Skip to main content

Mathematical Modelling of Predatory Prokaryotes

  • Chapter
  • First Online:
Predatory Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 4))

Abstract

Predator–prey models have a long history in mathematical modelling of ecosystem dynamics and evolution. In this chapter an introduction to the methodology of mathematical modelling is given, with emphasis on microbial predator–prey systems, followed by a description of variants of the basic two-species system. Then the two-species system is extended to incorporate effects such as predator satiation and prey escape strategies, after which multi-species effects, including alternative prey, protector species and decoy effects, are discussed. Simulations are used to discuss the effect of several model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alander M, De Smet I, Nollet L, Verstraete W, von Wright A, Mattila-Sandholm T (1999) The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). Int J Food Microbiol 46:71–79

    Article  CAS  PubMed  Google Scholar 

  2. Alexander M (1981) Why microbial predators and parasites do not eliminate their prey and hosts. Annu Rev Microbiol 25:113–133

    Article  Google Scholar 

  3. Arditi R, Akçakaya HR (1990) Underestimation of mutual interference of predators. Oecologia 83:358–361

    Google Scholar 

  4. Arditi R, Callois JM, Tyutyunov Y, Jost C (2004) Does mutual interference always stabilize predator–prey dynamics? A comparison of models. C R Biol 327:1037–1057

    Article  PubMed  Google Scholar 

  5. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  6. Ballyk M, Smith H (1999) A model of microbial growth in a plug flow reactor with wall attachment. Math Biosci 158:95–126

    Article  CAS  PubMed  Google Scholar 

  7. Ballyk M, Jones DA, Smith HL (2001) Microbial competition in reactors with wall attachment: a mathematical comparison of chemostat and plug flow models. Microb Ecol 41:210–221

    PubMed  Google Scholar 

  8. Ben-Jacob E, Cohen I, Shochet O, Tenenbaum A, Czirók A, Vicsek T (1995) Cooperative formation of chiral patterns during growth of bacterial colonies. Phys Rev Lett 75:2899–2902

    Article  CAS  PubMed  Google Scholar 

  9. Beddington JR (1975) Mutual interference between parasites or predators and its effect on search efficiency. J Anim Ecol 45:331–340

    Article  Google Scholar 

  10. Beveridge TJ (1999) Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    CAS  PubMed  Google Scholar 

  11. Bohannan BJM, Lenski RE (1997) Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78:2303–2315

    Article  Google Scholar 

  12. Bulmer M (1994) Theoretical evolutionary ecology. Sinauer, Sunderland, MA

    Google Scholar 

  13. Burnham JC, Collart SA, Highison BW (1981) Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch Microbiol 129:285–294

    Article  Google Scholar 

  14. Button DK (1991) Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis–Menten constant. Appl Environ Microbiol 57:2033–2038

    CAS  PubMed  Google Scholar 

  15. Cain CC, Lee D, Waldo RH, Henry AT, Casida EJ, Wani MC, Wall ME, Oberlies NH, Falkinham JO (2003) Synergistic antimicrobial activity of metabolites produced by a nonobligate bacterial predator. Antimicrob Agents Chemother 47:2113–2117

    Article  CAS  PubMed  Google Scholar 

  16. Campbell A (1961) Conditions for the existence of bacteriophage. Evolution 15:153–165

    Article  Google Scholar 

  17. Canale RP (1969) Predator–prey relationships in a model for the activated sludge process. Biotech Bioeng XI:887–907

    Article  Google Scholar 

  18. Casida LE Jr, Lukezic FL (1992) Control of leaf spot diseases of alfalfa and tomato with application of the bacterial predator Pseudomonas strain 679-2. Plant Dis 76:1217–1220

    Article  Google Scholar 

  19. Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328

    Article  CAS  PubMed  Google Scholar 

  20. Chao L, Levin BR, Stewart FM (1977) A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58:369–378

    Article  Google Scholar 

  21. Christensen NO, Nansen P, Frandsen F (1976) Molluscs interfering with the capacity of Fasciola hepatica miracidia to infect Lymnaea trunculata. Parasitology 73:161–167

    Article  CAS  PubMed  Google Scholar 

  22. de Wit R, van den Ende FP, van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria, and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiol Ecol 17:117–136

    Google Scholar 

  23. DeAngelis DL, Goldstein RA, O'Neill RV (1975) A model for trophic interaction. Ecology 56:881–892

    Article  Google Scholar 

  24. DeAngelis DL (1992) Dynamics of nutrient cycling and food webs. Chapman & Hall, London

    Google Scholar 

  25. Deng B, Jessi S, Ledder G, Rand A, Srodulski S (2003) Biological control does not imply paradox—a case against ratio-dependent models. Discussion Paper, University of Nebraska-Lincoln

