Skip to main content

Prokaryote Complex Intracellular Structures: Descriptions and Discoveries

  • Chapter
  • First Online:
Complex Intracellular Structures in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 2))

Abstract

The gas vacuole was first observed in 1895, but details of this structure (gas vesicles) aswell as discovery of the other structures covered in this monograph (proteasomes, phycobilisomes,chlorosomes, carboxysomes and carboxysome-like inclusions, magnetosomes, intracytoplasmic membranes,membrane-bounded nucleoids, pirellulosomes, anammoxosomes and the cytoarchitecture of EpulopisciumĀ spp.)awaited the availability of the transmission electron microscope and related technologies. Additionaladvancements in electron microscopy were required for the optimal visualization of some structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynthesis Res 85:15ā€“32

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Ahlborn F (1895) Ɯber die WasserblĆ¼te Byssus flosaquae und ihr Verhalten gegen Druck. Verh Naturwiss Ver Hamburg III 2:25

    Google ScholarĀ 

  3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google ScholarĀ 

  4. Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214ā€“224

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Angert ER, Clements KD (2004) Initiation of intracellular offspring in Epulopiscium. Mol Microbiol 51:827ā€“835

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Angert ER, Losick RM (1998) Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc Natl Acad Sci USA 95:10218ā€“10223

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362:239ā€“241

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Angert ER, Brooks AE, Pace NR (1996) Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bacteriol 178:1451ā€“1456

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Arrigo AP, Tanaka K, Goldberg AL, Welch WJ (1988) Identity of the 19S ā€˜prosomeā€™ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331:192ā€“194

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Badger MR, Price GD (2003) CO2concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exptl Bot 54:609ā€“622

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399ā€“1408

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Baumeister W, Cejka Z, Kania M, SeemĆ¼ller E (1997) The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment. Biol Chem 378:121ā€“130

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Baumeister W, Walz J, ZĆ¼hl F, SeemĆ¼ller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367ā€“380

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Bazylinski DA (1995) Structure and function of the bacterial magnetosome. ASM News 61:337ā€“343

    Google ScholarĀ 

  15. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217ā€“230

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Beck RW (2000) A chronology of microbiology in historical context. ASM, Washington

    Google ScholarĀ 

  17. Blakemore R (1975) Magnetotactic bacteria. Science 190:377ā€“379

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217ā€“238

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, The Netherlands, p 195ā€“217

    Google ScholarĀ 

  20. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, p 399ā€“435

    Google ScholarĀ 

  21. Boatman ES (1964) Observations of the fine structure of spheroplasts of Rhodospirillum rubrum. J Cell Biol 20:297ā€“311

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR (1997) Propanediol utilization genes (pdu) of Salmonella typhimurium: Three genes for the propanediol dehydratase. J Bacteriol 179:6633ā€“6639

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC (1999) The propanediol utilization (pdu) operon of Salmonella entericaserovar typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol 181:5967ā€“5975

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28:295ā€“317

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Bourdu R, Lefort M (1967) Structure fine, observee en cryode capage, des lamelles photosynthetiques des yanophycees endosymbiotiques: Glaucocystis nostochinearum Itzigs, et Cyanophora paradoxa. Compt Rend 265:37ā€“40

    Google ScholarĀ 

  26. Bowen CC, Jensen TE (1965a) Blue-green algae: fine structure of the gas vacuoles. Science 147:1460ā€“1462

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Bowen CC, Jensen TE (1965b) Fine structure of gas vacuoles in blue-green algae. Amer J Bot 52:641

    Google ScholarĀ 

  28. Broda E (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17:491ā€“493

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Calvin M, Lynch V (1952) Grana-like structures of Synechococcus cedorum. Nature 169:455

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Canabaeus L (1929) Ɯber die Heterocysten und Gasvakuolen der Blaualgen und ihre Beziehung zueinander. Pflanzenforschung, vol 13. Jena

    Google ScholarĀ 

  31. Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351ā€“5361

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Chouari R, Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2003) Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl Environ Microbiol 69:7365ā€“7363

