Skip to main content

Surface Modification Approach to Control Biofouling

  • Chapter
  • First Online:
Springer Series on Biofilms

Part of the book series: Springer Series on Biofilms

Abstract

There are three principal approaches to control biofouling: (1) mechanical detachment of biofoulers if possible; (2) killing or inactivation of biofouling organisms using antibiotics, biocides, cleaning chemicals, etc. and (3) surface modification turning the substrate material into a low-fouling or non-sticking (non-adhesive) one. Such modification usually alters the surface chemical composition and morphology, surface topography and roughness, the hydrophilic/hydrophobic balance, as well as the surface energy and polarity.

In marine applications especially, current non-toxic biofouling control strategies are based mainly on the third approach, i.e., on the idea of creating low-fouling or non-adhesive material surfaces, an approach that includes development of strongly hydrophilic “water-like” bioinert materials. Strongly hydrophobic low-energy surfaces are preferable in industrial and marine biofouling control because of their relative stability in aqueous media and reduced interactions with living cells.

This chapter presents a brief overview of some possibilities for biofouling control by surface engineering. A number of related ideas will be discussed in this chapter, including: (1) the use of protein adsorption as a mediator of bioadhesion and biofouling, (2) physicochemical parameters influencing these phenomena, (3) theoretical aspects of cell/surface interactions, (4) some popular surface modification techniques, and (5) examples of successful biofouling control approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abarzua S, Jacubowski S (1995) Biotechnological investigation for the prevention of biofouling 1.Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser 123:301–312

    Article  CAS  Google Scholar 

  • Adams J, Watts F (1993) Regulation of development and differentiation by the extracellular matrix. J Invest Dermatol 117:1183–1198

    CAS  Google Scholar 

  • Altankov G (2003) Interaction of cells with biomaterial surfaces. BAS, Institute of Biophysics, SofiaDSc thesis,

    Google Scholar 

  • Altankov G, Groth T (1994) Reorganization of substratum bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci: Mater Med 5:732–737

    Article  CAS  Google Scholar 

  • AMBIO (2006) Advanced nanostructured surfaces for the control of biofouling. http://www.ambio.bham.ac.uk/. Last accessed 14 July 2008

    Google Scholar 

  • An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  PubMed  CAS  Google Scholar 

  • Anderson C, Atlar M, Callow M, Candries M, Milne A, Townsin RL (2003) The development of fouling-release coatings for seagoing vessels. J Marine Design B4:11–23

    Google Scholar 

  • Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B (2003) A comparative study of RTV11 and intersleek elastomers. J Chem Phys 119:1671–1682

    Article  ADS  CAS  Google Scholar 

  • Atthoff B (2006) Tailoring of biomaterials using ionic interactions. Synthesis, characterization and application, Uppsala University, SwedenPhD thesis,

    Google Scholar 

  • Baier RE (1973) Influence of the initial surface condition of materials on bioadhesion. In: Acker RF, Brown BE, DePalma JR, Iverson WP (eds.) Proceedings third international congress on marine corrosion and fouling. Northwestern University Press, Evanston, IL, pp. 633–639

    Google Scholar 

  • Baier RE (1980) Substrata influences on the adhesion of microorganisms and their resultant new surface properties. In: Bitton G, Marshal K (eds.) Adsorption of microorganisms to surfaces. Wiley, New York, pp. 59–104

    Google Scholar 

  • Baier RE (2006) Surface behavior of biomaterials: the theta surface for biocompatibility. J Mater Sci: Mater Med 17:1057–1062

    Article  CAS  Google Scholar 

  • Baier RE, Shafrin EG, Zisman WA (1968) Adhesion: mechanisms that assist or impede it. Science 162:1360–1368

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bailey FE, Koleske JV (1976) Poly(ethylene oxide). New York Academic,

    Google Scholar 

  • Baney RH, Voight CE, Mentele JW In: (1977) Harris FW, Seymour RB (eds.) Structure-solubility relationships in polymers. Plenum, New York, pp. 225–232.

