Skip to main content

Carboxysomes and Carboxysome-like Inclusions

  • Chapter
  • First Online:
Complex Intracellular Structures in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 2))

Abstract

Carboxysomes and related polyhedral bacterial inclusions are complex structures that are composedof a limited set of related proteins. The importance of these prokaryotic organelles as metabolicorganizers in autotrophs as well as heterotrophic bacteria is becoming much more apparent. The carboxysome,which is by far the best characterized representative of these inclusions, is found in a variety ofphylogenetically distant autotrophic bacteria and contains the central CO 2fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The particle participates in theessential CO2 concentrating mechanism and is likely protecting RuBisCO from oxygen.By contrast, the functions of polyhedral inclusions in heterotrophic prokaryotes that have been experimentallyobserved or inferred from comparative genomic analyses are less well understood. This review summarizesthe current state of knowledge regarding structure, function and genetics of carboxysomes and related polyhedralmicrocompartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA 91:6909–6913

    Article  PubMed  CAS  Google Scholar 

  2. Badger MR (2003) The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynthesis Res 77:83–94

    Article  CAS  Google Scholar 

  3. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  4. Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  5. Baker SH (1998) Molecular investigations of carbon dioxide fixation in thiobacilli. PhD Dissertation, Clemson University, Clemson, SC

    Google Scholar 

  6. Baker SH, Jin S, Aldrich HC, Howard GT, Shively JM (1998) Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2 requirement for growth. J Bacteriol 180:4133–4139

    PubMed  CAS  Google Scholar 

  7. Baker SH, Lorbach SC, Rodriguez-Buey M, Williams DS, Aldrich HC, Shively JM (1999) The correlation of the gene csoS2 of the carboxysome operon with two polypeptides of the carboxysome in Thiobacillus neapolitanus. Arch Microbiol 172:233–239

    Article  PubMed  CAS  Google Scholar 

  8. Baker SH, Williams DS, Aldrich HC, Gambrell AC, Shively JM (2000) Identification and localization of the carboxysome peptide CsoS3 and its corresponding gene in Thiobacillus neapolitanus. Arch Microbiol 173:278–283

    Article  PubMed  CAS  Google Scholar 

  9. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffith-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucl Acids Res 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  10. Beudeker RF, Kuenen JG (1981) Carboxysomes: Calvinosomes? FEBS Lett 131:269–274

    Article  CAS  Google Scholar 

  11. Beudeker RF, Cannon GC, Kuenen JG, Shively JM (1980) Relations between D-ribulose-1,5-bisphosphate carboxylase, carboxysomes, and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189

    Article  CAS  Google Scholar 

  12. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC (1999) The propanediolutilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975

    PubMed  CAS  Google Scholar 

  13. Bowien B, Kusian B (2002) Genetics and control of CO2 assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93

    Article  PubMed  CAS  Google Scholar 

  14. Brinsmade SR, Paldon T, Escalante-Semerena JC (2005) Minimal functions and physiological conditions required for growth of Salmonella enterica on ethanolamine in the absence of the metabolosome. J Bacteriol 187:8039–8046

    Article  PubMed  CAS  Google Scholar 

  15. Cannon GC (1982) Carboxysomes and CO2 fixation in Thiobacillus neapolitanus. PhD Dissertation, Clemson University, Clemson, SC

    Google Scholar 

  16. Cannon GC, Shively JM (1983) Characterization of a homogeneous preparation of carboxysomes from Thiobacillus neapolitanus. Arch Microbiol 134:52–59

    Article  CAS  Google Scholar 

  17. Cannon GC, English RS, Shively JM (1991) In situ assay of ribulose-1,5-bisphosphate carboxylase/oxygenase in Thiobacillus neapolitanus. J Bacteriol 173:1565–1568

    PubMed  CAS  Google Scholar 

  18. Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–5361

    Article  PubMed  CAS  Google Scholar 

  19. Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2002) Carboxysome genomics: a status report. Funct Plant Biol 29:175–182

    Article  CAS  Google Scholar 

  20. Cannon GC, Baker SH, Soyer F, Johnson DR, Bradburne CE, Mehlman JL, Davies PS, Jiang QL, Heinhorst S, Shively JM (2003) Organization of carboxysome genes in the thiobacilli. Curr Microbiol 46:115–119

    Article  PubMed  CAS  Google Scholar 

  21. Chen P, Andersson DI, Roth JR (1994) The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 176:5474–5482

    PubMed  CAS  Google Scholar 

  22. Codd GA (1988) Carboxysomes and ribulose bisphosphate carboxylase/oxygenase. Adv Microb Physiol 29:115–164

    Article  PubMed  CAS  Google Scholar 

  23. Dobrinski KP, Longo DL, Scott KM (2005) The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. J Bacteriol 187:5761–5766

