Skip to main content

Geobiology of Magnetotactic Bacteria

  • Chapter
  • First Online:
Magnetoreception and Magnetosomes in Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 3))

Abstract

MTB population dynamics and their contribution to iron cycling in modern chemically stratified environments have not been previously evaluated in a systematic fashion. Using the tools of modern molecular microbial ecology and mineralogy, it is possible to determine the population dynamics of magnetite and greigite producing MTB with respect to environmental geochemistry. This integrated approach can help provide an understanding of the contribution of MTB to iron and sulfur cycling and export to sediments. Additionally, understanding the coupled biology and geochemistry of MTB in modern environments can help interpret the significance of magnetofossils present in the rock record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565

    Article  PubMed  CAS  Google Scholar 

  2. Anbar A, Knoll A (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142

    Article  PubMed  CAS  Google Scholar 

  3. Anderson TF, Raiswell R (2004) Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. Am J Sci 304:203–233

    Article  CAS  Google Scholar 

  4. Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans. Science 304:87–90

    Article  PubMed  CAS  Google Scholar 

  5. Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL (2004) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 182:373–387

    Article  PubMed  CAS  Google Scholar 

  6. Bazylinski DA, Frankel RB (1992) Production of iron sulfide minerals by magnetotactic bacteria in sulfidic environments. In: Skinner HC, Fitzpatrick RW (eds) Biomineralization Processes, Iron, Manganese. Catena, pp 147–159

    Google Scholar 

  7. Bazylinski DA et al. (1995) Controlled biomineralization of magnetite (Fe3O4) and gregite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    PubMed  CAS  Google Scholar 

  8. Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334:518–519

    Article  Google Scholar 

  9. Bazylinski DA, Heywood BR, Mann S, Frankel RB (1993) Fe3O4and Fe3S4in a bacterium. Nature 366:218

    Article  Google Scholar 

  10. Bazylinski DA, Schlezinger DR, Howes BH, Frankel RB, Epstein SS (2000) Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond. Chem Geol 169:319–328

    Article  CAS  Google Scholar 

  11. Benning LG, Wilkin RT, Barnes HL (2000) Reaction pathways in the Fe-S system below 100 degrees C. Chem Geol 167:25–51

    Article  CAS  Google Scholar 

  12. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    Article  PubMed  CAS  Google Scholar 

  13. Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36:217–238

    Article  CAS  Google Scholar 

  14. Boenigk J, Matz C, Jurgens K, Arndt H (2001) Confusing Selective Feeding with Differential Digestion in Bacterivorous Nanoflagellates. J Eukaryot Microbiol 48:425–432

    Article  PubMed  CAS  Google Scholar 

  15. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  CAS  Google Scholar 

  16. Canfield DE, Berner RA (1987) Dissolution and pyritization of magnetite in anoxic marine sediments. Geochem Cosmochim Acta 51:645–659

    Article  CAS  Google Scholar 

  17. Canovas P (2006) The redox and iron-sulfide geochemistry of Salt Pond and the thermodynamic constraints on native marine magnetotactic bacteria. Master's thesis, Department of Marine Chemistry and Geochemistry. Massachusetts Institute of Technology- Woods Hole Oceanographic Institution Joint Program, Woods Hole, MA, 145 p

    Google Scholar 

  18. Chang S-BR (1989) Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Ann Rev Earth Planet Sci 17:169–195

    Article  CAS  Google Scholar 

  19. Chang S-BR, Kirschvink JL, Stolz JF (1987) Biogenic magnetite as a primary remanence carrier in limestone deposits. Phys Earth Planet In 46:289–303

    Article  Google Scholar 

  20. Cornell RM, Schwertmann U (1996) The iron oxides. Wiley, Weinheim

    Google Scholar 

  21. Cox BL et al. (2002) Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol J 19:387–406

    Article  CAS  Google Scholar 

  22. DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806

    Article  PubMed  CAS  Google Scholar 

  23. Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JNE, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    Article  PubMed  CAS  Google Scholar 