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Clements KD, Bullivant S (1991) An unusual symbiont from the gut of surgeonfishes may be the largest known prokaryote. J Bacteriol 173:5359ā€“5362

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Clements KD, Sutton DC, Choat JH (1989) Occurrence and characteristics of unusual protistan symbionts from surgeonfishes Acanthuridae of the Great Barrier Reef Australia. Marine Biol 102:403ā€“412

    ArticleĀ  Google ScholarĀ 

  35. Codd GA, Stewart WDP (1976) Polyhedral bodies and ribulose 1,5-diphosphate carboxylase of the blue-green alga Anabaena cylindrica. Planta 130:323ā€“326

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Cohen-Bazire G (1963) Some observations on the organization of the photosynthetic apparatus in purple and green bacteria. In: Gest H, San Pietro A, Vernon LP (eds) Bacterial photosynthesis. Antioch, Yellow Springs, Ohio, pp 89ā€“119

    Google ScholarĀ 

  37. Cohen-Bazire G, Kunisawa R (1963) The fine structure of Rhodospirillum rubrum. J Cell Biol 16:401ā€“419

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Cohen-Bazire G, Sistrom WR (1966) The procaryotic photosynthetic apparatus. In: Vernon LP, Seeley GR (eds) The chlorophylls. Academic, New York, p 313ā€“341

    Google ScholarĀ 

  39. Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207ā€“225

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Cohen-Bazire G, Kunisawa R, Pfennig N (1969) Comparative study of the structure of gas vacuoles. J Bacteriol 100:1049ā€“1061

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Cruden DL, Stanier RY (1970) The characterization of chlorobium vesicles and membranes isolated from green bacteria. Arch Mikrobiol 72:115ā€“134

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Cruden Dl, Cohen-Bazire G, Stanier RY (1970) Chlorobium vesicles: The photosynthetic organelles of green bacteria. Nature 228:1345ā€“1347

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Dahlmann B, Kuehn L, Ishiura S, Tsukahara T, Sugita H, Tanaka K, Rivett AJ, Hough RF, Rechsteiner M, Mykles DI et al. (1988) The multicatalytic proteinase: a high-Mr endopeptidase. Biochem J 255:750ā€“751

    CASĀ  Google ScholarĀ 

  44. Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R, Baumeister W (1989) The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett 251:125ā€“131

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Dahlmann B, Kuehn L, Grziwa A, Zwickl P, Baumeister W (1992) Biochemical properties of the proteasome from Thermoplasma acidophilum. Eur J Biochem 208:789ā€“797

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. De Mot R, Nagy I, Walz J, Baumeister W (1999) Proteasomes and other self-compartmentalizing proteases in prokaryotes. Trends Microbiol 7:88ā€“92

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  47. Drews G, Giesbrecht P (1963) On the morphogenesis of bacterial chromatophores (thylakoids) and on the synthesis of bacteriochlorophyll in Rhodopseudomonas spheroides and Rhodospirillum rubrum. Zentralbl Bakteriol 190:508ā€“535

    CASĀ  Google ScholarĀ 

  48. Drews G, Niklowitz W (1956) BeitrƤge zur Cytologie der Blaualgen. II. Zentroplasma und granulare EinschlĆ¼sse von Phormidium uncinatum. Arch Mikrobiol 24:147ā€“162

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Echlin P, Morris I (1965) The relationship between blue-green algae and bacteria. Biol Rev 40:143ā€“187

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Edwards MR, Gantt E (1971) Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J Cell Biol 50:896ā€“900

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Edwards MR, Berns DS, Holt SC, Ghiorse WC (1968) Ultrastructure of the thermophilic blue-green alga Synechococcus lividus Copeland. J Phycol 4:283ā€“298

    ArticleĀ  Google ScholarĀ 

  52. Esenbeck N (1836) Ueber einen blau-rothen Farbstoff, der sich bei der Zersetzung von Oscillatorien bildet. Liebigs Ann Chem XVII:75ā€“82

