Skip to main content

Proteasomes and Other Nanocompartmentalized Proteases of Archaea

  • Chapter
  • First Online:
Complex Intracellular Structures in Prokaryotes

Abstract

A growing number of proteases and peptidases have been identified that form large nanocompartmentalizedstructures in the cytosol, membrane, and extramembrane of cells. In archaea, these include the intracellularenergy-dependent proteasomes and the membrane-associated Lon protease as well as the intracellular energy-independenttetrahedral aminopeptidase (TET), tricorn peptidase (TRI), and PfpI-like proteases. Homologs of HtrA proteinsare also distributed in some archaea and may form nanocompartments that switch function from chaperone toprotease with increasing temperature. The location of these latter homologs remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba BM, Gross CA (2004) Regulation of the Escherichia coli σE-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  PubMed  CAS  Google Scholar 

  2. Ando S, Ishikawa K, Ishida H, Kawarabayasi Y, Kikuchi H, Kosugi Y (1999) Thermostable aminopeptidase from Pyrococcus horikoshii. FEBS Lett 447:25–28

    Article  PubMed  CAS  Google Scholar 

  3. Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MC, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035

    Article  PubMed  CAS  Google Scholar 

  4. Bandyopadhyay S, Cookson MR (2004) Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol Biol 4:6

    Article  PubMed  Google Scholar 

  5. Bass S, Gu Q, Christen A (1996) Multicopy suppressors of Prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 178:1154–1161

    PubMed  CAS  Google Scholar 

  6. Bäumler AJ, Kusters JG, Stojiljkovic I, Heffron F (1994) Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 62:1623–1630

    PubMed  Google Scholar 

  7. Benaroudj N, Goldberg AL (2000) PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol 2:833–839

    Article  PubMed  CAS  Google Scholar 

  8. Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11:69–78

    Article  PubMed  CAS  Google Scholar 

  9. Besche H, Tamura N, Tamura T, Zwickl P (2004) Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum. FEBS Lett 574:161–166

    Article  PubMed  CAS  Google Scholar 

  10. Besche H, Zwickl P (2004) The Thermoplasma acidophilum Lon protease has a Ser - Lys dyad active site. Eur J Biochem 271:4361–4365

    Article  PubMed  CAS  Google Scholar 

  11. Bienkowska JR, Hartman H, Smith TF (2003) A search method for homologs of small proteins. Ubiquitin-like proteins in prokaryotic cells? Protein Eng 16:897–904

    Article  PubMed  CAS  Google Scholar 

  12. Blumentals II, Robinson AS, Kelly RM (1990) Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1992–1998

    PubMed  CAS  Google Scholar 

  13. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  PubMed  CAS  Google Scholar 

  14. Borissenko L, Groll M (2005) Crystal structure of TET protease reveals complementary protein degradation pathways in prokaryotes. J Mol Biol 346:1207–1219

    Article  PubMed  CAS  Google Scholar 

  15. Botos I, Melnikov EE, Cherry S, Kozlov S, Makhovskaya OV, Tropea JE, Gustchina A, Rotanova TV, Wlodawer A (2005) Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus Lon reveals the conformational variability in the active sites of Lon proteases. J Mol Biol 351:144–157

    Article  PubMed  CAS  Google Scholar 

  16. Botos I, Melnikov EE, Cherry S, Tropea JE, Khalatova AG, Rasulova F, Dauter Z, Maurizi MR, Rotanova TV, Wlodawer A, Gustchina A (2004) The catalytic domain of E. coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J Biol Chem 279:8140–8148

    Article  PubMed  CAS  Google Scholar 

  17. Brandstetter H, Kim JS, Groll M, Gottig P, Huber R (2002) Structural basis for the processive protein degradation by tricorn protease. Biol Chem 383:1157–1165

    Article  PubMed  CAS  Google Scholar 

  18. Brandstetter H, Kim JS, Groll M, Huber R (2001) Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414:466–470

    Article  PubMed  CAS  Google Scholar 

  19. Burley SK, David PR, Taylor A, Lipscomb WN (1990) Molecular structure of leucine aminopeptidase at - 2.7Å resolution. Proc Natl Acad Sci USA 87:6878–6882

