Skip to main content

Cysteine Metabolism and Its Regulation in Bacteria

  • Chapter
  • First Online:
Book cover Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering

Part of the book series: Microbiology Monographs ((MICROMONO,volume 5))

Abstract

Sulfur is necessary for the synthesis of cysteine. Microorganisms can use sulfate, thiosulfate or sulfonates as sole sulfur sources. These compounds are taken up by specific transporters followed by the conversion of sulfate or sulfonates into sulfide in 2 to 4 steps. The biosynthesis of cysteine from serine in bacteria is carried out by a two-step pathway beginning with the O-acetylation of serine, followed by O-re placement of the acetyl group by sulfide or thiosulfate. Some microorganisms can also use methionine or cysteine-derived compounds such as glutathione as sole sulfur source. Glutathione is degraded to liberate cysteine, whereas methionine is converted into cysteine via the reverse transsulfuration pathway or via methanethiol formation. Cysteine is also taken up directly from the environment by ABC transporters or symporters mainly as cystine, the disulfide-linked cysteine dimer. Several mechanisms are involved in the control of the intracellular concentration of cysteine, which is a highly reactive compound due to its –SH group. This amino acid is degraded mainly by cysteine desulfhydrases or is excreted by exporters. A large variety of molecular mechanisms participate in fine-tuning the regulation of cysteine metabolism: positive regulation by LysR-type regulators, negative control by repressors of the Rrf2 or TetR family and regulation by premature termination of transcription. In Escherichia coli and Bacillus subtilis, a global regulator, CysB and CymR, respectively, controls cysteine synthesis and transport in response to O-acetylserine or its derivative N-acetyl-serine availability. In Lactococcus lactis and Corynebacterium glutamicum, a unique regulator modulates the methionine and cysteine metabolisms. Cysteine or derivative compounds are biotechnically interesting. Fermentation processes with E. coli or C. glutamicum involving mutants insensitive to feedback inhibition by cysteine and also strains overproducing cysteine exporters or inactivated for cysteine degradative enzymes are currently being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albanesi D, Mansilla MC, Schujman GE, de Mendoza D (2005) Bacillus subtilis cysteine synthetase is a global regulator of the expression of genes involved in sulfur assimilation. J Bacteriol 187:7631–7638

    Article  PubMed  CAS  Google Scholar 

  2. Amarita F, Yvon M, Nardi M, Chambellon E, Delettre J, Bonnarme P (2004) Identification and functional analysis of the gene encoding methionine-γ-lyase in Brevibacterium linens. Appl Environ Microbiol 70:7348–7354

    Article  PubMed  CAS  Google Scholar 

  3. Auger S, Danchin A, Martin-Verstraete I (2002) Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine. J Bacteriol 184:5179–5186

    Article  PubMed  CAS  Google Scholar 

  4. Auger S, Gomez MP, Danchin A, Martin-Verstraete I (2005) The PatB protein of Bacillus subtilis is a C–S-lyase. Biochimie 87:231–238

    Article  PubMed  CAS  Google Scholar 

  5. Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62:239–243

    Article  PubMed  CAS  Google Scholar 

  6. Awano N, Wada M, Mori H, Nakamori S, Takagi H (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71:4149–4152

    Article  PubMed  CAS  Google Scholar 

  7. Baptist EW, Kredich NM (1977) Regulation of l-cystine transport in Salmonella typhimurium. J Bacteriol 131:111–118

    PubMed  CAS  Google Scholar 

  8. Becker MA, Kredich NM, Tomkins GM (1969) The purification and characterization of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J Biol Chem 244:2418–2427

    PubMed  CAS  Google Scholar 

  9. Berger EA, Heppel LA (1972) A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem 247:7684–7694

    PubMed  CAS  Google Scholar 

  10. Berndt C, Lillig CH, Wollenberg M, Bill E, Mansilla MC, de Mendoza D, Seidler A, Schwenn JD (2004) Characterization and reconstitution of a 4Fe–4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus subtilis. J Biol Chem 279:7850–7855

    Article  PubMed  CAS  Google Scholar 

  11. Bick JA, Dennis JJ, Zylstra GJ, Nowack J, Leustek T (2000) Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182:135–142

    Article  PubMed  CAS  Google Scholar 

  12. Bonnarme P, Psoni L, Spinnler HE (2000) Diversity of l-methionine catabolism pathways in cheese-ripening bacteria. Appl Environ Microbiol 66:5514–5517

