Skip to main content

Gas Vesicles of Archaea and Bacteria

  • Chapter
  • First Online:
Complex Intracellular Structures in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 2))

Abstract

Gas vesicles are hollow proteinaceous structures of spindle or cylinder shape produced by many cyanobacteria,heterotrophic bacteria and Archaea. Because of their gas content, gas vesicles decrease the cell densityand provide neutral or even positive buoyancy to cells. The rigid wall is formed solely from protein andis freely permeable to gas molecules. A major constituent of the wall is the small hydrophobic proteinGvpA that is arranged along 4.5 nm wide ribs running perpendicular to the long axis of the gas vesicle.The surface tension at the hydrophobic inner surface excludes the formation of water droplets inside. A secondprotein, GvpC, is attached to the outside surface strengthening the structure, and five additional Gvp proteinsare present in minor amounts. Gas vesicle formation involves the expression of 10 to 14 gas vesicle protein(gvp) genes. Ten gvp genes have beenidentified in the cyanobacterium Microcystis aeruginosa, whereas 14 gvp genes are found in halophilic Archaea. Gas-vesiculate microorganisms occurabundantly in aqueous environments, but recently, homologues of the gvpgenes have been also detected in sporulating soil bacteria such as Bacillus megaterium and Streptomyces coelicolor,raising the question of additional functions of Gvp proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer D, King N (1984) Isolation of gas vesicles from Methanosarcina barkeri. J Gen Microbiol 130:167–172

    Google Scholar 

  2. Beard S, Handley B, Hayes PK, Walsby AE (1999) The diversity of gas vesicle genes in Planktothrix rubescens from Lake Zurich. Microbiology 145:2757–2768

    PubMed  CAS  Google Scholar 

  3. Beard S, Davis P, Iglesias-Rodriguez D, Skulberg O, Walsby AE (2000) Gas vesicle genes in Planktothrix spp. from Nordic lakes: strains with weak gas vesicles possess a longer variant of GvpC. Microbiol 146:2009–2018

    CAS  Google Scholar 

  4. Beard S, Handley B, Walsby AE (2002a) Spontaneous mutations in gas vesicle genes of Planktothrix spp. affect gas vesicle production and critical pressure. FEMS Microbiol Lett 215:189–195

    Article  PubMed  CAS  Google Scholar 

  5. Beard S, Hayes PK, Pfeifer F, Walsby AE (2002b) The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles. FEMS Microbiol Lett 213:149–157

    Article  PubMed  CAS  Google Scholar 

  6. Belenky M, Meyers R, Herzfeld J (2004) Subunit structure of gas vesicles: A MALDI-TOF mass spectrometry study. Biophys J 86:499–505

    Article  PubMed  CAS  Google Scholar 

  7. Bell SD, Jackson S (1998) Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol 6:222–228

    Article  PubMed  CAS  Google Scholar 

  8. Bentley S, Chater K, Cerdeno-Tarraga A, Challis G, Thompson N, James K, Harris D, Quail M, Kieser H et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  9. Blaurock A, Walsby AE (1976) Crystalline structure of gas vesicle wall from Anabaena flos-aquae. J Mol Biol 105:183–199

    Article  PubMed  CAS  Google Scholar 

  10. Blaurock A, Wober W (1976) Structure of wall of Halobacterium halobium gas vesicles. J Mol Biol 106:871–888

    Article  PubMed  CAS  Google Scholar 

  11. Bolhuis H, te Poele, Rodriguez-Valera F (2004) Isolation and cultivation of Walsby's square archaeon. Environ Microbiol 6:1287–1291

    Article  PubMed  Google Scholar 

  12. Bowen C, Jensen T (1965) Blue-green algae: fine structure of the gas vacuoles. Science 147:1460–1462

    Article  PubMed  CAS  Google Scholar 

  13. Bright D, Walsby AE (1999) The relationship between critical pressure and width of gas vesicles in isolates of Planktothrix rubescens from Lake Zurich. Microbiol 145:2769–2775