    Google Scholar 

  • Berglin M, Lönn N, Gatenholm P (2003) Coating modulus and barnacle bioadhesion. Biofouling 195:63–69

    Article  CAS  Google Scholar 

  • Berntsson KM (2001) Larval behaviour of the barnacle Balanus improvisus with implications for recruitment and biofouling control. PhD thesis, Dept. Marine Ecology, Göteborg University

    Google Scholar 

  • Berntsson KM, Jonsson PR (2003) Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: a comparison of static panels and boat hulls during the boating season. Biofouling 19:187–195

    Article  PubMed  CAS  Google Scholar 

  • Berntsson KM, Jonsson PR, Lejhall M, Gatenholm P (2000) Analysis of behavioural reaction of micro textured surfaces and implications for recruitment by the barnacle Balanus improvisus. J Exp Mar Biol Ecol 251:59–83

    Article  PubMed  Google Scholar 

  • Bers V, Wahl M (2004) The influence of natural surface micro topographies on fouling. Biofouling 20:(1)43–51

    Article  PubMed  CAS  Google Scholar 

  • Bitton G, Marshall KC (eds.) (1980) Adsorption of microorganisms to surfaces. Wiley, London

    Google Scholar 

  • Bohringer KF (2003) Surface modification and modulation in microstructures: controlling protein adsorption, monolayer desorption and micro-self-assembly. J Microtech Microeng 13:S1–S10

    Google Scholar 

  • Bos R, van der Mei HC, Gold J, Busscher HJ (2000) Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. Microbiol Lett 189:311–315

    Article  CAS  Google Scholar 

  • Brady RF (1999) Properties which influence marine fouling resistance in polymers containing silicon and fluorine. Prog Org Coat 35:31–35

    Article  ADS  CAS  Google Scholar 

  • Brady RF (2000) Clean hulls without poisons: devising and testing nontoxic marine coatings. J Coat Technol 72:44–56

    Article  CAS  Google Scholar 

  • Brady RF (2003) Antifouling coatings without organotin. J Protect Coat Linings 20:(1)33–37

    MathSciNet  Google Scholar 

  • Brady RF, Singler IL (2000) Mechanical factors favoring release from fouling release coatings. Biofouling 15:(1–3)73–81

    CAS  Google Scholar 

  • Brady RF, Bonafede SJ, Schmidt DL (1999) Self-assembled water-born fluoropolymer coatings for marine fouling resistance. JOCCA-Surf Coat Int 82:(12)582–585

    Article  CAS  Google Scholar 

  • Brennan AB, Baney RH, Carman ML, Estes TG, Feinberg AW, Wilson LH, Schumacher JF (2005) Surface topography for non-toxic bioadhesion control. USA Patent 20060219143

    Google Scholar 

  • Brusscher HJ, Bos R, van der Mei HC (1995) Initial microbial adhesion is determinant for the strength of biofilm adhesion. FEMS Microbiol Lett 128:229–234

    Article  Google Scholar 

  • Bunyard WC, Romack TJ, DeSimone JM (1999) Perfluoropolyether synthesis in liquid carbon dioxide by hexafluoropropylene photooxidation. Macromolecules 32:8224–8226

    Article  CAS  ADS  Google Scholar 

  • Callow ME, Fletcher RL (1994) The influence of low surface energy materials on bioadhesion: a review. Int Biodeterior Biodegradation 34:333–343

    Article  CAS  Google Scholar 

  • Callow ME, Callow JA (2000) Substratum location and zoospore behavior in the fouling alga Enteromorpha. Biofouling 15:49–56

    Google Scholar 

  • Callow ME, Callow JA (2006) Biofilms. In: Fusetani N, Clare AS (eds.) Antifouling compounds. Progress in molecular and submolecular biology, vol 32. Springer, Berlin Heidelberg New York, pp. 141–169

    Google Scholar 

  • Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of Enteromorpha propagules: quantitative settlement studies in video microscopy. J Phycol 33:938–947

    Article  Google Scholar 

  • Callow ME, Callow JA, Ista LK, Coleman SE, Nolasco AC, Lopez GP (2000) The use of self-assembled monolayers of different wettabilities to study surface selection and primary adhesion process of green algal (Enteromorpha) zoospores. Appl Environ Microbiol 66:3249–3254