  24. Egli R (2004a) Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments. Stud Geophys Geod 48:391–446

    Article  Google Scholar 

  25. Egli R (2004b) Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Phys Chem Earth, Parts A/B/C 29:869–884

    Article  Google Scholar 

  26. Farina M, Esquivel D, Lins de Barros H (1990) Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 383:256–258

    Article  Google Scholar 

  27. Flies CB, Jonkers HM, de Beer D, Bosselmann K, Bottcher ME, Schüler D (2005a) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol 52:185–195

    Article  PubMed  CAS  Google Scholar 

  28. Flies CB, Peplies J, Schüler D (2005b) Combined Approach for Characterization of Uncultivated Magnetotactic Bacteria from Various Aquatic Environments. Appl Environ Microbiol 71:2723–2731

    Article  PubMed  CAS  Google Scholar 

  29. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A Large Gene Cluster Encoding Several Magnetosome Proteins Is Conserved in Different Species of Magnetotactic Bacteria. Appl Environ Microbiol 67:4573–4582

    Article  PubMed  Google Scholar 

  30. Heijnen JJ (1993) In search of a thermodynamic description of biomass yields for chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858

    Article  Google Scholar 

  31. Heywood BR, Bazylinski DA, Garrett-Reed AJ, Mann S, Frankel RB (1990) Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften 77:536-538

    Article  Google Scholar 

  32. Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Sulfide oxidation in the Black Sea chemocline. Deep-Sea Res A: Oceanograph Res Pap 38:S1083–S1103

    Article  Google Scholar 

  33. Jørgensen BB, Kuenen JG, Cohen Y (1979) Microbial transformations of sulphur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24:799–822

    Article  Google Scholar 

  34. Kao S-J, Horng C-S, Roberts AP, Liu K-K (2004) Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chem Geol 203:153–168

    Article  CAS  Google Scholar 

  35. Kim BY, Kodama KP, Moeller RE (2005) Bacterial magnetite produced in water column dominates lake sediment mineral magnetism: Lake Ely, USA. Geophys J Int 163:26–37

    Article  CAS  Google Scholar 

  36. Komeili A, Li Z, Newman DK, Jensen GJ (2005) Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK. Science 311:242–245

    Article  PubMed  CAS  Google Scholar 

  37. Kopp RE, Nash CZ, Kirschvink JL, Leadbetter JR (2004) A possible magnetite/maghemite electrochemical battery in the magnetotactic bacteria. Eos Trans. AGU 85:Fall Meet. Suppl., GP34A-06

    Google Scholar 

  38. Lennie AR, Redfern SAT, Champness PE, Stoddart CP, Schofield PF, Vaughan DJ (1997) Transformation of mackinawite to greigite; an in situ X-ray powder diffraction and transmission electron microscope study. Am Mineral 82:302–309

    CAS  Google Scholar 

  39. Lovley DR (2003) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Dworkin M (ed) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, electronic release 3.4. Springer, Berlin Heidelberg New York

    Google Scholar 

  40. Ludwig W et al. (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  41. Luther III G et al. (2001) Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats, and hydrothermal vent waters. J Environ Monit 3:61–66

    Article  PubMed  CAS  Google Scholar 

  42. Lyons TW (1997) Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochem Cosmochim Acta 61:3367–3382

    Article  CAS  Google Scholar 

  43. Majzlan J, Grevel KD, Navrotsky A (2003) Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), and maghemite (gamma-Fe2O3). Am Mineral 88:855–859

    CAS  Google Scholar 

  44. Mann S, Sparks NHC, Board RG (1990a) Magnetotactic bacteria: Microbiology, biomineralization, paleomagnetism and biotechnology. Adv Microbial Physiol 31:125–181

    Article  CAS  Google Scholar 

  45. Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990b) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–261