    CAS  Google Scholar 

  14. Buchholz B, Hayes PK, Walsby AE (1993) The distribution of the outer gas vesicle protein, GvpC, on the Anabaena gas vesicle, and its ratio to GvpA. J Gen Microbiol 139:2353–2363

    Article  PubMed  CAS  Google Scholar 

  15. Burns D, Camakaris H, Janssen P, Dyall-Smith M (2004) Cultivation of Walsby's square haloarchaeon. FEMS Microbiol Lett 238:469–473

    PubMed  CAS  Google Scholar 

  16. Clarke A, Walsby AE (1978) The occurrence of gas vacuolate bacteria in lakes. Arch Microbiol 118:223–228

    Article  Google Scholar 

  17. Damerval T, Houmard J, Guglielmi G, Csiszar K, Tandeau de Marsac N (1987) A developmentally regulated gvpABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix-7601. Gene 54:83–92

    Article  PubMed  CAS  Google Scholar 

  18. Damerval T, Castets A, Houmard J, Tandeau de Marsac N (1991) Gas vesicle synthesis in the cyanobacterium Pseudanabaena sp—Occurrence of a single photoregulated gene. Mol Microbiol 5:657–664

    Article  PubMed  CAS  Google Scholar 

  19. DasSarma S, Damerval T, Jones J, Tandeau de Marsac N (1987) A plasmid-encoded gas vesicle protein gene in a halophilic archaebacterium. Mol Microbiol 1:365–370

    Article  PubMed  CAS  Google Scholar 

  20. DasSarma S, Halladay J, Jones J, Donovan J, Giannasca P, Tandeau de Marsac N (1988) High-frequency mutations in a plasmid-encoded gas vesicle gene in Halobacterium halobium. Proc Natl Acad Sci USA 85:6861–6865

    Article  PubMed  CAS  Google Scholar 

  21. DasSarma S, Arora P, Lin F, Molinari E, Yin L (1994) Wild-type gas vesicle formation requires at least 10 genes in the gvp gene-cluster of Halobacterium halobium plasmid pNRC100. J Bacteriol 176:7646–7652

    PubMed  CAS  Google Scholar 

  22. Dunton P, Walsby AE (2005) The diameter and critical collapse pressure of gas vesicles in Microcystis are correlated with GvpCs of different length. FEMS Microbiol Let 247:37–43

    Article  CAS  Google Scholar 

  23. Englert C, Pfeifer F (1993) Analysis of gas vesicle gene expression in Haloferax mediterranei reveals that GvpA and GvpC are both gas vesicle structural proteins. J Biol Chem 268:9329–9336

    PubMed  CAS  Google Scholar 

  24. Englert C, Horne M, Pfeifer F (1990) Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol Gen Genet 222:225–232

    Article  PubMed  CAS  Google Scholar 

  25. Englert C, Krüger K, Offner S, Pfeifer F (1992a) Three different but related gene clusters encoding gas vesicles in halophilic Archaea. J Mol Biol 227:586–592

    Article  PubMed  CAS  Google Scholar 

  26. Englert C, Wanner G, Pfeifer F (1992b) Functional analysis of the gas vesicle gene cluster of the halophilic Archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the GvpD gene or its product. Mol Microbiol 6:3543–3550

    Article  PubMed  CAS  Google Scholar 

  27. Gosink J, Herwig R, Staley J (1997) Octadecabacter arcticus gen nov, sp nov, and O. antarcticus, sp nov, nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365

    Article  Google Scholar 

  28. Gregor D, Pfeifer F (2001) Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic Archaea. Microbiol 147:1745–1754

    CAS  Google Scholar 

  29. Gregor D, Pfeifer F (2005) In vivo analyses of constitutive and regulated promoters in halophilic archaea. Microbiol 151:25–33

    Article  CAS  Google Scholar 

  30. Halladay J, Jones J, Lin F, Macdonald A, DasSarma S (1993) The rightward gas vesicle operon in Halobacterium plasmid pNRC100—identification of the gvpA and gvpC gene products by use of antibody probes and genetic analysis of the region downstream of gvpC. J Bacteriol 175:684–692