    Article  PubMed  CAS  Google Scholar 

  • Callow ME, Jennings AR, Brennan AB, Seegert CE, Gibson A, Wilson L, Feinberg A, Baney R, Callow JA (2002) Micro topographic cues for settlement of zoospores of the green fouling alga Enteromorpha. Biofouling 18:229–236

    Article  Google Scholar 

  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brenan AB (2006) Engineered antifouling microtopographies – correlating wettability with cell attachment. Biofouling, 22:11–21

    Article  CAS  Google Scholar 

  • Casse F, Swain GW (2006) The development of microfouling on four commercial antifouling coatings under static and dynamic immersion. Int Biodeterior Biodegradation 57:179–185

    Article  CAS  Google Scholar 

  • Chan CM (1993) Polymer surface modification and characterization, Chapters 5–7. Brookfield HanserGardner,

    Google Scholar 

  • Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:(1–2)1–54

    Article  CAS  Google Scholar 

  • Chaudhury MK, Finlay JA, Chung JY, Callow ME, Callow JA (2005) The Influence of elastic modulus and thickness of the release of the soft-fouling green alga Ulva linza from PDMS model networks. Biofouling 21:(1)41–48

    Article  PubMed  CAS  Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea – a review. Aquat Microb Ecol 9:87–96

    Article  Google Scholar 

  • Corpe WA (1970) Attachment of marine bacteria to solid surfaces. In: Manly S (ed.) Adhesion in biological systems.Academic, New York, pp. 73–87

    Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  • Cunliffe D, Smart CA, Alexander C, Vulfson EN (1999) Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol 65 (11):4995–5002

    PubMed  CAS  Google Scholar 

  • Dahlström M, Jonsson H, Jonsson PR, Elwing H (2004) Surface wettability as a determinant in the settlement of the barnacle Balanus improvisus (DARWIN). J Exp Mar Biol Ecol 305:223–232

    Article  Google Scholar 

  • Derjaguin BV (1955) Theory of the heterocoagulation, interaction and adhesion of dissimilar particles in solutions of electrolytes. Discuss Faraday Soc 18:85–86

    Article  Google Scholar 

  • Dexter SC (1979) Influence of substratum critical surface tension on bacterial adhesion in situ studies. J Coll Interface Sci 70:346–354

    Article  CAS  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  • Elbert DL, Hubbel JA (1996) Surface treatments of polymers for biocompatibility. Annu Rev Mater Sci 26:365–394

    CAS  ADS  Google Scholar 

  • Finlay JA, Callow ME, Ista LK, Lopez GP, Callow JA (2002) The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integ Comp Biol 42:1116—1125

    Article  Google Scholar 

  • Flammang P, Jangoux M (2004) Bioadhesion models from marine invertebrates: an integrated study – biomechanical, morphological, biochemical, molecular – of the processes involved in the adhesion of Cuvierian Tubules on sea cucumbers (Echiodermata, Holothuroidea). Mons-Hainaut University, Belgium http://www.stormingmedia.us/86/8607/A860724.html. Last accesses 14 July 2008

    Google Scholar 

  • Flemming H-C , Greenhalgh M (2008) Concept and consequences of the EU biocide guideline. Springer Ser Biofilms. doi: 10.1007/7142_2008_12

    Google Scholar 

  • Gan D, Mueller A, Wooley KL (2003) Amphiphilic and hydrophobic surface patterns generated from hyberbranched fluoropolymer/linear polymer networks: minimally adhesive coatings via the crosslinking of hyperbranched fluoropolymers. J Polym Sci Part A: Polym Chem 41:3531–3540

    Article  CAS  ADS  Google Scholar 

  • Ghatak A, Chaudhury MK, Shenoy V, Sharma A (2000) Meniscus instability in a thin elastic films. Phys Rev Lett 85:4329–4332

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gerbig YB, Phani AR, Haefke H (2005) Influence of nanoscale topography on the hydrophobicity of fluoro-based polymer thin films. Appl Surf Sci 242:251–255