    Article  PubMed  CAS  Google Scholar 

  20. Cavard D, Lazdunski C, Howard SP (1989) The acylated precursor form of the colicin A lysis protein is a natural substrate of the DegP protease. J Bacteriol 171:6316–6322

    PubMed  CAS  Google Scholar 

  21. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21

    Article  PubMed  CAS  Google Scholar 

  22. Day CL, Hinds MG (2002) HtrA—a renaissance protein. Structure (Camb) 10:737–739

    Article  CAS  Google Scholar 

  23. Du X, Choi IG, Kim R, Wang W, Jancarik J, Yokota H, Kim SH (2000) Crystal structure of an intracellular protease from Pyrococcus horikoshii at - 2Å resolution. Proc Natl Acad Sci USA 97:14079–14084

    Article  PubMed  CAS  Google Scholar 

  24. Durá MA, Receveur-Brechot V, Andrieu JP, Ebel C, Schoehn G, Roussel A, Franzetti B (2005) Characterization of a TET-like aminopeptidase complex from the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemistry 44:3477–3486

    Article  PubMed  CAS  Google Scholar 

  25. Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7:742–749

    Article  PubMed  CAS  Google Scholar 

  26. Elzer PH, Phillips RW, Robertson GT, Roop RM 2nd (1996) The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes. Infect Immun 64:4838–4841

    PubMed  CAS  Google Scholar 

  27. Emmerich NP, Nussbaum AK, Stevanovic S, Priemer M, Toes RE, Rammensee HG, Schild H (2000) The human 26S and 20S proteasomes generate overlapping but different sets of peptide fragments from a model protein substrate. J Biol Chem 275:21140–21148

    Article  PubMed  CAS  Google Scholar 

  28. Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U, Kiefersauer R, Huber R, Bode W, Demuth HU, Brandstetter H (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci USA 100:5063–5068

    Article  PubMed  CAS  Google Scholar 

  29. Esser C, Alberti S, Höhfeld J (2004) Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 1695:171–188

    Article  PubMed  CAS  Google Scholar 

  30. Franzetti B, Schoehn G, Hernandez JF, Jaquinod M, Ruigrok RW, Zaccai G (2002) Tetrahedral aminopeptidase: a novel large protease complex from archaea. EMBO J 21:2132–2138

    Article  PubMed  CAS  Google Scholar 

  31. Fukui T, Eguchi T, Atomi H, Imanaka T (2002) A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. J Bacteriol 184:3689–3698

    Article  PubMed  CAS  Google Scholar 

  32. Fülöp V, Böcskei Z, Polgár L (1998) Prolyl oligopeptidase: an unusual b-propeller domain regulates proteolysis. Cell 94:161–170

    Article  PubMed  Google Scholar 

  33. Geier E, Pfeifer G, Wilm M, Lucchiari-Hartz M, Baumeister W, Eichmann K, Niedermann G (1999) A giant protease with potential to substitute for some functions of the proteasome. Science 283:978–981

    Article  PubMed  CAS  Google Scholar 

  34. Gerega A, Rockel B, Peters J, Tamura T, Baumeister W, Zwickl P (2005) VAT, the Thermoplasma homolog of mammalian p97/VCP, is an N domain regulated protein unfoldase. J Biol Chem 280:42856–42862

    Article  PubMed  CAS  Google Scholar 

  35. Giandomenico V, Simonsson M, Gronroos E, Ericsson J (2003) Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 23:2587–2599

    Article  PubMed  CAS  Google Scholar 

  36. Golbik R, Lupas AN, Koretke KK, Baumeister W, Peters J (1999) The Janus face of the archaeal Cdc48/p97 homologue VAT: protein folding versus unfolding. Biol Chem 380:1049–1062

    Article  PubMed  CAS  Google Scholar 

  37. Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R (2005) Molecular machines for protein degradation. Chembiochem 6:222–256

    Article  PubMed  CAS  Google Scholar 

  38. Halio SB, Blumentals II, Short SA, Merrill BM, Kelly RM (1996) Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:2605–2612

    PubMed  CAS  Google Scholar 

  39. Harari-Steinberg O, Chamovitz DA (2004) The COP9 signalosome: mediating between kinase signaling and protein degradation. Curr Protein Pept Sci 5:185–189