    Article  PubMed  CAS  Google Scholar 

  13. Bruinenberg PG, de Roo G, Limsowtin GK (1996) Purification and characterization of cystathionine γ-lyase from Lactococcus lactis subsp. cremoris SK11: possible role in flavor compound formation during cheese maturation. Appl Environ Microbiol 63:561–566

    Google Scholar 

  14. Burguiere P, Auger S, Hullo MF, Danchin A, Martin-Verstraete I (2004) Three different systems participate in l-cystine uptake in Bacillus subtilis. J Bacteriol 186:4875–4884

    Article  PubMed  CAS  Google Scholar 

  15. Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I (2005) Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. J Bacteriol 187:6019–6030

    Article  PubMed  CAS  Google Scholar 

  16. Burns KE, Baumgart S, Dorrestein PC, Zhai HL, McLafferty FW, Begley TP (2005) Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. J Am Chem Soc 127:11602–11603

    Article  PubMed  CAS  Google Scholar 

  17. Bykowski T, van der Ploeg JR, Iwanicka-Nowicka R, Hryniewicz MM (2002) The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5′-phosphosulphate (APS) as a signalling molecule for sulphate excess. Mol Microbiol 43:1347–1358

    Article  PubMed  CAS  Google Scholar 

  18. Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B, Bettati S, Mozzarelli A (2005) Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci 14:2115–2124

    Article  PubMed  CAS  Google Scholar 

  19. Chang Z, Vining LC (2002) Biosynthesis of sulfur-containing amino acids in Streptomyces venezuelae ISP5230: roles for cystathionine β-synthase and transsulfuration. Microbiology 148:2135–2147

    PubMed  CAS  Google Scholar 

  20. Chu L, Ebersole JL, Kurzban GP, Holt SC (1997) Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities. Infect Immun 65:3231–3238

    PubMed  CAS  Google Scholar 

  21. Dassler T, Maier T, Winterhalter C, Bock A (2000) Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112

    Article  PubMed  CAS  Google Scholar 

  22. Denk D, Bock A (1987) l-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. J Gen Microbiol 133:515–525

    PubMed  CAS  Google Scholar 

  23. During-Olsen L, Regenberg B, Gjermansen C, Kielland-Brandt MC, Hansen J (1999) Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases. Curr Genet 35:609–617

    Article  PubMed  CAS  Google Scholar 

  24. Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I (2006) Global control of cysteine metabolism by CymR in Bacillus subtilis. J Bacteriol 188:2184–2197

    Article  PubMed  CAS  Google Scholar 

  25. Franke I, Resch A, Dassler T, Maier T, Bock A (2003) YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J Bacteriol 185:1161–1166

    Article  PubMed  CAS  Google Scholar 

  26. Fukamachi H, Nakano Y, Yoshimura M, Koga T (2002) Cloning and characterization of the l-cysteine desulfhydrase gene of Fusobacterium nucleatum. FEMS Microbiol Lett 215:75–80

    PubMed  CAS  Google Scholar 

  27. Gagnon Y, Breton R, Putzer H, Pelchat M, Grunberg-Manago M, Lapointe J (1994) Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J Biol Chem 269:7473–7482

    PubMed  CAS  Google Scholar 

  28. Golic N, Schliekelmann M, Fernandez M, Kleerebezem M, van Kranenburg R (2005) Molecular characterization of the CmbR activator-binding site in the metC-cysK promoter region in Lactococcus lactis. Microbiology 151:439–446

    Article  PubMed  CAS  Google Scholar 

  29. Guillouard I, Auger S, Hullo MF, Chetouani F, Danchin A, Martin-Verstraete I (2002) Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J Bacteriol 184:4681–4689

    Article  PubMed  CAS  Google Scholar 

  30. Haitani Y, Awano N, Yamazaki M, Wada M, Nakamori S, Takagi H (2006) Functional analysis of l-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol Lett 255:156–163

    Article  PubMed  CAS  Google Scholar 

  31. Hindson VJ (2003) Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine. Biochem J 375:745–752

    Article  PubMed  CAS  Google Scholar 

  32. Hosie AHF, Poole PS (2001) Bacterial ABC transporters of amino acids. Res Microbiol 152:259–270

    Article  PubMed  CAS  Google Scholar 

  33. Hryniewicz MM, Kredich NM (1991) The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol 173:5876–5886

    PubMed  CAS  Google Scholar 

  34. Huang B, Vetting MW, Roderick SL (2005) The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol 187:3201–3205

    Article  PubMed  CAS  Google Scholar 

  35. Hulanicka MD, Hallquist SG, Kredich NM, Mojica AT (1979) Regulation of O-acetylserine sulfhydrylase B by l-cysteine in Salmonella typhimurium. J Bacteriol 140:141–146