    Article  ADS  CAS  Google Scholar 

  • Good RG (1992) Contact angle, wetting and adhesion: a critical review. J Adh Sci Techn 6:1269–1302

    Article  CAS  Google Scholar 

  • Gölander C-G (1986) Preparation and properties of functionalised polymer surfaces. Royal Institute of Technology, StockholmPhD thesis,

    Google Scholar 

  • Gölander C-G, Jönsson S-E, Vladkova T (1984) A surface coated article, process and means for the preparation of thereof and use of thereof. Sweden patent no 8404866–9/28.09.1984; Bulgarian Patent 67997/28.09.1984; European Patent 022966/28.09.84; PCT SE85/00376/28.09.84

    Google Scholar 

  • Gölander C-G, Jönsson S-E, Vladkova T, Stenius P, Eriksson J-C (1986) Preparation and protein-adsorption properties of photo-polymerized hydrophilic films coating N-vinyl pyrollidone (NVP), acrylic acid (AA) or ethylene oxide (EO) units as studied by ESCA. Coll Surf 21:149–165

    Article  Google Scholar 

  • Gölander C-G, Jönsson S-E, Vladkova T, Stenius P, Kisch E (1987) Protein adsorption on some hydrophilic films. Presented at 31st IUPAC, 13–18 July 1987, Sofia

    Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc London A 221:163–198

    Article  ADS  Google Scholar 

  • Grinnell F, Milam M, Spree P (1972) Arch Biochem Biophys 153:193

    Article  PubMed  CAS  Google Scholar 

  • Griesser HJ, Hartley PG, McArthur SL, McLean KM, Meagher L, Thissen H (2002) Interfacial properties and protein resistance of nano-scale polysaccharide coatings. Smart Mater Struct 11:652–661

    Article  ADS  CAS  Google Scholar 

  • Groll J, Amirgoulova EV, Ameringer T, Heyes CD, Röcker C, Nienhaus GU, Möller M (2004) Biofunctionalized ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins). J Am Chem Soc 126:4234–4339

    Article  PubMed  CAS  Google Scholar 

  • Grunlan MA, Lee NS, Gai G, Gedda T, Mabry JM, Mansfeld F, Kus E, Wendt DE, Kowalke GL, Finley JA, Callow JA, Callow ME, Weber WP (2004) Synthesis of α,ω-bis epoxy oligo (1’H,1’H,2’H, 2’H-perfluoroalkyl siloxane)s and properties of their photo-acid cross-linked films. Chem Mater 16:2433–2441

    Article  CAS  Google Scholar 

  • Grunlan MA, Lee NS, Mansfeld F (2006) Minimally adhesive polymer surfaces prepared from star oligosiloxanes and star oligofluorosiloxanes. J Polym Sci Part A: Poly Chem 44:2551–2566

    Article  CAS  ADS  Google Scholar 

  • Gudipati CS, Greenlieaf CM, Johnson JA, Pornpimol P, Wooley KL (2004) Hyperbranched fluoropolymer and linear PEG based amphiphilic crosslinked networks as efficient anti-fouling coatings: an insight into the surface compositions, topographies and morphologies. J Polym Sci Part A: Poly Chem 42:6193–6208

    Article  CAS  ADS  Google Scholar 

  • Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL (2005) The antifouling and foulin-release performance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir 21:3044–3053

    Article  PubMed  CAS  Google Scholar 

  • Hamza A, Pham VA, Matsuura T, Santerre JP (1977) Development of membranes with low surface energy to reduce fouling in ultrafiltration applications. J Membr Sci 131:217–223

    Article  Google Scholar 

  • Harder T (2008) Marine epibiosis – concepts, ecological consequences and host defense. Springer Ser Biofilms. doi: 10.1007/7142_2008_16

    Google Scholar 

  • Harris JM (1992) Poly(ethylene glycol) chemistry. New York Biotechnical and biomedical applications. Plenum ,

    Google Scholar 

  • Hester JF, Banerjee P, Won YY, Akthakul A, Acar MH, Mayers AM (2002) ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules 35:7652–7661