    Google ScholarĀ 

  53. Feick RG, Fitzpatrick M, Fuller RC (1982) Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. J Bacteriol 150:905ā€“915

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Fishelson L, Montgomery WL, Myrberg AA (1985) A unique symbiosis in the gut of a tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science 229:49ā€“51

    ArticleĀ  Google ScholarĀ 

  55. Flint JF, Drzymalski D, Montgomery WL, Southam G, Angert ER (2005) Nocturnal production of endospores in natural populations of Epulopiscium-like surgeonfish symbionts. J Bacteriol 187:7460ā€“7470

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Fogg GE (1941) The gas-vacuoles of the Myxophyceae (Cyanophyceae). Biol Rev Cambridge Phil Soc 16:205ā€“217

    ArticleĀ  Google ScholarĀ 

  57. Frankel RB, Blakemore RP (1988) Magnetite and magnetotaxis in microorganisms. Adv Exp Med Biol 238:321ā€“330

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Frankel RB, Blakemore RP (1989) Magnetite and magnetotaxis in microorganisms. Bioelectromagnetics 10:223ā€“237

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355ā€“1356

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Franzmann PD, Skerman VB (1984) Gemmata obscuriglobus, a new genus and species of the budding bacteria. Antonie Van Leeuwenhoek 50:261ā€“268

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Frenkel AW (1954) Light-induced photophosphorylation by cell-free preparations of photosynthetic bacteria. J Am Chem Soc 76:5568ā€“5569

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265ā€“276

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299ā€“328

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the Eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 88:8184ā€“8188

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Gantt E (1980) Structure and function of phycobilisomes: light-harvesting pigment complexes in red and blue-green algae. Int Rev Cytol 66:45ā€“80

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Gantt E, Conti SF (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 26:365ā€“375

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Gantt E, Conti SF (1966a) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 9:423ā€“434

    ArticleĀ  Google ScholarĀ 

  68. Gantt E, Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393ā€“405

    PubMedĀ  CASĀ  Google ScholarĀ 

  69. Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486ā€“1493

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. Gantt E, Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol 54:313ā€“324

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Gimesi N (1924) Hydrobiologiai tanulma Ƭnyok (Hydrobiologische Studien). I. Planctomyces bekefii Gim nov gen et sp., p 1ā€“8. Kiadja a Magyar Ciszterci Rend, Budapest. (In Hungarian with German translation.)

    Google ScholarĀ 

  72. Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47ā€“77

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1ā€“4

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. Golecki JR, Drews G (1982) Supramolecular organization and composition of membranes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California, Berkeley, p 125ā€“141

    Google ScholarĀ 

  75. Gray BH, Lipschultz CA, Gantt E (1973) Phycobilisomes from a blue-green alga Nostoc species. J Bacteriol 116:471ā€“478

    PubMedĀ  CASĀ  Google ScholarĀ 

  76. Hagedorn H (1961) Untersuchungen Ć¼ber die Feinstruktur der Blaualgen. Z Naturforsch 16b:825ā€“829

    Google ScholarĀ 

  77. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439ā€“471

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Henrici AT, Johnson DE (1935) Studies of freshwater bacteria. II. Stalked bacteria, a new order of schizomycetes. J Bacteriol 30:61ā€“93

    PubMedĀ  CASĀ  Google ScholarĀ 

  79. Holt SC, Marr AG (1965) Location of chlorophyll in Rhodospirillum rubrum. J Bacteriol 89:1402ā€“1412

    PubMedĀ  CASĀ  Google ScholarĀ 

  80. Holt SC, Conti SF, Fuller RC (1966) Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum. J Bacteriol 91:349ā€“355

    PubMedĀ  CASĀ  Google ScholarĀ 

  81. Houwink AL (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J Gen Microbiol 15:146ā€“150

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Huber R (1989) Nobel lecture. A structural basis of light energy and electron transfer in biology. EMBO J 8:2125ā€“2147