    PubMed  CAS  Google Scholar 

  36. Hung J, Turner MS, Walsh T, Giffard PM (2005) BspA (CyuC) in Lactobacillus fermentum BR11 is a highly expressed high-affinity l-cystine-binding protein. Curr Microbiol 50:33–37

    Article  PubMed  CAS  Google Scholar 

  37. Inoue H, Inagaki K, Eriguchi SI, Tamura T, Esaki N, Soda K, Tanaka H (1997) Molecular characterization of the mde operon involved in l-methionine catabolism of Pseudomonas putida. J Bacteriol 179:3956–3962

    PubMed  CAS  Google Scholar 

  38. Iwanicka-Nowicka R, Hryniewicz MM (1995) A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166:11–17

    Article  PubMed  CAS  Google Scholar 

  39. Johansson P, Hederstedt L (1999) Organization of genes for tetrapyrrole biosynthesis in gram-positive bacteria. Microbiology 145:529–538

    Article  PubMed  CAS  Google Scholar 

  40. Johnson CM, Huang B, Roderick SL, Cook PF (2004) Kinetic mechanism of the serine acetyltransferase from Haemophilus influenzae. Arch Biochem Biophys 429:115–122

    Article  PubMed  CAS  Google Scholar 

  41. Kari C, Nagy Z, Kovacs P, Hernadi F (1971) Mechanism of the growth inhibitory effect of cysteine on Escherichia coli. J Gen Microbiol 68:349–356

    PubMed  CAS  Google Scholar 

  42. Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137:220–230

    Article  PubMed  CAS  Google Scholar 

  43. Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152:279–290

    Article  PubMed  CAS  Google Scholar 

  44. Kertesz MA, Wietek C (2001) Desulfurization and desulfonation: applications of sulfur-controlled gene expression in bacteria. Appl Microbiol Biotechnol 57:460–466

    Article  PubMed  CAS  Google Scholar 

  45. Koch DJ, Ruckert C, Albersmeier A, Huser AT, Tauch A, Puhler A, Kalinowski J (2005a) The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 58:480–494

    Article  PubMed  CAS  Google Scholar 

  46. Koch DJ, Ruckert C, Rey DA, Mix A, Puhler A, Kalinowski J (2005b) Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Appl Environ Microbiol 71:6104–6114

    Article  PubMed  CAS  Google Scholar 

  47. Kredich NM (1996) Biosynthesis of Cysteine. In: Neidhardt FC (ed) Escherichia coli and Salmonella, cellular and molecular biology. ASM Press, Washington DC, p 514–527

    Google Scholar 

  48. Lai CY, Baumann P (1992) Sequence analysis of a DNA fragment from Buchnera aphidicola (an endosymbiont of aphids) containing genes homologous to dnaG, rpoD, cysE, and secB. Gene 119:113–118

    Article  PubMed  CAS  Google Scholar 

  49. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnical production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  PubMed  CAS  Google Scholar 

  50. Lillig CH, Prior A, Schwenn JD, Aslund F, Ritz D, Vlamis-Gardikas A, Holmgren A (1999) New thioredoxins and glutaredoxins as electron donors of 3′-phosphoadenylylsulfate reductase. J Biol Chem 274:7695–7698

    Article  PubMed  CAS  Google Scholar 

  51. Lithgow JK, Hayhurst EJ, Cohen G, Aharonowitz Y, Foster SJ (2004) Role of a cysteine synthase in Staphylococcus aureus. J Bacteriol 186:1579–1590

    Article  PubMed  CAS  Google Scholar 

  52. Lochowska A, Iwanicka-Nowicka R, Zaim J, Witkowska-Zimny M, Bolewska K, Hryniewicz MM (2004) Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Mol Microbiol 53:791–806

    Article  PubMed  CAS  Google Scholar 

  53. Maier THP (2003) Semisynthetic production of unnatural l-α-aminoacids by metabolic engineering of the cysteine biosynthetic pathway. Nat Biotechnol 21:422–427

    Article  PubMed  CAS  Google Scholar 

  54. Mansilla MC, Albanesi D, de Mendoza D (2000) Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in l-cysteine biosynthesis in Bacillus subtilis. J Bacteriol 182:5885–5892

    Article  PubMed  CAS  Google Scholar 

  55. Mansilla MC, de Mendoza D (1997) l-cysteine biosynthesis in Bacillus subtilis: identification, sequencing, and functional characterization of the gene coding for phosphoadenylylsulfate sulfotransferase. J Bacteriol 179:976–981