    Article  CAS  ADS  Google Scholar 

  • Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielect Elect Insul 6:703–717

    Article  CAS  Google Scholar 

  • Hlady V, Van Vagenen RA, Andrade JD (1985) In: Andrade JD (ed.) Surface and interfacial aspects of biomedical polymers, vol 2. Plenum , New York, p. 81

    Google Scholar 

  • Hoipkemeier-Wilson L, Schumacher JF, Carman ML, Gibson AL, Feinberg AW, Callow ME, Finley JA, Callow JA, Brennan AB (2004) Antifouling potential of lubricious, micro-engineered PDMS elastomers against zoospores of the green fouling alga Ulva. Biofouling 20:53–63

    Article  PubMed  CAS  Google Scholar 

  • Holland R, Dugdale TM, Wetherbee R, Brennan AB, Finlay JA, Callow JA, Callow ME (2004) Adhesion and motility of fouling diatoms on silicone elastomer. Biofouling 20:323–329

    Article  PubMed  CAS  Google Scholar 

  • Holm ER, Kavanagh CJ, Meyer AE Wiebe D, Nedved BT, Wendt D, Smith, CM Hadfield MG, Swain G, Wood CD, Truby K, Stein J, Montemarano J (2006) Interspecific variation in patterns of adhesion of marine fouling to silicone surfaces. Biofouling 22:(3–4)233–243

    Article  PubMed  CAS  Google Scholar 

  • Homma H, Kuroyagi I, Izumi K, Murley CL, Ronzello J, Boggs SA (1999) Diffusion of low molecular weight siloxane from bulk to surface. IEEE Trans Dielect Elect Insul 6:370–375

    Article  CAS  Google Scholar 

  • Humphrey AJ, Finlay JA, Pettitt ME, Stanley MS, Callow JA (2005) Effect of Ellman's reagent and dithiothreitol on the curing of the spore adhesive glycoprotein of the green alga Ulva. J Adhesion 81:791–803

    Article  CAS  Google Scholar 

  • Ikada Y, Suzuki M, Tamada Y (1984) Polymer surfaces possessing minimal interaction with blood components. In: Shalaby SW, Hoffman AS, Ratner BD, Horbett TA (eds.) Polymers as biomaterials. Plenum, New York.

    Google Scholar 

  • Ista LK, Callow M, Finlay S, Coleman E, Nolasco AC, Simons RH, Callow JA, Lopez GP (2004) Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl Environ Microbiol 70:(7)4151–4157

    Article  PubMed  CAS  Google Scholar 

  • Johston E, Bullock S, Uilk J, Gatenhohnm P, Wynne KJ (1999) Networks from α,ω-dihydroxypoly(dimethylsiloxane) and (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane: surface microstructures and surface characterization. Macromolecules 32:8173–8182

    Article  CAS  ADS  Google Scholar 

  • Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, Shizuri Y (2000) Barnacle cement proteins: importance of disulfide bonds in their insolubility. J Biol Chem 275:27360–27365

    PubMed  CAS  Google Scholar 

  • Kavanagh CJ, Swain GW, Kovach BS (2003) The effect of silicone fluid additives and silicone matrices on the barnacle adhesion strength. Biofouling 19 (6):381–390

    Article  PubMed  CAS  Google Scholar 

  • Kendall K (1971) The adhesion and surface energy of elastic solids. J Phys D: Appl Phys 4:1186–1195

    Article  ADS  Google Scholar 

  • Kendall K (1994) Adhesion: molecules and mechanics. Science 263:1720–1725

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kiaie D, Hoffman AS, Horbett TA, Lew KR (1995) Platelet and monoclonal antibody binding to fibrinogen adsorbed on glow discharge deposited polymers. J Biomed Mat Res 29:729–739

    Article  Google Scholar 

  • Kicheva J, Kostov V, Mateev M, Vladkova T (1992) Evaluation of the in vitro and in vivo biocompatibility of PVC materials with modified surfaces. In: Proceedings VI colloquium on biomaterials, Aachen, 24–25 Sept 1992, pp. 24–39