    PubMedĀ  CASĀ  Google ScholarĀ 

  83. Jenkins C, Kedar V, Fuerst JA (2002) Gene discovery within the planctomycete division of the domain Bacteria using sequence tags from genomic DNA libraries. Genome Biol 3:1ā€“11

    ArticleĀ  Google ScholarĀ 

  84. Jensen TE (1993) Cyanobacterial ultrastructure. In: Berner T (ed) Ultrastructure of microalgae. CRC, Boca Raton FL, p 7ā€“51

    Google ScholarĀ 

  85. Jensen TE, Bowen CC (1961) Organization of the centroplasm in Nostoc pruniforme. Iowa Acad Sci Proc 68:86ā€“89

    Google ScholarĀ 

  86. Kaczowka SJ, Maupin-Furlow JA (2003) Subunit topology of two 20S proteasomes from Haloferax volcanii. J Bacteriol 185:165ā€“174

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Keim CN, SolĆ³rzano G, Farina M, Lins U (2005) Intracellular inclusions of uncultured magnetotactic bacteria. Int Microbiol 8:111ā€“117

    PubMedĀ  CASĀ  Google ScholarĀ 

  88. Klebahn H (1895) Gasvacuolen, ein Bestandteil der Zellen der WasserblĆ¼te bildenden Phycochromaceen. Flora 80:241ā€“282

    Google ScholarĀ 

  89. Klebahn H (1922) Neue Untersuchungen Ć¼ber die Gasvakuolen. Jahrb Wiss Bot 61:535ā€“589

    Google ScholarĀ 

  90. Klebahn H (1925) Weitere Untersuchungen Ć¼ber die Gasvakuolen. Ber Deut Bot Ges 43:143ā€“159

    Google ScholarĀ 

  91. Klebahn H (1929) Ɯber die Gasvakuolen der Cyanophyceen. Verh Int Ver Theoret Angew Limnologie 4:408ā€“414

    Google ScholarĀ 

  92. Lanaras T, Codd GA (1981) Ribulose 1,5-bisphosphate carboxylase and polyhedral bodies of Chlorogloeopsis fritschii. Planta 153:279ā€“285

    ArticleĀ  CASĀ  Google ScholarĀ 

  93. Lang NJ (1968) The fine structure of the blue-green algae. Ann Rev Microbiol 22:15ā€“46

    ArticleĀ  CASĀ  Google ScholarĀ 

  94. Larsen H, Omang S, Steensland H (1967) On the gas vacuoles of the halobacteria. Arch Mikrobiol 59:197ā€“203

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Lauterborn R (1913) Zur Kenntnis einiger sapropelischer Schizomyceten. Allg Bot Z 19:97ā€“100

    Google ScholarĀ 

  96. Lauterborn R (1915) Die sapropelische Lebewelt. Naturhist-med. Vereins Z Heidelberg, NF 13:396ā€“480

    Google ScholarĀ 

  97. Lefort M (1960a) Structure inframicroscopique du chromatoplasma de quelques cyanophycees. C R Acad Sci 250:1525ā€“1527

    Google ScholarĀ 

  98. Lefort M (1960b) Nouvelles recherches sur l'infrastructure du chromatoplasma des cyanophycees. C R Acad Sci 251:3046ā€“3048

    Google ScholarĀ 

  99. Lefort M (1965) Sur le chromatoplasma d'une cyanophycde endosymbiotique: Glaucocystis nostochinearum Itzigs. Compt Rend 261:233ā€“236

    Google ScholarĀ 

  100. Li N, Cannon M (1998) Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 180:2450ā€“2458

    PubMedĀ  CASĀ  Google ScholarĀ 

  101. Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiol 143:739ā€“748

    ArticleĀ  CASĀ  Google ScholarĀ 

  102. Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175:413ā€“429

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  103. Maupin-Furlow JA, Ferry JG (1995) A proteasome from the methanogenic archaeon Methanosarcina thermophila. J Biol Chem 270:28617ā€“28622