    Article  CAS  Google Scholar 

  46. Murad E, Schwertmann U (1993) Temporal Stability of a Fine-Grained Magnetite. Clay Clay Miner 41:111–113

    Article  CAS  Google Scholar 

  47. Murray J, Codispoti L, Friedrich G (1995) Oxidation-reduction environments: the suboxic zone in the Black Sea. In: Huang C et al. (ed) Aquatic Chemistry. American Chemical Society, pp 157–176

    Google Scholar 

  48. Muyzer G, De Waal E, Uitterlinden A (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rRNA. Appl Env Microbiol 59:695–700

    CAS  Google Scholar 

  49. Noble RT, Fuhrman JA (2000) Rapid Virus Production and Removal as Measured with Fluorescently Labeled Viruses as Tracers. Appl Environ Microbiol 66:3790–3797

    Article  PubMed  CAS  Google Scholar 

  50. Nolan T (2004) Getting Started- The Basics of Setting up a qPCR Assay. In: Bustin SA (ed) A–Z of Quantitative PCR. International University Line, La Jolla, CA, pp 529–543

    Google Scholar 

  51. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria. Appl Environ Microbiol 68:3094–3101

    Article  PubMed  CAS  Google Scholar 

  52. Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Micro 3:537–546

    Article  CAS  Google Scholar 

  53. Petermann H, Bleil U (1993) Detection of live magnetotactic bacteria in deep-sea sediments. Earth Planet Sci Lett 117:223–228

    Article  Google Scholar 

  54. Petersen N, von Dobeneck T (1986) Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320:611–615

    Article  CAS  Google Scholar 

  55. Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998) Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 280:880–883

    Article  PubMed  Google Scholar 

  56. Pósfai M et al. (2001) Crystal-size distributions and possible biogenic origin of Fe sulfides. Eur J Mineral 13:691–703

    Article  Google Scholar 

  57. Ramsing N, Fossing H, Ferdelman T, Andersen F, Thamdrup B (1996) Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol 62:1391–1404

    PubMed  CAS  Google Scholar 

  58. Roberts AP, Reynolds RL, Verosub KL, Adam DP (1996) Environmental magnetic implications of greigite (Fe3S4) formation in a 3 my lake sediment record from Butte Valley, northern California. Geophys Res Lett 23:2859–2862

    Article  CAS  Google Scholar 

  59. Robie RA, Hemmingway BS (1995) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. In: US Geological Survey, Washington, DC

    Google Scholar 

  60. Rouxel OJ, Bekker A, Edwards KJ (2005) Iron isotope constraints on the archean and paleoproterozoic ocean redox state. Science 307:1088–1091

    Article  PubMed  CAS  Google Scholar 

  61. Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221

    PubMed  CAS  Google Scholar 

  62. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schuler D (2005) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    Article  PubMed  CAS  Google Scholar 

  63. Schleifer K-H et al. (1991) The genus Magnetospirillum gen. nov.: description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

    Google Scholar 

  64. Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA (2002) Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4:713–720

    Article  PubMed  CAS  Google Scholar 

  65. Schüler D (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol 181:1–7

    Article  PubMed  CAS  Google Scholar 

  66. Schüler D, Spring S, Bazylinski DA (1999) Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. Syst Appl Microbiol 22:466–471

    PubMed  Google Scholar 

  67. Shen Y, Knoll AH, Walter MR (2003) Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423:632–635

    Article  PubMed  CAS  Google Scholar 

  68. Simmons SL, Bazylinski DA, Edwards KJ (2006b) South-seeking magnetotactic bacteria in the Northern Hemisphere. Science 311:371–374

    Article  PubMed  CAS  Google Scholar 

  69. Simmons SL, Edwards KJ (2006) Unexpected diversity in populations of the many-celled magnetotactic prokaryote. Env Microbiol, in press

    Google Scholar 

  70. Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal Distribution of Marine Magnetotactic Bacteria in a Seasonally Stratified Coastal Salt Pond. Appl Environ Microbiol 70:6230–6239

    Article  PubMed  CAS  Google Scholar 

  71. Snowball IF, Sandgren P, Petterson G (1999) The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden. Holocene 9:353–362