    PubMed  CAS  Google Scholar 

  56. Mansilla MC, de Mendoza D (2000) The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146:815–821

    PubMed  CAS  Google Scholar 

  57. Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  CAS  Google Scholar 

  58. Minami H, Suzuki H, Kumagai H (2003) A mutant Bacillus subtilis gamma-glutamyltranspeptidase specialized in hydrolysis activity. FEMS Microbiol Lett 224:169–173

    Article  PubMed  CAS  Google Scholar 

  59. Mino K, Ishikawa K (2003a) Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix K1. J Bacteriol 185:2277–2284

    Article  PubMed  CAS  Google Scholar 

  60. Mino K, Ishikawa K (2003b) A novel O-phospho-l-serine sulfhydrylation reaction catalyzed by O-acetylserine sulfhydrylase from Aeropyrum pernix K1. FEBS Lett 551:133–138

    Article  PubMed  CAS  Google Scholar 

  61. Muller A, Thomas GH, Horler R, Brannigan JA, Blagova E, Levdikov VM, Fogg MJ, Wilson KS, Wilkinson AJ (2005) An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein. Mol Microbiol 57:143–155

    Article  PubMed  CAS  Google Scholar 

  62. Nakamori S, Kobayashi SI, Kobayashi C, Takagi H (1998) Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64:1607–1611

    PubMed  CAS  Google Scholar 

  63. Nakamura T, Iwahashi H, Eguchi Y (1984) Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium. J Bacteriol 158:1122–1127

    PubMed  CAS  Google Scholar 

  64. Oppezzo OJ (1998) In vivo effects of anti-inducers of the cysteine regulon in Salmonella typhimurium. FEMS Microbiol Lett 163:143–148

    Article  PubMed  CAS  Google Scholar 

  65. Ostrowski J, Kredich NM (1989) Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-l-serine. J Bacteriol 171:130–140

    PubMed  CAS  Google Scholar 

  66. Parry J, Clark DP (2002) Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli. FEMS Microbiol Lett 209:81–85

    Article  PubMed  CAS  Google Scholar 

  67. Pinto R, Tang QX, Britton WJ, Leyh TS, Triccas JA (2004) The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex. Microbiology 150:1681–1686

    Article  PubMed  CAS  Google Scholar 

  68. Pittman MS, Corker H, Wu G, Binet MB, Moir AJ, Poole RK (2002) Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849

    Article  PubMed  CAS  Google Scholar 

  69. Quadroni M, Staudenmann W, Kertesz M, James P (1996) Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. Eur J Biochem 239:773–781

    Article  PubMed  CAS  Google Scholar 

  70. Rey DA, Nentwich SS, Koch DJ, Ruckert C, Puhler A, Tauch A, Kalinowski J (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887

    Article  PubMed  CAS  Google Scholar 

  71. Rey DA, Puhler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103:51–65

    PubMed  CAS  Google Scholar 

  72. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res 32:3340–3353

    Article  PubMed  CAS  Google Scholar 

  73. Ruckert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J (2005) Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6:121

    Article  PubMed  CAS  Google Scholar 

  74. Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  PubMed  CAS  Google Scholar 

  75. Seiflein TA, Lawrence JG (2001) Methionine-to-cysteine recycling in Klebsiella aerogenes. J Bacteriol 183:336–346

    Article  PubMed  CAS  Google Scholar 

  76. Sekowska A, Danchin A (1999) Identification of yrrU as the methylthioadenosine nucleosidase gene in Bacillus subtilis. DNA Res 6:255–264

    Article  PubMed  CAS  Google Scholar 

  77. Sirko A, Zatyka M, Sadowy E, Hulanicka D (1995) Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol 177:4134–4136

    PubMed  CAS  Google Scholar 

  78. Sperandio B, Polard P, Ehrlich DS, Renault P, Guedon E (2005) Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187:3762–3778

    Article  PubMed  CAS  Google Scholar 

  79. Suzuki H, Hashimoto W, Kumagai H (1993) Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential. J Bacteriol 175:6038–6040

    PubMed  CAS  Google Scholar 

  80. Suzuki H, Kamatani S, Kim ES, Kumagai H (2001) Aminopeptidases A, B, and N and dipeptidase D are the four cysteinylglycinases of Escherichia coli K-12. J Bacteriol 183:1489–1490

    Article  PubMed  CAS  Google Scholar 

  81. Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H (2005) The yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J Bacteriol 187:5861–5867

    Article  PubMed  CAS  Google Scholar 

  82. Takagi H, Yoshioka K, Awano N, Nakamori S, Ono B (2003) Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 218:291–297