    Google Scholar 

  26. Dial BE, Fitzpatrick LC (1983) Lizard tail autotomy: function and energetics of postautotomy tail movement in Scincella lateralis. Science 219:391–393

    Article  PubMed  CAS  Google Scholar 

  27. Dockery J, Klapper I (2001) Finger formation in biofilm layers. SIAM J Appl Math 62:853–869

    Article  Google Scholar 

  28. Donelson JE, Hill LH, El-Sayed NMA (1998) Multiple mechanisms of immune evasion by African trypanosomes. Mol Biochem Parasitol 91:51–66

    Article  CAS  PubMed  Google Scholar 

  29. Drutz DJ (1976) Response of Neisseria gonorrhoea to Bdellovibrio species. Infect Immun 13:247–251

    CAS  PubMed  Google Scholar 

  30. Dulos E, Marchand A (1984) Oscillations des densites de population du couple bacterien proie–predateur Escherichia coliBdellovibrio bacteriovorus: etude experimentale et modele theorique. Ann Microbiol (Paris) 135A(2):271–295

    CAS  Google Scholar 

  31. Esteve I, Gaju N (1999) Bacterial symbioses: predation and mutually beneficial associations. Int Microbiol 2:81–86

    CAS  PubMed  Google Scholar 

  32. Fisher ME, Freedman HI (1991) A model of environmental protection by a mutualist. Ecol Model 58:119–139

    Article  Google Scholar 

  33. Ford RM, Cummings PT (1998) Mathematical models of bacterial chemotaxis. In: Koch AL, Robinson JA, Milliken GA (eds) Mathematical modeling in microbial ecology. Chapman & Hall, New York, pp 228–269

    Google Scholar 

  34. Forde SE, Thompson JN, Bohannan BJ (2004) Adaptation varies through space and time in a coevolving host–parasitoid interaction. Nature 431:841–844

    Article  CAS  PubMed  Google Scholar 

  35. Frank SA (1994) Spatial polymorphism of bacteriocines and other allelopathic traits. Evol Ecol 8:369–386

    Article  Google Scholar 

  36. Fratamico PM, Whiting RC (1995) Ability of Bdellovibrio bacteriovorus 109J to lyse gram-negative food-borne pathogenic and spoilage bacteria. J Food Protect 58:160–164

    Google Scholar 

  37. Gerritse J, Schut F, Gottschal JC (1992) Modelling of mixed chemostat cultures of an aerobic bacterium Comamonas testosteroni, and an anaerobic bacterium Veillonella alcalescens: comparison with experimental data. Appl Environ Microbiol 58:1466–1476

    CAS  PubMed  Google Scholar 

  38. Gibson GR, Wang X (1994) Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 118:121–127

    Article  CAS  PubMed  Google Scholar 

  39. Gottschal JC (1993) Growth kinetics and competition—some contemporary comments. Antonie van Leeuwenhoek 63:299–313

    Article  CAS  PubMed  Google Scholar 

  40. Grover JP (1988) Dynamics and competition in a variable environment: experiments with two diatom species. Ecology 69:408–417

    Article  Google Scholar 

  41. Grover JP (1990) Resource competition in a variable environment: phytoplankton growing according to Monod's model. Am Nat 136:771–89

    Article  Google Scholar 

  42. Guerrero R, Pedros-Alio C, Esteve I, Mas J, Chase D (1986) Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83:2138–2142

    Article  CAS  PubMed  Google Scholar 

  43. Harmon JP, Andow DA (2003) Alternative foods as a mechanism to enhance a generalist ladybird's predation of a target prey. Proceedings of the first international symposium on biological control of arthropods, Honolulu, Hawaii, pp 244–249

    Google Scholar 

  44. Hassel MP, Varley GC (1969) New inductive population model for insect parasites and its bearing on biological control. Nature 223:1133–1137

    Article  Google Scholar 

  45. Hermanowicz SW (1998) Model of two-dimensional biofilm morphology. Water Sci Technol 37:219–222

    Article  Google Scholar 

  46. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  47. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  48. Itoh K, Freter R (1989) Control of Escherichia coli populations by a combination of indigenous clostridia and lactobacilli in gnotobiotic mice and continuous-flow cultures. Infect Immun 57:559–565

    CAS  PubMed  Google Scholar 

  49. Iwasa Y, Nakamaru M, Levin SA (1998) Allelopathy of bacteria in a lattice population: competition between colicin-sensitive and colicin-producing strains. Evol Ecol 12:785–802