    Article  PubMed  CAS  Google Scholar 

  40. Horvath MM, Grishin NV (2001) The C-terminal domain of HPII catalase is a member of the type I glutamine amidotransferase superfamily. Proteins 42:230–236

    Article  PubMed  CAS  Google Scholar 

  41. Im YJ, Na Y, Kang GB, Rho SH, Kim MK, Lee JH, Chung CH, Eom SH (2004) The active site of a Lon protease from Methanococcus jannaschii distinctly differs from the canonical catalytic dyad of Lon proteases. J Biol Chem 279:53451–53457

    Article  PubMed  CAS  Google Scholar 

  42. Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31

    Article  PubMed  CAS  Google Scholar 

  43. Jeffery CJ (2004) Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. Curr Opin Struct Biol 14:663–668

    Article  PubMed  CAS  Google Scholar 

  44. Jones CH, Bolken TC, Jones KF, Zeller GO, Hruby DE (2001) Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative tolerance and full virulence in Streptococcus pyogenes. Infect Immun 69:5538–5545

    Article  PubMed  CAS  Google Scholar 

  45. Jones CH, Dexter P, Evans AK, Liu C, Hultgren SJ, Hruby DE (2002) Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol 184:5762–5771

    Article  PubMed  CAS  Google Scholar 

  46. Joshua-Tor L, Xu HE, Johnston SA, Rees DC (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269:945–950

    Article  PubMed  CAS  Google Scholar 

  47. Kaczowka SJ, Maupin-Furlow JA (2003) Subunit topology of two 20S proteasomes from Haloferax volcanii. J Bacteriol 185:165–174

    Article  PubMed  CAS  Google Scholar 

  48. Kim DY, Kim DR, Ha SC, Lokanath NK, Lee CJ, Hwang H-Y, Kim KK (2003) Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima. J Biol Chem 278:6543–6551

    Article  PubMed  CAS  Google Scholar 

  49. Kim DY, Kim KK (2005) Structure and function of HtrA family proteins, the key players in protein quality control. J Biochem Mol Biol 38:266–274

    Article  PubMed  CAS  Google Scholar 

  50. Kim JS, Groll M, Musiol HJ, Behrendt R, Kaiser M, Moroder L, Huber R, Brandstetter H (2002) Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum. J Mol Biol 324:1041–1050

    Article  PubMed  CAS  Google Scholar 

  51. Kim YI, Burton RE, Burton BM, Sauer RT, Baker TA (2000) Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol Cell 5:639–648

    Article  PubMed  CAS  Google Scholar 

  52. Kisselev AF, Akopian TN, Goldberg AL (1998) Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem 273:1982–1989

    Article  PubMed  CAS  Google Scholar 

  53. Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371

    Article  PubMed  CAS  Google Scholar 

  54. Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416:455–459

    Article  PubMed  CAS  Google Scholar 

  55. Lee SJ, Kim SJ, Kim IK, Ko J, Jeong CS, Kim GH, Park C, Kang SO, Suh PG, Lee HS, Cha SS (2003) Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J Biol Chem 278:44552–44559

    Article  PubMed  CAS  Google Scholar 

  56. Li M, Luo J, Brooks CL, Gu W (2002a) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277:50607–50611

    Article  PubMed  CAS  Google Scholar 

  57. Li W, Srinivasula SM, Chai J, Li P, Wu JW, Zhang Z, Alnemri ES, Shi Y (2002b) Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 9:436–441

    Article  PubMed  CAS  Google Scholar 

  58. Lipinska B, Sharma S, Georgopoulos C (1988) Sequence analysis and regulation of the htrA gene of Escherichia coli: a σ32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16:10053–10067

    Article  PubMed  CAS  Google Scholar 

  59. Lipinska B, Zylicz M, Georgopoulos C (1990) The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 172:1791–1797

    PubMed  CAS  Google Scholar 

  60. Liu T, Lu B, Lee I, Ondrovicová G, Kutejová E, Suzuki CK (2004) DNA and RNA binding by the mitochondrial Lon protease is regulated by nucleotide and protein substrate. J Biol Chem 279:13902–13910