    Google Scholar 

  • Kingshott P, Griesser HJ (1999) Surfaces that resist bioadhesion. Curr Opin Solid State Mater Sci 4 (4):403–412

    Article  CAS  Google Scholar 

  • Kinloch AJ, Young RJ (1983) Fracture behavior of polymers. London. Applied Science,

    Google Scholar 

  • Klebe R (1974) Isolation of collagen-dependant cell attachment factor. Natura 250:248–252

    Article  ADS  CAS  Google Scholar 

  • Kohl JG, Singler IL (1999) Pull-off behaviour of epoxy bonded to silicone duplex coatings. Prog Org Coat 36:15–20

    Article  CAS  Google Scholar 

  • Krishnan S, Callow JA, Fischer DA (2006) Anti-fouling properties of comb-like block copolymers with amphiphilic side chains. Langmuir 22 (11):5075–5086

    Article  PubMed  CAS  Google Scholar 

  • Kuhl TL, Leckband DE, Lasic DD, Israelachvili JN (1994) Modulation of interaction forces between bi-layer exposing short-chained ethylene oxide head groups. Biophys J 66:1479–1488

    PubMed  CAS  Google Scholar 

  • Li X, Logan BE (2004) Analysis of bacterial adhesion using a gradient force analysis and colloid probe atomic force microscopy. Langmuir 20:(20)8817–8822

    Article  PubMed  CAS  Google Scholar 

  • Linder E (1992) A low surface energy approach in the control of marine biofouling. Biofouling 6:193–205

    Google Scholar 

  • Loeb GI, Neihof RA (1975) Marine conditioning films. Adv Chem 145:319–335

    Article  CAS  Google Scholar 

  • Malmsten M (1998) Biopolymers at interfaces. New York. Marcel Dekker,

    Google Scholar 

  • Mark JE (1979) Interpretation of polymer properties in terms of chain conformations and spiral configurations. Acc Chem Res 12:49–55

    Article  CAS  Google Scholar 

  • McGuire J, Swartzel KR (1987) Proceedings National Meeting American Institute Chemical Engineers, Minneapolis, p. 31

    Google Scholar 

  • Mera AE, Goodwin M, Pike JK, Wynne KJ (1999) Fluorinated silicone resin fouling release composite. Polymer 40:419

    Article  CAS  Google Scholar 

  • Meyer A, Baier R, Wood CD, Stein J, Truby K, Holm E, Montemarano J, Kavanagh C, Nedved B, Smith C, Swain G, Wiebe D (2006) Contact angle anomalies indicate that surface-active eluates from silicone coatings inhibit the adhesive mechanisms of fouling organisms. Biofouling 22:(6)411–423

    Article  PubMed  CAS  Google Scholar 

  • Milne A (1977a) Coated marine surfaces. UK Patent 1470465

    Google Scholar 

  • Milne A (1977b) Antifouling marine compositions. US Patent 4025693

    Google Scholar 

  • Mori Y, Nagaoka S (1982) A new antithrombogenic material with long poly(ethylene) oxide chains. Trans Am Soc Artif Intern Organs 28:459

    PubMed  CAS  Google Scholar 

  • Morra M, Cassinelli C (1997) Bacterial adhesion to polymer surfaces: a critical review of surface thermodynamic approaches. J Biomat Sci Polymer Ed 9:55–74

    Article  CAS  Google Scholar 

  • Nedved BT , Hadfield MG (2008) Hydroides elegans (Annelida: Polychaeta): a model for biofouling research. Springer Ser Biofilms. doi: 10.1007/7142_2008_15

    Google Scholar 

  • Newby BZ, Chaudhury MK (1997) Effect of interfacial slippage on viscoelastic adhesion. Langmuir 13:1805–1809

    Article  Google Scholar 

  • Newby BZ, Chaudhury MK, Brown HR (1995) Macroscopic evidence of effect of interfacial slippage on adhesion. Science 269:1407–1409

    Article  PubMed  ADS  CAS  Google Scholar 

  • Oliviera R (1997) Understanding adhesion: a means for preventing fouling. Exp Thermal Fluid Sci 14:316–322