    Article  Google Scholar 

  50. Jackson L, Whiting RC (1992) Reduction of an Escherichia coli K12 population by Bdellovibrio bacteriovorus under various in vitro conditions of parasite:host ratio, temperature, or pH. J Food Protect 55:859–861

    Google Scholar 

  51. Jahnke RA, Emerson SR, Murray JW (1982) A model for oxygen reduction, denitrification, and organic matter mineralization in marine sediments. Limnol Oceanogr 27:610–630

    Article  CAS  Google Scholar 

  52. Jones DA, Smith H (2000) Microbial competition for nutrient and wall sites in plug flow. SIAM J Appl Math 60:1576–1600

    Article  Google Scholar 

  53. Jost JL, Drake JF, Tsuchiya HM, Frederickson AG (1973) Microbial food chains and food webs. J Theor Biol 41:461–484

    Article  CAS  PubMed  Google Scholar 

  54. Jurkevitch E, Davidov Y (2006) Phylogenetic diversity and evolution of predatory prokaryotes. Micobiol Monogr, vol 4. Springer, Berlin Heidelberg New York

    Google Scholar 

  55. Kamerman DJ, Wilkinson MHF (2002) In silico modelling of the human intestinal microflora. In: Proceedings of the international conference on computational science (ICCS 2002). Springer, Berlin Heidelberg New York, pp 117–126

    Google Scholar 

  56. Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shigesada N (1997) Modelling spatiotemporal patterns generated by Bacillus subtilis. J Theor Biol 188:177–185

    Article  CAS  PubMed  Google Scholar 

  57. Koch AL (1982) Multistep kinetics: choice of models for growth of bacteria. J Theor Biol 98:401–417

    Article  CAS  PubMed  Google Scholar 

  58. Koch AL (1997) Microbial physiology and ecology of slow growth. Microbiol Mol Biol Rev 61:305–318

    CAS  PubMed  Google Scholar 

  59. Koch AL (1998) The Monod model and its alternatives. In: Koch AL, Robinson JA, Milliken GA (eds) Mathematical modeling in microbial ecology. Chapman & Hall, New York, pp 62–93

    Google Scholar 

  60. Koch AL, Robinson JA, Milliken GA (1998) Mathematical modeling in microbial ecology. Chapman & Hall, New York

    Google Scholar 

  61. Kooi BW, Kooijman SALM (1994a) Existence and stability of microbial prey–predator systems. J Theor Biol 170:75–85

    Article  Google Scholar 

  62. Kooi BW, Kooijman SALM (1994b) The transient behaviour of food chains in chemostats. J Theor Biol 170:87–94

    Article  Google Scholar 

  63. Kooijman SALM (1993) Dynamic energy budgets in biological systems. Cambridge University Press, Cambridge, UK

    Google Scholar 

  64. Levin BR, Stewart FM, Chao L (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am Nat 111:3–24

    Article  Google Scholar 

  65. Levins D (1968) Evolution in a changing environment. Princeton University Press, Princeton

    Google Scholar 

  66. Lin D, McBride MJ (1996) Development of techniques for the genetic manipulation of the gliding bacteria Lysobacter enzymogenes and Lysobacter brunescens. Can J Microbiol 42:896–902

    Article  CAS  PubMed  Google Scholar 

  67. Lotka AJ (1925) Elements of physical biology. William and Wilkins, Baltimore

    Google Scholar 

  68. Mallory LM, Yuk CS, Liang LN, Alexander M (1983) Alternative prey: a mechanism for elimination of bacterial species by protozoa. Appl Environ Microbiol 46:1073–1079

    CAS  PubMed  Google Scholar 

  69. Marchand A, Gabignon O (1981) Modèle théoretique de la cinétique d'interaction du couple proie–prédateur Bdellovibrio bacteriovorusEscherichia coli. Ann Microbiol (Paris) 132B(3):321–326

    Google Scholar 

  70. Martin MO (2002) Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4:467–477

    CAS  PubMed  Google Scholar 

  71. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  CAS  PubMed  Google Scholar 

  72. McGlade J (1999) Advanced ecological theory. Blackwell Science, Oxford, UK

    Book  Google Scholar 

  73. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Uno H (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 69:170–176

    Article  CAS  PubMed  Google Scholar 

  74. Monod J (1950) La technique de culture continue, théorie et applications. Ann Inst Pasteur 79:390–410

    CAS  Google Scholar 

  75. Neuhauser C, Fargione JE (2004) A mutualism–parasitism continuum model and its application to plant–mycorrhizae interactions. Ecol Model 177:337–352

    Article  Google Scholar 

  76. Nisbet RM, Cunningham A, Gurney WSC (1983) Endogenous metabolism and the stability of microbial prey–predator systems. Biotech Bioeng XXV:301–306