    Article  Google Scholar 

  72. Snowball IF, Zillen L, Sandgren P (2002) Bacterial magnetite in Swedish varved lake-sediments: a potential bio-marker of environmental change. Quatern Int 88:13–19

    Article  Google Scholar 

  73. Spring S, Amann R, Ludwig W, Schleifer K, van Gemerden H, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 59:2397–2403

    PubMed  CAS  Google Scholar 

  74. Spring S, Amann R, Ludwig W, Schleifer K-H, Petersen N (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. System. Appl Microbiol 15:116–122

    Article  Google Scholar 

  75. Spring S et al. (1994) Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria. Syst Appl Microbiol 17:501–508

    Google Scholar 

  76. Spring S, Bazylinski D (2000) Magnetotactic Bacteria. In: Dworkin M (ed) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, release 3.4 edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  77. Spring S et al. (1998) Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch Microbiol 169:136–147

    Article  PubMed  CAS  Google Scholar 

  78. Stolz JF (1992) Magnetotactic bacteria: Biomineralization, ecology, sediment magnetism, environmental indicator. In: Skinner HC, Fitzpatrick RW (eds) Biomineralization Processes of Iron and Manganese: Modern and Ancient Environments. Catena Verlag, Cremlingen-Destedt, pp 133–145

    Google Scholar 

  79. Stolz JF, Chang S-BR, Kirschvink JL (1986) Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature 321:849–851

    Article  Google Scholar 

  80. Stumm W, Morgan JJ (1996) Aquatic Chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  81. Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T (2006) Global Gene Expression Analysis of Iron-Inducible Genes in Magnetospirillum magneticum AMB-1. J Bacteriol 188:2275–2279

    Article  PubMed  CAS  Google Scholar 

  82. Tang J, Myers M, Bosnick KA, Brus LE (2003) Magnetite Fe3O4nanocrystals: Spectroscopic observation of aqueous oxidation kinetics. J Phys Chem B 107:7501–7506

    Article  CAS  Google Scholar 

  83. Tonolla M, Demarta A, Peduzzi S, Hahn D, Peduzzi R (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 66:820–824

    Article  PubMed  CAS  Google Scholar 

  84. Vali H, Kirschvink JL (1990) Observations of magnetosome organization, surface structure, and iron biomineralization of undescribed magnetotactic bacteria: evolutionary speculations. In: Frankel RB, Blakemore RP (eds) Iron Biominerals. Plenum Press, New York, pp 97–115

    Google Scholar 

  85. Wallner G, Fuchs B, Spring S, Beisker W, Amann R (1997) Flow sorting of microorganisms for molecular analysis. Appl Environ Microbiol 63:4223–4231

    PubMed  CAS  Google Scholar 

  86. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. PNAS 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  87. Wilkin RT, Barnes HL (1996) Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim Cosmochim Acta 60:4167–4179

    Article  CAS  Google Scholar 

  88. Wilkin RT, Barnes HL (1997a) Formation processes of framboidal pyrite. Geochim Cosmochim Acta 61:323–339

    Article  CAS  Google Scholar 

  89. Wilkin RT, Barnes HL (1997b) Pyrite formation in an anoxic estuarine basin. Am J Sci 297:620–650

    Article  CAS  Google Scholar 

  90. Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329

    Article  PubMed  CAS  Google Scholar 

  91. Wolfe R, Thauer R, Pfennig N (1987) A “capillary racetrack” method for isolation of magnetotactic bacteria. FEMS Microbiol Ecol 45:31–35

    Article  Google Scholar 

  92. Yamazaki T, Kawahata H (1998) Organic carbon flux controls the morphology of magnetofossils in marine sediments. Geology 26:1064–1066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina J. Edwards .

Editor information

Dirk Schüler

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simmons, S.L., Edwards, K.J. (2006). Geobiology of Magnetotactic Bacteria. In: Schüler, D. (eds) Magnetoreception and Magnetosomes in Bacteria. Microbiology Monographs, vol 3. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7171_039

Download citation

Publish with us

Policies and ethics