    PubMed  CAS  Google Scholar 

  31. Hayes PK, Buchholz B, Walsby AE (1992) Gas vesicles are strengthened by the outer-surface protein, GvpC. Arch Microbiol 157:229–234

    Article  PubMed  CAS  Google Scholar 

  32. Hayes PK, Lazarus C, Bees A, Walker J, Walsby AE (1988) The protein encoded by GvpC is a minor component of gas vesicles isolated from the cyanobacteria Anabaena flos-aquae and Microcystis sp. Mol Microbiol 2:545–552

    Article  PubMed  CAS  Google Scholar 

  33. Hayes PK, Powell R (1995) The gvpA/C cluster of Anabaena flos-aquae has multiple copies of a gene encoding GvpA. Arch Microbiol 164:50–57

    Article  PubMed  CAS  Google Scholar 

  34. Hayes PK, Walsby AE (1984) An investigation into the recycling of gas vesicle protein derived from collapsed gas vesicles. J Gen Microbiol 130:1591–1596

    Google Scholar 

  35. Hayes PK, Walsby AE, Walker J (1986) Complete amino acid sequence of cyanobacterial gas vesicle protein indicates a 70-residue molecule that corresponds in size to the crystallographic unit cell. Biochem J 236:31–36

    PubMed  CAS  Google Scholar 

  36. Hofacker A, Schmitz K, Cichonczyk A, Sartorius-Neef S, Pfeifer F (2004) GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum. Microbiol 150:1829–1838

    Article  CAS  Google Scholar 

  37. Horne M, Pfeifer F (1989) Expression of two gas vacuole protein genes in Halobacterium halobium and other related species. Mol Gen Genet 218:437–444

    Article  PubMed  CAS  Google Scholar 

  38. Horne M, Englert C, Pfeifer F (1988) Two genes encoding gas vacuole proteins in Halobacterium halobium. Mol Gen Genet 213:459–464

    Article  PubMed  CAS  Google Scholar 

  39. Horne M, Englert C, Wimmer C, Pfeifer F (1991) A DNA region of 9 kbpcontains all genes necessary for gas vesicle synthesis in halophilic archaebacteria. Mol Microbiol 5:1159–1174

    Article  PubMed  CAS  Google Scholar 

  40. Houwink A (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscopy study. J Gen Microbiol 15:146–150

    Article  PubMed  CAS  Google Scholar 

  41. Irgens R, Suzuki I, Staley J (1989) Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr Microbiol 18:261–265

    Article  Google Scholar 

  42. Isaksen F, Teske A (1996) Desulforhodopalus vacuolatus gen. nov, sp nov, a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168

    Article  CAS  Google Scholar 

  43. Jäger A, Samorski R, Pfeifer F, Klug G (2002) Individual gvp transcrip segments in Haloferax mediterranei exhibit varying half-lives, which are differentially affected by salt concentration and growth phase. Nucleic Acids Res 30:5436–5443

    Article  PubMed  Google Scholar 

  44. Jones J, Young D, DasSarma S (1991) Structure and organization of the gas vesicle gene cluster on the Halobacterium halobium plasmid pNRC100. Gene 102:117–122

    Article  PubMed  CAS  Google Scholar 

  45. Jung D, Achenbach L, Karr E, Takaichi S, Madigan M (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182:236–243

    Article  PubMed  CAS  Google Scholar 

  46. Kashyap S, Sundararajan A, Ju L (1998) Flotation characteristics of cyanobacterium Anabaena flos-aquae for gas vesicle production. Biotechnol Bioengineer 60:636–641

    Article  CAS  Google Scholar 

  47. Karr E, Sattley W, Jung D, Madigan M, Achenbach L (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  PubMed  CAS  Google Scholar 

  48. Kinsman R, Hayes PK (1997) Genes encoding proteins homologous to halobacterial Gvps N, J, K, F, & L are located downstream of gvpC in the cyanobacterium Anabaena flos-aquae. DNA Seq 7:97–106