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  104. Maupin-Furlow JA, Wilson HL, Kaczowka SJ, Ou MS (2000) Proteasomes in the archaea: From structure to function. Front Biosci 5:837ā€“865

    ArticleĀ  Google ScholarĀ 

  105. Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL (2001) Archaeal proteasomes: proteolytic nanocompartments of the cell. Adv Appl Microbiol 50:279ā€“338

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  106. Myers A, Preston RD, Ripley GW (1956) Fine structure in the red algae ā€“ I. X-ray and electronmicroscope investigation of Griffithsia flosculosa. Proc R Soc London Ser B 144:450ā€“459

    ArticleĀ  Google ScholarĀ 

  107. Myers J, Kratz WA (1955) Relation between pigment content and photosynthetic characteristics in a blue-green alga. J Gen Physiol 39:11ā€“22

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  108. Molisch H (1903) Die sogennanten Gasvakuolen und das Schweben gewisser Phycochromaceen. Bot Z 61:47

    Google ScholarĀ 

  109. Montgomery WL, Pollak PE (1988) Epulopiscium fishelsoni n.g., n.s., a protist of uncertain taxonomic affinities from the gut of an herbivorous reef fish. J Protozool 35:565ā€“569

    Google ScholarĀ 

  110. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177ā€“184

    ArticleĀ  CASĀ  Google ScholarĀ 

  111. Murray RGE, Watson SW (1965) Structure of Nitrosocystis oceanus and comparison with Nitrosomonas and Nitrobacter. J Bacteriol 89:1594ā€“1609

    PubMedĀ  CASĀ  Google ScholarĀ 

  112. Nierzwicki-Bauer SA, Balkwill DL, Stevens SE Jr (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713ā€“722

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Niklowitz W, Drews G (1956) BeitrƤge zur Cytologie der Blaualgen. I. Untersuchungen zur Substruktur von Phormidium uncinatum Gom. Arch Mikrobiol 24:134ā€“146

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  114. Niklowitz W, Drews G (1957) BeitrƤge zur Cytologie der Blaualgen. IV. Vergleichende elektronenmikroskopische Untersuchungen zur Substruktur einiger Hormogonales. Arch Mikrobiol 27:150ā€“165

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  115. Ofer S, Nowik I, Bauminger ER, Papaefthymiou GC, Frankel RB, Blakemore RP (1984) Magnetosome dynamics in magnetotactic bacteria. Biophys J 46:57ā€“64

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  116. Pankratz HS, Bowen CC (1963) Cytology of blue-green algae. I. The cells of Symploca muscorum. Amer J Bot 50:387ā€“399

    ArticleĀ  Google ScholarĀ 

  117. Pardee AB, Schachman HK, Stanier RY (1952) Chromatophores of Rhodospirillum rubrum. Nature 169:282ā€“283

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  118. Pfennig N (1977) Phototrophic green and purple bacteria: a comparative systematic survey. Annu Rev Microbiol 31:275ā€“290

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  119. Pfennig N, Cohen-Bazire G (1967) Some properties of the green bacterium Pelodictyon clathratiforme. Arch Mikrobiol 59:226ā€“236

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  120. PĆ¼hler G, Pitzer F, Zwickl P, Baumeister W (1994) Proteasomes: multisubunit proteinases common to Thermoplasma and eukaryotes. System Appl Microbiol 16:734ā€“741

    ArticleĀ  Google ScholarĀ 

  121. Remsen CC (1978) Comparative subcellular architecture of photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, p 31ā€“60

    Google ScholarĀ 

  122. Robinow C, Angert ER (1998) Nucleoids and coated vesicles of Epulopiscium spp. Arch Microbiol 170:227ā€“235

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  123. Schachman HK, Pardee AB, Stanier RY (1952) Studies on the macromolecular organization of microbial cells. Arch Biochem Biophys 38:245ā€“260

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  124. Schlesner H (1986) Pirella marina sp. nov, a budding, peptidoglycanless bacterium from brackish water. Syst Appl Microbiol 8:177ā€“180