    Article  PubMed  CAS  Google Scholar 

  24. Ebert A (1982) Ribulose-1,5-bisphosphate carboxylase in Nitrobacter. PhD Dissertation, University of Hamburg, Hamburg, Germany

    Google Scholar 

  25. English RS, Lorbach SC, Qin X, Shively JM (1994) Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol 12:647–654

    Article  PubMed  CAS  Google Scholar 

  26. Fridlyand L, Kaplan A, Reinhold L (1996) Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism. Biosystems 37:229–238

    Article  PubMed  CAS  Google Scholar 

  27. Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci USA 89:4437–4441

    Article  PubMed  CAS  Google Scholar 

  28. Gibson JL, Tabita FR (1996) The molecular regulation of the reductive pentose phosphate pathway in proteobacteria and cyanobacteria. Arch Microbiol 166:141–150

    Article  PubMed  CAS  Google Scholar 

  29. Gill R, Katsulakis E, Schmitt W, Taroncher-Oldenburg G, Misra J, Stephanopoulos G (2002) Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J Bacteriol 184:3671–3681

    Article  PubMed  CAS  Google Scholar 

  30. Gonzales AD, Light YK, Zhang Z, Iqbal T, Lane TW, Martino A (2005) Proteomic analysis of the CO2-concentrating mechanism in the open-ocean cyanobacterium Synechococcus WH8102. Can J Bot 83:735–745

    Article  CAS  Google Scholar 

  31. Harano K, Ishida H, Kittaka R, Kojima K, Inoue N, Tsukamoto M, Satoh R, Iwaki T, Wadano A (2003) Regulation of the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) in a cyanobacterium, Synechococcus PCC7942. Photosynth Res 78:59–65

    Article  PubMed  CAS  Google Scholar 

  32. Havemann GD, Bobik TA (2003) Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 185:5086–5095

    Article  PubMed  CAS  Google Scholar 

  33. Havemann GD, Sampson EM, Bobik TA (2002) PduA is a shell protein of polyhedral organelles involved in coenzyme B(12)-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol 184:1253–1261

    Article  PubMed  CAS  Google Scholar 

  34. Heinhorst S, Baker SH, Johnson DR, Davies PS, Cannon GC, Shively JM (2002) Two copies of form 1 RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr Microbiol 45:115–117

    Article  PubMed  CAS  Google Scholar 

  35. Hess WR, Rocap G, Ting C, Larimer FW, Lamerdin J, Stilwagon S, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70:53–72

    Article  PubMed  CAS  Google Scholar 

  36. Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    PubMed  CAS  Google Scholar 

  37. Holthuijzen YA, Maathuis JFL, Kuenen JG, Konings RNH, Konings WN (1986a) Carboxysomes of Thiobacillus neapolitanus do not contain extrachromosomal DNA. FEMS Microbiol Lett 42:193–198

    Article  Google Scholar 

  38. Holthuijzen YA, VanBreeman JFL, Konings WN, VanBruggen EFJ (1986b) Electron microscopic studies of carboxysomes of Thiobacillus neapolitanus. Arch Microbiol 144:258–262

    Article  CAS  Google Scholar 

  39. Holthuijzen YA, VanBreeman JFL, Kuenen JG, Konings WN (1986c) Protein composition of the carboxysomes of Thiobacillus neapolitanus. Arch Microbiol 144:398–404

    Article  CAS  Google Scholar 

  40. Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184:6845–6858

    Article  PubMed  CAS  Google Scholar 

  41. Johnson CL, Pechonik E, Park SD, Havemann GD, Leal NA, Bobik TA (2001) Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cobalamine adenosyltransferase gene. J Bacteriol 183:1577–1584

    Article  PubMed  CAS  Google Scholar 

  42. Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  PubMed  CAS  Google Scholar 

  43. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938

    Article  PubMed  CAS  Google Scholar 

  44. Kofoid E, Rappleye C, Stojiljkovic I, Roth J (1999) The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 181:5317–5329

    PubMed  CAS  Google Scholar 

  45. Lanares T, Codd GA (1981) Ribulose 1,5-bisphosphate carboxylase and polyhedral bodies of Chlorogloeopsis. Planta 153:279–285

    Article  Google Scholar 

  46. Lanares T, Hawthornthwaite AM, Codd GA (1985) Localization of carbonic anhydrase in the cyanobacterium Chlorogloeopsis fritschii. FEMS Microbiol Lett 26:285–288

    Article  Google Scholar 

  47. Long BM, Price GD, Badger MR (2005) Proteomic assessment of an established technique for carboxysome enrichment from Synechococcus PCC7942. Can J Bot 83:746–757