    Article  Google Scholar 

  77. Palm WJ III (2005) Introduction to MATLAB 7 for engineers. McGraw-Hill, Boston, pp 465–532

    Google Scholar 

  78. Payne RJH, Jansen VAA (2001) Understanding phage therapy as a density-dependent kinetic process. J Theor Biol 208:225–230

    Article  Google Scholar 

  79. Pius SM, Leberg PL (1998) The protector species hypothesis: do black skimmers find refuge from predators in gull-billed tern colonies? Ethology 104:273–284

    Article  Google Scholar 

  80. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge University Press, Cambridge, UK

    Google Scholar 

  81. Punzo F (1997) Leg autotomy and avoidance behavior in response to a predator in the wolf spider, Schizocosa avida (Aranae, Lycosidae). J Arachnol 25:202–205

    Google Scholar 

  82. Ramasamy R (1998) Molecular basis for evasion of host immunity and pathogenesis in malaria. Biochim Biophys Acta 1406:10–27

    CAS  PubMed  Google Scholar 

  83. Riley MA, Gordon DM (1996) The ecology and evolution of bacteriocins. J Ind Microbiol 17:151–158

    Article  CAS  Google Scholar 

  84. Sarkar BL, Chakrabarti AK, Koley H, Chakrabarti MK, De SP (1996) Biological activity and interaction of Vibrio cholerae bacteriophages in rabbit ileal loop. Indian J Med Res 104:139–141

    CAS  PubMed  Google Scholar 

  85. Shemesh Y, Jurkevitch E (2004) Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 6:12–18

    Article  PubMed  Google Scholar 

  86. Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675

    CAS  PubMed  Google Scholar 

  87. Tan Y, Wang Z-X, Marshall KC (1996) Modeling substrate inhibition of microbial growth. Biotech Bioeng 52:602–608

    Article  CAS  Google Scholar 

  88. Tyson R, Lubkin SR, Murray JD (1999) A minimal mechanism for bacterial pattern formation. Proc R Soc Lond B 266:299–304

    Article  CAS  Google Scholar 

  89. Van Loan CF (1997) Introduction to scientific computing. Prentice-Hall, Upper Saddle River, NJ, p 308–340

    Google Scholar 

  90. Volterra V (1926) Fluctuations in the abundance of species, considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  91. Vos M, Moreno-Berrocal S, Karamaouna F, Hemerik L, Vet LEM (2001) Plant-mediated indirect effects and the persistence of parasitoid–herbivore communities. Ecol Lett 4:38–45

    Article  Google Scholar 

  92. Weld RJ, Butts C, Heinemann JA (2004) Models of phage growth and their applicability to phage therapy. J Theor Biol 227:1–11

    Article  CAS  PubMed  Google Scholar 

  93. Westergaard JM, Kramer TT (1977) Bdellovibrio and the intestinal flora of vertebrates. Appl Environ Microbiol 34:506–511

    CAS  PubMed  Google Scholar 

  94. Wilder JW, Vasquez DA, Christie I, Colbert JJ (1995) Wave trains in a model of gypsy moth population dynamics. Chaos 5:700–706

    Article  PubMed  Google Scholar 

  95. Wilkinson MHF (2001) Predation in the presence of decoys: an inhibitory factor on pathogen control by bacteriophages or bdellovibrios in dense and diverse ecosystems. J Theor Biol 208:27–36

    Article  CAS  PubMed  Google Scholar 

  96. Wilkinson MHF (2002) Model intestinal microflora in computer simulation: a simulation and modelling package for host–microflora interactions. IEEE Trans Biomed Eng 49:1077–1085

    Article  PubMed  Google Scholar 

  97. Wilkinson MHF (2003) Decoys in predation and parasitism. Comments Theor Biol 8:321–338

    Article  Google Scholar 

  98. Yair S, Yaacov D, Susan K, Jurkevitch E (2003) Small eats big: ecology and diversity of Bdellovibrio and like organisms, and their dynamics in predator–prey systems. Agronomie 23:433–439

    Article  Google Scholar 

  99. Yousif F, El-Emam M, El-Sayed K (1998) Effect of six non-target snails on Schistosoma mansoni miracidial host finding and infection of Biomphalaria alexandrina under laboratory conditions. J Egypt Soc Parasitol 28:559–568

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. F. Wilkinson .

Editor information

Edouard Jurkevitch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilkinson, M.H.F. (2006). Mathematical Modelling of Predatory Prokaryotes. In: Jurkevitch, E. (eds) Predatory Prokaryotes. Microbiology Monographs, vol 4. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7171_054

Download citation

Publish with us

Policies and ethics