    PubMed  CAS  Google Scholar 

  49. Kinsman R, Walsby AE, Hayes PK (1995) GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol Microbiol 17:147–154

    Article  PubMed  CAS  Google Scholar 

  50. Klebahn H (1895) Gasvakuolen, ein Bestandteil der Zellen der wasserblütenbildenden Phycochromaceen. Flora (Jena) 80:241

    Google Scholar 

  51. Konopka A, Staley J, Lara J (1975) Gas vesicle assembly in Microcyclus aquaticus. J Bacteriol 122:1301–1309

    PubMed  CAS  Google Scholar 

  52. Konopka A, Lara J, Staley J (1977) Isolation and characterization of gas vesicles from Microcyclus aquaticus. Arch Microbiol 112:133–140

    Article  PubMed  CAS  Google Scholar 

  53. Krantz M, Ballou C (1973) Analysis of Halobacterium halobium gas vesicles. J Bacteriol 114:1058–1067

    PubMed  CAS  Google Scholar 

  54. Krasil'nikov N, Duda V, Pivovarov G (1971) Characteristics of the cell structure of soil anaerobic bacteria forming vesicular caps on their spores. Mikrobiologiya 40:681–685

    Google Scholar 

  55. Krüger K, Hermann T, Armbruster V, Pfeifer F (1998) The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucine-zipper regulatory protein. J Mol Biol 279:761–771

    Article  PubMed  Google Scholar 

  56. Krüger K, Pfeifer F (1996) Transcript analysis of the c-vac region and differential synthesis of the two regulatory gas vesicle proteins GvpD and GvpE in Halobacterium salinarium PHH4. J Bacteriol 178:4012–4019

    PubMed  Google Scholar 

  57. Larsen H, Omang S, Steensland H (1967) On the gas vacuoles of the halobacteria. Arch Microbiol 59:197–203

    CAS  Google Scholar 

  58. Lehmann H, Jost M (1971) Kinetics of the assembly of gas vacuoles in the blue-green alga Microcystis aeruginosa Kuetz emend Elkin. Arch Microbiol 79:59–68

    Google Scholar 

  59. Li N, Cannon M (1998) Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 180:2450–2458

    PubMed  CAS  Google Scholar 

  60. Mayr A, Pfeifer F (1997) The characterization of the nv-gvpACNOFGH gene cluster involved in gas vesicle formation in Natronobacterium vacuolatum. Arch Microbiol 168:24–32

    Article  PubMed  CAS  Google Scholar 

  61. McMaster T, Miles M, Walsby AE (1996) Direct observation of protein secondary structure in gas vesicles by atomic force microscopy. Biophys J 70:2432–2436

    Article  PubMed  CAS  Google Scholar 

  62. Mlouka A, Comte K, Castets A, Bouchier C, Tandeau de Marsac N (2004) The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J Bacteriol 186:2355–2365

    Article  PubMed  CAS  Google Scholar 

  63. Mwatha W, Grant W (1993) Natronobacterium vacuolatum sp nov, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43:401–404

    Article  Google Scholar 

  64. Neuwald A, Aravind L, Spouge J, Koonin E (1999) AAA(+): A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  65. Ng W, Arora P, DasSarma S (1994) Large deletions in class III gas vesicle-deficient mutants of Halobacterium halobium. Syst Appl Microbiol 16:560–568

    Article  CAS  Google Scholar 

  66. Ng W, Kennedy S, Mahairas G, Berquist B, Pan M, Shukla H, Lasky S, Baliga N, Thorsson V, Sbrogna J et al. (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181

    Article  PubMed  CAS  Google Scholar 

  67. Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 8:489–500

    Article  PubMed  CAS  Google Scholar 

  68. Offner S, Pfeifer F (1995) Complementation studies with the gas vesicle-encoding p-vac region of Halobacterium salinarium PHH1 reveal a regulatory role for the p-gvpDE genes. Mol Microbiol 16:9–19

    Article  PubMed  CAS  Google Scholar 

  69. Offner S, Wanner G, Pfeifer F (1996) Functional studies of the gvpACNO operon of Halobacterium salinarium reveal that the GvpC protein shapes gas vesicles. J Bacteriol 178:2071–2078