    Article  PubMed  CAS  Google Scholar 

  61. Lupas A, Flanagan JM, Tamura T, Baumeister W (1997) Self-compartmentalizing proteases. Trends Biochem Sci 22:399–404

    Article  PubMed  CAS  Google Scholar 

  62. Lyon WR, Caparon MG (2004) Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun 72:1618–1625

    Article  PubMed  CAS  Google Scholar 

  63. Ma J, Katz E, Belote JM (2001) Expression of proteasome subunit isoforms during spermatogenesis in Drosophila melanogaster. Insect Mol Biol 11:627–639

    Article  Google Scholar 

  64. Maupin-Furlow JA, Aldrich HC, Ferry JG (1998) Biochemical characterization of the 20S proteasome from the methanoarchaeon Methanosarcina thermophila. J Bacteriol 180:1480–1487

    PubMed  CAS  Google Scholar 

  65. Maupin-Furlow JA, Gil MA, Karadzic IM, Kirkland PA, Reuter CJ (2004) Proteasomes: perspectives from the archaea [update 2004]. Front Biosci 9:1743–1758

    Article  PubMed  CAS  Google Scholar 

  66. Maupin-Furlow JA, Kaczowka SJ, Reuter CJ, Zuobi-Hasona K, Gil MA (2003) Archaeal proteasomes: potential in metabolic engineering. Metabol Eng 5:151–163

    Article  CAS  Google Scholar 

  67. Miller DW, Ahmad R, Hague S, Baptista MJ, Canet-Aviles R, McLendon C, Carter DM, Zhu PP, Stadler J, Chandran J, Klinefelter GR, Blackstone C, Cookson MR (2003) L166P mutant DJ-1, causative for recessive Parkinson's disease, is degraded through the ubiquitin-proteasome system. J Biol Chem 278:36588–36595

    Article  PubMed  CAS  Google Scholar 

  68. Mizote T, Tsuda M, Nakazawa T, Nakayama H (1996) The thiJ locus and its relation to phosphorylation of hydroxymethylpyrimidine in Escherichia coli. Microbiology 142:2969–2974

    Article  PubMed  CAS  Google Scholar 

  69. Mizote T, Tsuda M, Smith DD, Nakayama H, Nakazawa T (1999) Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thiamin-synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. Microbiology 145:495–501

    Article  PubMed  CAS  Google Scholar 

  70. Neuber O, Jarosch E, Volkwein C, Walter J, Sommer T (2005) Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat Cell Biol 7:993–998

    Article  PubMed  CAS  Google Scholar 

  71. Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J, Hunt DF, Eichmann K (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci USA 93:8572–8577

    Article  PubMed  CAS  Google Scholar 

  72. Nomura K, Kato J, Takiguchi N, Ohtake H, Kuroda A (2004) Effects of inorganic polyphosphate on the proteolytic and DNA-binding activities of Lon in Escherichia coli. J Biol Chem 279:34406–34410

    Article  PubMed  CAS  Google Scholar 

  73. Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69:431–439

    Article  PubMed  CAS  Google Scholar 

  74. Onoe S, Ando S, Ataka M, Ishikawa K (2002) Active site of deblocking aminopeptidase from Pyrococcus horikoshii. Biochem Biophys Res Commun 290:994–997

    Article  PubMed  CAS  Google Scholar 

  75. Pietrokovski S (2001) Intein spread and extinction in evolution. Trends Genet 17:465–472

    Article  PubMed  CAS  Google Scholar 

  76. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051

    Article  PubMed  CAS  Google Scholar 

  77. Quigley PM, Korotkov K, Baneyx F, Hol WGJ (2003) The - 1.6Å crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc Natl Acad Sci USA 100:3137–3142

    Article  PubMed  CAS  Google Scholar 

  78. Reits E, Griekspoor A, Neijssen J, Groothuis T, Jalink K, van Veelen P, Janssen H, Calafat J, Drijfhout JW, Neefjes J (2003) Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18:97–108

    Article  PubMed  CAS  Google Scholar 

  79. Reits E, Neijssen J, Herberts C, Benckhuijsen W, Janssen L, Drijfhout JW, Neefjes J (2004) A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20:495–506