    ArticleĀ  Google ScholarĀ 

  125. Schlesner H (1989) Planctomyces brasiliensis sp. nov, a halotolerant bacterium from a salt pit. Syst Appl Microbiol 12:159ā€“161

    ArticleĀ  Google ScholarĀ 

  126. Schlesner H (1994) The development of media suitable for microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135ā€“145

    ArticleĀ  Google ScholarĀ 

  127. Schlesner H, Hirsch P (1984) Assignment of ATCC 27377 to Pirella gen nov comb nov. Int J Syst Bacteriol 34:492ā€“495

    ArticleĀ  Google ScholarĀ 

  128. Schlesner H, Hirsch P (1987) Rejection of the genus name Pirella for pear-shaped budding bacteria and proposal to create the genus Pirellula gen nov. Int J Syst Bacteriol 37:441

    ArticleĀ  Google ScholarĀ 

  129. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer K-H, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93ā€“106

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  130. Schmidt I, Zart D, Bock E (2001) Effects of gaseous NO2on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source. Antonie van Leeuwenhoek 79:39ā€“47

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  131. SchĆ¼ler D (2002) The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol 5:209ā€“214

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  132. SchĆ¼ler D (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol 181:1ā€“7

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  133. Shively JM (1974) Inclusion bodies of prokaryotes. Ann Rev Microbiol 28:167ā€“187

    ArticleĀ  CASĀ  Google ScholarĀ 

  134. Shively JM, Decker GL, Greenawalt JW (1970) Comparative ultrastructure of the thiobacilli. J Bacteriol 101:618ā€“627

    PubMedĀ  CASĀ  Google ScholarĀ 

  135. Shively JM, Ball F, Brown DH, Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584ā€“586

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  136. Shively JM, Ball FL, Kline BW (1973) Electron microscopy of the carboxysomes (polyhedral bodies) of Thiobacillus neapolitanus. J Bacteriol 116:1405ā€“1411

    PubMedĀ  CASĀ  Google ScholarĀ 

  137. Shively JM, Bock E, Westphal K, Cannon GC (1977) Icosahedral inclusions (carboxysomes) of Nitrobacter agilis. J Bacteriol 132:673ā€“675

    PubMedĀ  CASĀ  Google ScholarĀ 

  138. Shively JM, Bryant DA, Fuller RC, Konopka AE, Stevens SE Jr, Strohl WR (1988) Functional inclusions in prokaryotic cells. Int Rev Cytol 113:35ā€“100

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  139. Shively JM, Bradburne CE, Aldrich HC, Bobik TA, Mehlman JA, Jin S, Baker SH (1998) Sequence homologs of the carboxysomal polypeptide CsoS1 of the thiobacilli are present in cyanobacteria and enteric bacteria that form carboxysomesā€“polyhedral bodies. Can J Bot 76:906ā€“916

    CASĀ  Google ScholarĀ 

  140. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, The Netherlands, p 139ā€“216

    Google ScholarĀ 

  141. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269ā€“277

    ArticleĀ  Google ScholarĀ 

  142. Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Bioch Biophys Acta 589:30ā€“45

    ArticleĀ  CASĀ  Google ScholarĀ 

  143. Stanier RY, Doudoroff M, Adelberg EA (1957) The microbial world. Prentice-Hall, Englewood Cliffs NJ

    Google ScholarĀ 

  144. Staley JT (1973) Budding bacteria of the Pasteuria-Blastobacter group. Can J Microbiol 19:609ā€“614

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  145. Staley JT, Bont JA, Jonge K (1976) Prosthecobacter fusiformis nov gen et sp., the fusiform caulobacter. Antonie Van Leeuwenhoek 42:333ā€“342

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  146. Stoeckenius W, Kunau WH (1968) Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. J Cell Biol 38:336ā€“357

    ArticleĀ  Google ScholarĀ 

  147. Strodtman S (1895) Die Ursache des Schwebevermƶgens bei den Cyanophyceen. Biol Zentralbl 15:113ā€“115

    Google ScholarĀ 

  148. Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446ā€“449

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  149. Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R, Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5:766ā€“774