    PubMed  CAS  Google Scholar 

  70. Offner S, Ziese U, Wanner G, Typke D, Pfeifer F (1998) Structural characteristics of halobacterial gas vesicles. Microbiol 144:1331–1342

    Article  CAS  Google Scholar 

  71. Offner S, Hofacker A, Wanner G, Pfeifer F (2000) Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J Bacteriol 182:4328–4336

    Article  PubMed  CAS  Google Scholar 

  72. Oliver R, Walsby AE (1984) Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (Cyanobacteria). Limnol Oceanogr 29:879–886

    Article  Google Scholar 

  73. Overmann J, Lehmann S, Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (green sulfur bacteria). Arch Microbiol 157:29–37

    Article  CAS  Google Scholar 

  74. Parkes K, Walsby AE (1981) Ultrastructure of a gas-vacuolate square bacterium. J Gen Microbiol 126:503–506

    Google Scholar 

  75. Petter H (1931) On bacteria of salted fish. Proc Natl Acad Sci Amsterdam 34:1417–1423

    CAS  Google Scholar 

  76. Pfeifer F (2004) Gas vesicle genes in halophilic archaea and bacteria. In: Ventosa A (ed) Halophilic Microorganisms. Springer, Berlin Heidelberg New York, p 229–239

    Google Scholar 

  77. Pfeifer F, Betlach M (1985) Genome organization in Halobacterium halobium: A 70-kb island of more (AT)-rich DNA in the chromosome. Mol Gen Genet 198:449–455

    Article  PubMed  CAS  Google Scholar 

  78. Pfeifer F, Blaseio U (1989) Insertion elements and deletion formation in a halophilic archaebacterium. J Bacteriol 171:5135–5140

    PubMed  CAS  Google Scholar 

  79. Pfeifer F, Englert C (1992) Function and biosynthesis of gas vesicles in halophilic archaea. J Bioenerg Biomembr 24:577–585

    Article  PubMed  CAS  Google Scholar 

  80. Pfeifer F, Weidinger G, Goebel W (1981) Genetic variability in Halobacterium halobium. J Bacteriol 145:375–381

    PubMed  CAS  Google Scholar 

  81. Pfeifer F, Zotzel J, Kurenbach B, Röder R, Zimmermann P (2001) A p-loop motif and two basic regions in the regulatory protein GvpD are important for the repression of gas vesicle formation in the archaeon Haloferax mediterranei. Microbiol 147:63–73

    CAS  Google Scholar 

  82. Plösser P, Pfeifer F (2002) A bZIP protein from halophilic archaea: structural features and dimer formation of cGvpE from Halobacterium salinarum. Mol Microbiol 45:511–520

    Article  PubMed  Google Scholar 

  83. Powell RS, Walsby AE, Hayes PK, Porter R (1991) Antibodies to the N-terminal sequence of GvpA bind to the ends of gas vesicles. J Gen Microbiol 137:2395–2400

    Article  PubMed  CAS  Google Scholar 

  84. Röder R, Pfeifer F (1996) Influence of salt on the transcription of the gas-vesicle genes of Haloferax mediterranei and identification of the endogenous transcriptional activator gene. Microbiol 142:1715–1723

    Article  Google Scholar 

  85. Shukla HD, DasSarma S (2004) Complexity of gas vesicle biogenesis in Halobacterium sp strain NRC-1: Identification of five new proteins. J Bacteriol 186:3182–3186

    Article  PubMed  CAS  Google Scholar 

  86. Staley J (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942

    PubMed  CAS  Google Scholar 

  87. Staley J, Irgens R, Brenner D (1987) Enhydrobacter aerosarcus gen nov, sp nov, a gas-vacuolated, facultatively anaerobic, heterotrophic rod. Int J Syst Bacteriol 37:289–291

    Article  Google Scholar 

  88. Staley J, Irgens R, Herwig R (1989) Gas vacuolate bacteria from the sea ice of Antarctica. Appl Environ Microbiol 55:1033–1036