    Article  PubMed  CAS  Google Scholar 

  80. Remaut H, Bompard-Gilles C, Goffin C, Frère JM, Van Beeumen J (2001) Structure of the Bacillus subtilis D-aminopeptidase DppA reveals a novel self-compartmentalizing protease. Nat Struct Biol 8:674–678

    Article  PubMed  CAS  Google Scholar 

  81. Rep M, van Dijl JM, Suda K, Schatz G, Grivell LA, Suzuki CK (1996) Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science 274:103–106

    Article  PubMed  CAS  Google Scholar 

  82. Reuter CJ, Kaczowka SJ, Maupin-Furlow JA (2004) Differential regulation of the PanA and PanB proteasome-activating nucleotidase and 20S proteasomal proteins of the haloarchaeon Haloferax volcanii. J Bacteriol 186:7763–7772

    Article  PubMed  CAS  Google Scholar 

  83. Reuter CJ, Maupin-Furlow JA (2004) Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells using short-lived green fluorescent proteins. Appl Envir Microbiol 70:7530–7538

    Article  CAS  Google Scholar 

  84. Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84

    Article  PubMed  CAS  Google Scholar 

  85. Rockel B, Jakana J, Chiu W, Baumeister W (2002) Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum. J Mol Biol 317:673–681

    Article  PubMed  CAS  Google Scholar 

  86. Rockel B, Walz J, Hegerl R, Peters J, Typke D, Baumeister W (1999) Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett 451:27–32

    Article  PubMed  CAS  Google Scholar 

  87. Römisch K (2005) Endoplasmic reticulum-associated degradation. Annu Rev Cell Dev Biol 21:435–456

    Article  PubMed  CAS  Google Scholar 

  88. Rotanova TV, Melnikov EE, Khalatova AG, Makhovskaya OV, Botos I, Wlodawer A, Gustchina A (2004) Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. Eur J Biochem 271:4865–4871

    Article  PubMed  CAS  Google Scholar 

  89. Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H (2001) Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8:42–46

    Article  PubMed  CAS  Google Scholar 

  90. Ruepp A, Eckerskorn C, Bogyo M, Baumeiste5r W (1998) Proteasome function is dispensable under normal but not under heat shock conditions in Thermoplasma acidophilum. FEBS Lett 425:87–90

    Article  PubMed  CAS  Google Scholar 

  91. Russo S, Baumann U (2004) Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase. J Biol Chem 279:51275–51281

    Article  PubMed  CAS  Google Scholar 

  92. Saras J, Heldin CH (1996) PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem Sci 21:455–458

    Article  PubMed  CAS  Google Scholar 

  93. Saric T, Graef CI, Goldberg AL (2004) Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 279:46723–46732

    Article  PubMed  CAS  Google Scholar 

  94. Schlieker C, Mogk A, Bukau B (2004) A PDZ switch for a cellular stress response. Cell 117:417–419

    Article  PubMed  CAS  Google Scholar 

  95. Schuberth C, Buchberger A (2005) Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat Cell Biol 7:999–1006

    Article  PubMed  CAS  Google Scholar 

  96. Seemüller E, Lupas A, Baumeister W (1996) Autocatalytic processing of the 20S proteasome. Nature 382:468–470

    Article  PubMed  Google Scholar 

  97. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  98. Snowden LJ, Blumentals II, Kelly RM (1992) Regulation of proteolytic activity in the hyperthermophile Pyrococcus furiosus. Appl Environ Microbiol 58:1134–1141

    PubMed  CAS  Google Scholar 

  99. Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347

    Article  PubMed  CAS  Google Scholar 

  100. Spreter T, Pech M, Beatrix B (2005) The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J Biol Chem 280:15849–15854

    Article  PubMed  CAS  Google Scholar 

  101. Stack HM, Sleator RD, Bowers M, Hill C, Gahan CG (2005) Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 71:4241–4247

    Article  PubMed  CAS  Google Scholar 

  102. Stahlberg H, Kutejová E, Suda K, Wolpensinger B, Lustig A, Schatz G, Engel A, Suzuki CK (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci USA 96:6787–6790