    Article  PubMed  CAS  Google Scholar 

  83. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  CAS  Google Scholar 

  84. Turner MS, Woodberry T, Hafner LM, Giffard PM (1999) The bspA locus of Lactobacillus fermentum BR11 encodes an l-cystine uptake system. J Bacteriol 181:2192–2198

    PubMed  CAS  Google Scholar 

  85. van der Ploeg JR, Barone M, Leisinger T (2001a) Functional analysis of the Bacillus subtilis cysK and cysJI genes. FEMS Microbiol Lett 201:29–35

    Article  PubMed  Google Scholar 

  86. van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF (1998) Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiology 144:2555–2561

    Article  PubMed  Google Scholar 

  87. van der Ploeg JR, Eichhorn E, Leisinger T (2001b) Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol 176:1–8

    Article  PubMed  Google Scholar 

  88. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making sense of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3:383–396

    Article  PubMed  CAS  Google Scholar 

  89. Vermeij P, Kertesz MA (1999) Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181:5833–5837

    PubMed  CAS  Google Scholar 

  90. Wada M, Awano N, Haisa K, Takagi H, Nakamori S (2002) Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol Lett 217:103–107

    Article  PubMed  CAS  Google Scholar 

  91. Wheeler PR, Coldham NG, Keating L, Gordon SV, Wooff EE, Parish T, Hewinson RG (2005) Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic mycobacteria. J Biol Chem 280:8069–8078

    Article  PubMed  CAS  Google Scholar 

  92. White RH (2003) The biosynthesis of cysteine and homocysteine in Methanococcus jannaschii. Biochim Biophys Acta 1624:46–53

    PubMed  CAS  Google Scholar 

  93. Williams SJ, Senaratne RH, Mougous JD, Riley LW, Bertozzi CR (2002) 5′-Adenosylphosphosulfate lies at a metabolic branchpoint in Mycobacteria. J Biol Chem 277:32606–32615

    Article  PubMed  CAS  Google Scholar 

  94. Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol 163:273–286

    Article  PubMed  CAS  Google Scholar 

  95. Wooff E, Michell SL, Gordon SV, Chambers MA, Bardarov S, Jacobs WR Jr, Hewinson RG, Wheeler PR (2002) Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Mol Microbiol 43:653–663

    Article  PubMed  CAS  Google Scholar 

  96. Yamagata S, D'Andrea RJ, Fujisaki S, Isaji M, Nakamura K (1993) Cloning and bacterial expression of the CYS3 gene encoding cystathionine γ-lyase of Saccharomyces cerevisiae and the physicochemical and enzymatic properties of the protein. J Bacteriol 175:4800–4808

    PubMed  CAS  Google Scholar 

  97. Yoshida Y, Negishi M, Amano A, Oho T, Nakano Y (2003) Differences in the βC–S lyase activities of viridans group streptococci. Biochem Biophys Res Commun 300:55–60

    Article  PubMed  CAS  Google Scholar 

  98. Yvon M, Chambellon E, Bolotin A, Roudot-Algaron F (2000) Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl Environ Microbiol 66:571–577

    Article  PubMed  CAS  Google Scholar 

  99. Zhao C, Moriga Y, Feng B, Kumada Y, Imanaka H, Imamura K, Nakanishi K (2006) On the interaction site of serine acetyltransferase in the cysteine synthase complex from Escherichia coli. Biochem Biophys Res Commun 341:911–916

    Article  PubMed  CAS  Google Scholar 

  100. Zhao CH, Ohno K, Sogoh K, Imamura K, Sakiyama T, Nakanishi K (2004) Production of nonproteinaceous amino acids using recombinant Escherichia coli cells expressing cysteine synthase and related enzymes with or without the secretion of O-acetyl-l-serine. J Biosci Bioeng 97:322–328

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pierre Burguière and Brice Sperandio whose PhD theses have been extremely helpful for the writing of this paper. We are grateful to Sandrine Auger and Olga Soutourina for critical reading of the paper. This research was supported by grants from the “Ministère de l'Education Nationale de la Recherche et de la Technologie”, the “Institut National de la Recherche argronomique” (UR895), the “Centre National de la Recherche Scientifique” (URA 2171), the “Institut Pasteur” and the “Université Paris 7”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Martin-Verstraete .

Editor information

Volker F. Wendisch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guédon, E., Martin-Verstraete, I. (2006). Cysteine Metabolism and Its Regulation in Bacteria. In: Wendisch, V.F. (eds) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering. Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_060

Download citation

Publish with us

Policies and ethics