    PubMed  CAS  Google Scholar 

  89. Stoeckenius W, Kunau W (1968) Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. J Cell Biol 38:337–357

    Article  Google Scholar 

  90. Stuart E, Morshed F, Sremac M, DasSarma S (2001) Antigen presentation using novel particulate organelles from halophilic archaea. J Biotechnol 88:119–128

    Article  PubMed  CAS  Google Scholar 

  91. Stuart E, Morshed F, Sremac M, DasSarma S (2004) Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J Biotechnol 114:225–237

    Article  PubMed  CAS  Google Scholar 

  92. Sundararajan A, Ju L (2000) Glutaraldehyde treatment of proteinaceous gas vesicles form cyanobacterium Anabaena flos-aquae. Biotechnol Prog 16:1124–1128

    Article  PubMed  CAS  Google Scholar 

  93. Thomas R, Walsby AE (1985) Buoyancy regulation on a strain of Microcystis. J Gen Microbiol 131:799–809

    Google Scholar 

  94. Van Ert M, Staley J (1971) A new gas vacuolated heterotrophic rod from freshwaters. Arch Microbiol 80:70–77

    Google Scholar 

  95. Van Keulen G, Hopwood D, Dijkhuizen L, Sawers G (2005) Gas vesicles in actinomycetes: old buoys in novel habitats? Trends Microbiol 13:350–354

    Article  PubMed  CAS  Google Scholar 

  96. Waaland JR, Branton D (1969) Gas vacuole development in a blue-green alga. Science 163:1339–1341

    Article  PubMed  CAS  Google Scholar 

  97. Walker J, Hayes PK, Walsby AE (1984) Homology of gas vesicle proteins in cyanobacteria and halobacteria. J Gen Microbiol 130:2709–2715

    CAS  Google Scholar 

  98. Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36:1–32

    PubMed  CAS  Google Scholar 

  99. Walsby AE (1982) Permeability of gas vesicles to perfluorocyclobutane. J Gen Microbiol 128:1679–1684

    CAS  Google Scholar 

  100. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  Google Scholar 

  101. Walsby AE (2005) Archaea with square cells. Trends Microbiol 13:193–195

    Article  PubMed  CAS  Google Scholar 

  102. Walsby AE, Bleything A (1988) The dimensions of cyanobacterial gas vesicles in relation to their efficiency in providing buoyancy and withstanding pressure. J Gen Microbiol 134:2635–2645

    Google Scholar 

  103. Walsby AE, Hayes PK (1988) The minor cyanobacterial gas vesicle protein, GvpC, is attached to the outer surface of the gas vesicle. J Gen Microbiol 134:2647–2657

    CAS  Google Scholar 

  104. Walsby AE, McAllister G (1987) Buoyancy regulation of microcystis in lake Okaro, NZ. J Mar Freshwater Res 21:521–524

    Article  Google Scholar 

  105. Walsby AE, Revsbech NP, Griffel DH (1992) The gas-permeability coefficient of the cyanobacterial gas vesicle wall. J Gen Microbiol 138:837–845

    Article  CAS  Google Scholar 

  106. Yao V, Spudich J (1992) Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci USA 89:11915–11919

    Article  PubMed  CAS  Google Scholar 

  107. Zhang W, Brooun A, Mueller M, Alam M (1996) The primary structure of the archaeon Halobacterium salinarum blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci USA 93:8230–8235

    Article  PubMed  CAS  Google Scholar 

  108. Zimmermann P, Pfeifer F (2003) Regulation of the expression of gas vesicle genes in Haloferax mediterranei: interaction of the two regulatory proteins GvpD and GvpE. Mol Microbiol 49:783–794

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG). Arnulf Kletzin is thanked for support in bioinformatic analyses, and Torsten Hechler for several microscopic pictures of haloarchaea. Gerhard Wanner (LMU München, Germany), Sonja Offner and Christoph Englert contributed as former coworkers to the electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicitas Pfeifer .

Editor information

Jessup M. Shively

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfeifer, F. (2006). Gas Vesicles of Archaea and Bacteria. In: Shively, J.M. (eds) Complex Intracellular Structures in Prokaryotes. Microbiology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_022

Download citation

Publish with us

Policies and ethics