    Article  PubMed  CAS  Google Scholar 

  103. Strauch KL, Beckwith J (1988) An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA 85:1576–1580

    Article  PubMed  CAS  Google Scholar 

  104. Strauch KL, Johnson K, Beckwith J (1989) Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 171:2689–2696

    PubMed  CAS  Google Scholar 

  105. Tamura N, Lottspeich F, Baumeister W, Tamura T (1998) The role of tricorn protease and its amino peptidase-interacting factors in cellular protein degradation. Cell 95:637–648

    Article  PubMed  CAS  Google Scholar 

  106. Tamura T, Tamura N, Cejka Z, Hegerl R, Lottspeich F, Baumeister W (1996) Tricorn protease —the core of a modular proteolytic system. Science 274:1385–1389

    Article  PubMed  CAS  Google Scholar 

  107. Tomkinson B (1999) Tripeptidyl peptidases: enzymes that count. Trends Biochem Sci 24:355–359

    Article  PubMed  CAS  Google Scholar 

  108. Tsunasawa S, Nakura S, Tanigawa T, Kato I (1998) Pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Pyrococcus furiosus: cloning and overexpression in Escherichia coli of the gene, and its application to protein sequence analysis. J Biochem (Tokyo) 124:778–783

    Article  CAS  Google Scholar 

  109. Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13:147–153

    Article  Google Scholar 

  110. Volker C, Lupas AN (2002) Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1–22

    Article  PubMed  CAS  Google Scholar 

  111. Waller PR, Sauer RT (1996) Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J Bacteriol 178:1146–1153

    PubMed  CAS  Google Scholar 

  112. Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT (2003) OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71

    Article  PubMed  CAS  Google Scholar 

  113. Walz J, Koster AJ, Tamura T, Baumeister W (1999) Capsids of tricorn protease studied by electron cryomicroscopy. J Struct Biol 128:65–68

    Article  PubMed  CAS  Google Scholar 

  114. Walz J, Tamura T, Tamura N, Grimm R, Baumeister W, Koster AJ (1997) Tricorn protease exists as an icosahedral supermolecule in vivo. Mol Cell 1:59–65

    Article  PubMed  CAS  Google Scholar 

  115. Wang C, Xi J, Begley TP, Nicholson LK (2001a) Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8:47–51

    Article  PubMed  CAS  Google Scholar 

  116. Wang EW, Kessler BM, Borodovsky A, Cravatt BF, Bogyo M, Ploegh HL, Glas R (2000) Integration of the ubiquitin-proteasome pathway with a cytosolic oligopeptidase activity. Proc Natl Acad Sci USA 97:9990–9995

    Article  PubMed  CAS  Google Scholar 

  117. Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, Rho SH, Seong IS, Lee CS, Chung CH, Eom SH (2001b) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure (Camb) 9:177–184

    Article  CAS  Google Scholar 

  118. Wang Q, Song C, Li CC (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 146:44–57

    Article  PubMed  CAS  Google Scholar 

  119. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T (2004) Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 117:483–494

    Article  PubMed  CAS  Google Scholar 

  120. Wilson HL, Aldrich HC, Maupin-Furlow JA (1999) Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis. J Bacteriol 181:5814–5824

    PubMed  CAS  Google Scholar 

  121. Wilson HL, Ou MS, Aldrich HC, Maupin-Furlow JA (2000) Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. J Bacteriol 182:1680–1692

    Article  PubMed  CAS  Google Scholar 

  122. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695:19–31

    Article  PubMed  CAS  Google Scholar 

  123. Yorgey P, Rahme LG, Tan MW, Ausubel FM (2001) The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol 41:1063–1076

    Article  PubMed  CAS  Google Scholar 

  124. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–442

    Article  PubMed  CAS  Google Scholar 

  125. Zwickl P, Ng D, Woo KM, Klenk H-P, Goldberg AL (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20S proteasomes. J Biol Chem 274:26008–26014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by a grant from the National Institutes of Health (R01 GM057498) and Department of Energy (DE-FG02-05ER15650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Maupin-Furlow .

Editor information

Jessup M. Shively

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maupin-Furlow, J.A. et al. (2006). Proteasomes and Other Nanocompartmentalized Proteases of Archaea. In: Shively, J.M. (eds) Complex Intracellular Structures in Prokaryotes. Microbiology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_019

Download citation

Publish with us

Policies and ethics