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  150. Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynthesis Res 76:197ā€“205

    ArticleĀ  CASĀ  Google ScholarĀ 

  151. van de Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246ā€“1251

    PubMedĀ  Google ScholarĀ 

  152. van Gool AP, Lambert R, Laudelout H (1969) The fine structure of frozen etched Nitrobacter cells. Arch Mikrobiol 69:281ā€“293

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  153. van Keulen G, Hopwood DA, Dijkhuizen L, Sawers RG (2005) Gas vesicles in actinomycetes: Old buoys in novel habitats? Trends Microbiol 13:350ā€“354

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  154. van Niftrik LA, Fuerst JA, Sinninghe Damste JS, Kuenen JG, Jetten MS, Strous M (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett 233:7ā€“13

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  155. Vatter AE, Wolf RS (1958) The structure of photosynthetic bacteria. J Bacteriol 75:480ā€“488

    PubMedĀ  CASĀ  Google ScholarĀ 

  156. Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp nov. Arch Microbiol 156:81ā€“90

    ArticleĀ  CASĀ  Google ScholarĀ 

  157. Walter D, Ailion M, Roth J (1997) Genetic characterization of the pdu operon: Use of 1,2-propanediol in Salmonella typhimurium. J Bacteriol 179:1013ā€“1022

    PubMedĀ  CASĀ  Google ScholarĀ 

  158. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94ā€“144

    PubMedĀ  CASĀ  Google ScholarĀ 

  159. Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36:1ā€“32

    PubMedĀ  CASĀ  Google ScholarĀ 

  160. Wang J, Jenkins C, Webb RI, Fuerst JA (2002) Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl Environ Microbiol 68:417ā€“422

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  161. Wang WS, Lundgren DG (1969) Poly-3-hydroxybutyrate in the chemolithotrophic bacterium Ferrobacillus ferrooxidans. J Bacteriol 97:947ā€“950

    PubMedĀ  CASĀ  Google ScholarĀ 

  162. Wang WS, Korczynski MS, Lundgren DG (1970) Cell envelope of an iron-oxidizing bacterium: studies of lipopolysaccharide and peptidoglycan. J Bacteriol 104:556ā€“565

    PubMedĀ  CASĀ  Google ScholarĀ 

  163. Ward N, Rainey FA, Stackebrandt E, Schlesner H (1995) Unraveling the extent of diversity within the order Planctomycetales. Appl Environ Microbiol 61:2270ā€“2275

    PubMedĀ  CASĀ  Google ScholarĀ 

  164. Watson SW, Mandel M (1971) Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J Bacteriol 107:563ā€“569

    PubMedĀ  CASĀ  Google ScholarĀ 

  165. Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Muller SA, Engel A, De Mot R, Baumeister W (1998) Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J Mol Biol 277:13ā€“25

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  166. Wolk CP (1973) Physiology and cytological chemistry of blue-green algae. Bacteriol Rev 37:32ā€“101

    PubMedĀ  CASĀ  Google ScholarĀ 

  167. Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443ā€“13448

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  168. Zuhl F, Tamura T, Dolenc I, Cejka Z, Nagy I, De Mot R, Baumeister W (1997) Subunit topology of the Rhodococcus proteasome. FEBS Lett 400:83ā€“90

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  169. Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20S proteasomes. J Biol Chem 274:26008ā€“26014

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  170. Zwickl P, Baumeister W, Steven A (2000) Dis-assembly lines: The proteasome and related ATPase-assisted proteases. Curr Op Struct Biol 10:242ā€“250

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessup M. Shively .

Editor information

Jessup M. Shively

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shively, J.M. (2006). Prokaryote Complex Intracellular Structures: Descriptions and Discoveries. In: Shively, J.M. (eds) Complex Intracellular Structures in Prokaryotes. Microbiology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_018

Download citation

Publish with us

Policies and ethics