    Article  CAS  Google Scholar 

  48. Lorbach SC (1995) Molecular physiology of the thiobacilli. PhD Dissertation, Clemson University, Clemson, SC

    Google Scholar 

  49. Ludwig M, Sültemeyer D, Price GD (2000) Isolation of ccmKLMN genes from the marine cyanobacterium Synechococcus sp. PCC7002 and evidence that CcmM is essential for carboxysome assembly. J Phycol 36:1109–1118

    Article  CAS  Google Scholar 

  50. Marco E, Martinez I, Ronen-Tarazi M, Orus MI, Kaplan A (1994) Inactivation of ccmO in Synechococcus sp. PCC 7942 results in a mutant requiring high levels of CO2. Appl Environ Microbiol 60:1018–1020

    PubMed  CAS  Google Scholar 

  51. McGinn PJ, Price GD, Maleszka R, Badger MR (2003) Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechocystis sp. strain PCC6803. Plant Physiol 132:218–229

    Article  PubMed  CAS  Google Scholar 

  52. McKay RML, Gibbs SP, Espie GS (1993) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 159:21–29

    Article  CAS  Google Scholar 

  53. Ogawa T, Armichay D, Gurevitz M (1994) Isolation and characterization of the ccmM gene required by the cyanobacterium Synechocystis PCC6803 for inorganic carbon utilization. Photosynth Res 39:183–190

    Article  CAS  Google Scholar 

  54. Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S-I (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183:1891–1898

    Article  PubMed  CAS  Google Scholar 

  55. Orus MI, Rodriguez ML, Martinez F, Marco E (1995) Biogenesis and ultrastructure of carboxysomes from wild type and mutants of Synechococcus sp. Strain PCC 7942. Plant Physiol 107:1159–1166

    PubMed  CAS  Google Scholar 

  56. Orus MI, Rodriguez-Buey ML, Marco E, Fernandez-Valiente E (2001) Changes in carboxysome structure and grouping and in photosynthetic affinity for inorganic carbon in Anabaena strain PCC 7119 (cyanophyta) in response to modification of CO2 and Na+ supply. Plant Cell Physiol 42:46–53

    Article  PubMed  CAS  Google Scholar 

  57. Paredes AM, Soyer F, Aldrich HC, Ludtke S, Tsuruta H, Chiu W, Shively JM (2001) Am Soc Microbiol. 101th Annual Meeting May 20–24 Orlando, FL

    Google Scholar 

  58. Price GD, Badger MR (1989a) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513

    Article  PubMed  CAS  Google Scholar 

  59. Price GD, Badger MR (1989b) Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC 7942: Two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysome. Plant Physiol 91:514–525

    Article  PubMed  CAS  Google Scholar 

  60. Price GD, Badger MR (1991) Evidence for the role of carboxysomes in the cyanobacterial CO2-concentrating mechanism. Can J Bot 69:963–973

    Article  CAS  Google Scholar 

  61. Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100:784–793

    Article  PubMed  CAS  Google Scholar 

  62. Price GD, Howitt SM, Harrison K, Badger MR (1993) Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J Bacteriol 175:2871–2879

    PubMed  CAS  Google Scholar 

  63. Price GD, Sültemeyer D, Klughammer B, Ludwig M, Badger MR (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins and recent advances. Can J Bot 76:973–1002

    CAS  Google Scholar 

  64. Price-Carter M, Tingey J, Bobik TA, Roth JR (2001) The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183:2463–2475

    Article  PubMed  CAS  Google Scholar 

  65. Purohit K, McFadden BA, Cohen AL (1976) Purification, quaternary structure composition, and properties of D-ribulose-1,5-bisphosphate carboxylase from Thiobacillus neapolitanus. J Bacteriol 127:505–515

    PubMed  CAS  Google Scholar 

  66. Ramirez P, Guiliani N, Valenzuela L, Beard SJ, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491–4498

    Article  PubMed  CAS  Google Scholar 

  67. Reinhold L, Zviman M, Kaplan A (1989) A quantitative model for carbon fluxes and photosynthesis in cyanobacteria. Plant Physiol Biochem 27:945–954

    CAS  Google Scholar 

  68. Reinhold L, Kosloff R, Kaplan A (1991) A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes. Can J Bot 69:984–988

    Article  CAS  Google Scholar 

  69. Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281(11):7546–7555

    Article  PubMed  CAS  Google Scholar 

  70. Shively JM, English RS (1991) The carboxysome, a prokaryotic organelle: a mini review. Can J Bot 69:957–962

    Article  CAS  Google Scholar 

  71. Shively JM, Ball F, Brown DH, Saunders RE (1973a) Functional organelles in prokaryotes: Polyhedral inclusions (carboxysomes) in Thiobacillus neapolitanus. Science 182:584–586

    Article  PubMed  CAS  Google Scholar 

  72. Shively JM, Ball FL, Kline BW (1973b) Electron microscopy of the carboxysomes (polyhedral bodies) of Thiobacillus neapolitanus. J Bacteriol 116:1405–1411

