura Y (1981) Isolation of N-(2,6-diamino-6-hydroxyetylpimelyl)-l-alanine from Micromonospora chlcea. J Antibiot (Tokyo) 34:374–380

    CAS  Google Scholar 

  83. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chem Rev 105:715–738

    Article  PubMed  CAS  Google Scholar 

  84. Sinisterra JV, Alcantara AR (1993) Synthesis of peptide catalyzed by enzyme: A practical overview. J Mol Catal 84:327–364

    Article  CAS  Google Scholar 

  85. Smith LT, Smith GM (1989) An osmoregulated dipeptide in stressed Rhizobium meliloti. J Bacteriol 171:4714–4717

    PubMed  CAS  Google Scholar 

  86. Stachelhaus T, Mootz H, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  PubMed  CAS  Google Scholar 

  87. Stehle P, Pfaender P, Frust P (1984) Isotachophoretic analysis of a synthetic dipeptide l-alanyl-l-glutamine. Evidence for stability during heat sterilization. J Chromatogr 294:507–512

    Article  CAS  Google Scholar 

  88. Steinborn G, Hajirezaei M-R, Hofemeister J (2005) bac Genes for recombinant bacilysin and anticapsin production in Bacillus host strains. Arch Microbiol 183:71–79

    Article  PubMed  CAS  Google Scholar 

  89. Suda H, Takita T, Aoyagi T, Umezawa H (1976) The structure of bestatin. J Antibiot (Tokyo) 29:100–101

    CAS  Google Scholar 

  90. Suetsuna K (1998) Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic). J Nutr Biochem 9:415–419

    Article  CAS  Google Scholar 

  91. Sun X, Bognar AL, Baker EN, Smith CA (1998) Structural homologies with ATP- and folate-binding enzymes in the crystal structure of folylpolyglutamate synthetase. Proc Natl Acad Sci USA 95:6647–6652

    Article  PubMed  CAS  Google Scholar 

  92. Tabata K, Ikeda H, Hashimoto S (2005) ywfE in Bacillus subtilis code for a novel enzyme, l-amino acid ligase. J Bacteriol 187:5195–5202

    Article  PubMed  CAS  Google Scholar 

  93. Tabata K, Hashimoto S (2005) Microorganisms producing dipeptides and process for producing dipeptides using the microorganisms. WO 2005/045006

    Google Scholar 

  94. Tabata K, Hashimoto S (2006) Methods for manufacturing dipeptides. WO 2006/001379

    Google Scholar 

  95. Takagi H, Shiomi H, Ueda H, Amano H (1979) Morphine-like analgesia by a new dipeptide, l-tyrosyl-l-arginie (Kyotorphin) and its analogue. Eur J Pharmacol 55:109–111

    Article  PubMed  CAS  Google Scholar 

  96. Ueda H, Shiomi H, Takagi H (1980) Regional distribution of a novel analgesic dipeptide kyotorphin (Tyr-Arg) in the rat brain and spinal cord. Brain Res 6:460–464

    Article  Google Scholar 

  97. Ueda H, Yoshihara Y, Fukushima N, Shiomi H, Nakamura A, Takagi H (1987) Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes. J Biol Chem 262:8165–8178

    PubMed  Google Scholar 

  98. Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 29:97–99

    CAS  Google Scholar 

  99. Umezawa H (1977) Microbial secondary metabolites with potential use in cancer treatment. Biomedicine 26:236–249

    PubMed  CAS  Google Scholar 

  100. Walsh CT (1989) Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem 264:2393–2396

    PubMed  CAS  Google Scholar 

  101. Wilson BJ, Yang DTC, Harris TM (1973) Production, isolation, and preliminary toxicity studies of brevianamide A from cultures of Penicillium viridicatum. Appl Microbiol 26:633–635

    PubMed  CAS  Google Scholar 

  102. Yan P, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K (2004) Cyclo(l-leucyl-l-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol 70:7466–7473

    Article  PubMed  CAS  Google Scholar 

  103. Yasuda N, Sakane K (1991) Revised structure and the chemical transformations of FR900148. J Antibiot (Tokyo) 44:801–802

    CAS  Google Scholar 

  104. Yazgan A, Ozcengiz G, Ozcengiz E, Kilinc K, Marahiel MA, Alaeddinoglu NG (2001) Bacilysin biosynthesis by a partially-purified enzyme fraction from Bacillus subtilis. Enz Microb Technol 29:400–406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author sincerely thanks Drs. Akio Ozaki and Makoto Yagasaki for their kind and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Hashimoto .

Editor information

Volker F. Wendisch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashimoto, Si. (2006). Occurrence, Biosynthesis, and Biotechnological Production of Dipeptides. In: Wendisch, V.F. (eds) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering. Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_063

Download citation

Publish with us

Policies and ethics