    PubMed  CAS  Google Scholar 

  73. Shively JM, Bock E, Westphal K, Cannon GC (1977) Icosahedral inclusions (carboxysomes) of Nitrobacter agilis. J Bacteriol 132:673–675

    PubMed  CAS  Google Scholar 

  74. Shively JM, Lorbach SC, Jin S, Baker SH (1996) Carboxysomes: the genes of Thiobacillus neapolitanus. In: Lidstrom ME, Tabita FR (eds) Microbial Growth on C1 Compounds. Kluwer, Dordrecht, The Netherlands, p 56–63

    Google Scholar 

  75. Shively JM, Bradburne CE, Aldrich HC, Bobik TA, Mehlman JL, Jin S, Baker SH (1998a) Sequence homologs of the carboxysomal polypeptide CsoS1 of the thiobacilli are present in cyanobacteria and enteric bacteria that form carboxysomes/polyhedral bodies. Can J Bot 76:906–916

    CAS  Google Scholar 

  76. Shively JM, van Keulen G, Meijer WG (1998b) Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 52:191–230

    Article  PubMed  CAS  Google Scholar 

  77. So AKC, Espie GS (1998) Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol Biol 37:205–215

    Article  PubMed  CAS  Google Scholar 

  78. So AKC, Espie GS (2005) Cyanobacterial carbonic anhydrases. Can J Bot 83:721–734

    Article  CAS  Google Scholar 

  79. So AKC, John-McKay ME, Espie GS (2002) Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Planta 214:456–467

    Article  PubMed  CAS  Google Scholar 

  80. So AKC, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  PubMed  CAS  Google Scholar 

  81. Stojiljkovic I, Baumler AJ, Heffron F (1995) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177:1357–1366

    PubMed  CAS  Google Scholar 

  82. Sültemeyer D, Klughammer B, Ludwig M, Badger MR, Price GD (1997) Random insertional mutagenesis used in the generation of mutants of the marine cyanobacterium Synechococcus PCC7002 with an impaired CO2 concentrating mechanism. Aust J Plant Physiol 24:317–327

    Article  Google Scholar 

  83. Toyoda K, Yoshizawa Y, Arai H, Ishii M, Igarashi Y (2005) The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. Microbiol 151:3615–3625

    Article  CAS  Google Scholar 

  84. Tu C, Shrager J, Burnap RL, Postier BL, Grossman AR (2004) Consequences of a deletion in dspA on transcript accumulation in Synechocystis sp. strain PCC6803. J Bacteriol 186:3889–3902

    Article  PubMed  CAS  Google Scholar 

  85. Vogel J, Axmann IM, Herzel H, Hess WR (2003) Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucl Acids Res 31:2890–2899

    Article  PubMed  CAS  Google Scholar 

  86. Wang H-L, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    Article  PubMed  CAS  Google Scholar 

  87. Watson GM, Tabita FR (1996) Regulation, unique gene organization, and unusual primary structure of carbon fixation genes from a marine phycoerythrin-containing cyanobacterium. Plant Mol Biol 32:1103–1115

    Article  PubMed  CAS  Google Scholar 

  88. Westphal K, Bock E, Cannon GC, Shively JM (1979) Deoxyribonucleic acid in Nitrobacter carboxysomes. J Bacteriol 140:285–288

    PubMed  CAS  Google Scholar 

  89. Woodger FJ, Badger MR, Price GD (2003) Inorganic carbon limitation induces transcripts encoding components of the CO2-concentrating mechanism in Synechococcus sp. PCC7942 through a redox-independent pathway. Plant Physiol 133:2069–2080

    Article  PubMed  CAS  Google Scholar 

  90. Yoshizawa Y, Toyoda K, Arai H, Ishii M, Igarashi Y (2004) CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J Bacteriol 186:5685–5691

    Article  PubMed  CAS  Google Scholar 

  91. Yu J-W, Price GD, Song L, Badger MR (1992) Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100:794–800

    Article  PubMed  CAS  Google Scholar 

  92. Zhang S, Laborde SM, Frankel LK, Bricker TM (2004) Four novel genes required for optimal photoautotrophic growth of the cyanobacterium Synechocystis sp strain PCC6803 identified by in vitro transposon mutagenesis. J Bacteriol 186:875–879

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SH and GCC acknowledge financial support from the National Science Foundation (MCB 0444568 and DMR 0213883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Heinhorst .

Editor information

Jessup M. Shively

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinhorst, S., Cannon, G.C., Shively, J.M. (2006). Carboxysomes and Carboxysome-like Inclusions. In: Shively, J.M. (eds) Complex Intracellular Structures in Prokaryotes. Microbiology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_023

Download citation

Publish with us

Policies and ethics