    Article  Google Scholar 

  • Ostuni E, Chen CS, Ingber DE (2001) Selective deposition of proteins and cells in arrays of microwells. Langmuir 17:2828–2834

    Article  CAS  Google Scholar 

  • Ostuni E, Grzybowski BA, Mrksich M, Roberts CS, Whitesides GM (2003) Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. Langmuir 19:(5)1861–1872

    Article  CAS  Google Scholar 

  • Owen MJ (1990) Silicon surface reactivity. In: Zeigler JM, Fearon FWG (eds.) Silicon-based polymer science: a comprehensive resource. ACS Symposium Series 223. American Chemical Society, Washington DC, pp. 709–717

    Google Scholar 

  • Pasche S (2004) Mechanisms of protein resistance of adsorbed PEG-graft copolymers. Swiss Federal Institute of Technology, Zurich DSc thesis,

    Google Scholar 

  • Pasmore M (2008) Biofilms in hemodialysis. Springer Ser Biofilms. doi: 10.1007/7142_2008_5

    Google Scholar 

  • Pasmore M, Todd P, Smith S, Baker D, Silverstein J, Coons D, Bowman CN (2001) Effect of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J Membr Sci 194:15–21

    Article  CAS  Google Scholar 

  • Pedry L (2005) Interaction of bacteria with hydrophobic and hydrophilic interfaces. PhD thesis, Stanford University

    Google Scholar 

  • Pike JK, Ho T, Wynne KJ (1996) Low surface energy fluorinated poly(amide urethane) block copolymers and other low surface energy polymers. Chem Mater 8:856–860

    Article  CAS  Google Scholar 

  • Ratner BD, Chilkoti A, Lopez GP (1990) Plasma deposition and treatment for biomedical applications. In: d’Agustino R (ed.) Plasma deposition, treatment and etching of polymers. Academic, San Diego, pp. 463–516

    Google Scholar 

  • Russell TP (2002) Surface responsive materials. Science 279:964–967

    Article  ADS  Google Scholar 

  • Satriano C, Conte E, Marletta G (2001) Surface chemical structure and cell adhesion onto ion beam modified polysiloxane. Langmuir 17:2243–2250

    Article  CAS  Google Scholar 

  • Satriano C, Carnazza S, Guglielmino S, Marletta G (2002) Differential cultured fibroblast behavior on plasma and ion-beam-modified polysiloxane surfaces. Langmuir 18:(24)9469–9475

    Article  CAS  Google Scholar 

  • Scardino A, de Nys R, Ison O, O'Connor W, Steinberg P (2003) Microtopography and antifouling properties on the shell surface of the bivalve mollusks Mytilus galloprovincialis. and Pictada imbriticata Biofouling 19:221–230

    Article  PubMed  Google Scholar 

  • Schackenraad JM, Stokroos I, Bartels H, Busscher HJ (1992) Patency of small caliber, superhydrophobic E-PTFE vascular grafts: a pilot study in rabbit carotid artery. Cells Mater 2:193–199

    Google Scholar 

  • Scheuerman TR, Camper AK, Hamilton MA (1998) Effects of substratum topography on bacterial adhesion. J Coll Interface Sci 208:23–33

    Article  CAS  Google Scholar 

  • Schmidt DL, Coburn CE, DeKoven BM, Potter GE, Meyers GF, Fischer DA (1994) Water-based non-stick hydrophobic coatings. Nature 368:39–41

    Article  ADS  CAS  Google Scholar 

  • Schmidt DL, Brady RF, Lam K, Schmidt DC, Chaudhury MK (2004) Contact angle hysteresis, adhesion and marine biofouling. Langmuir 20:(7)2830–2836

    Article  PubMed  CAS  Google Scholar 

  • Sheu MS, Chen JY, Wang LP (1995) Biomaterials surface modification using plasma gas discharge processes. In: Wise DL et al. Encyclopedic handbook of biomaterials and bioengineering. 1. Marcer Dekker, New York, pp. 865–894Part A: Materials, vol

    Google Scholar 

  • Sigal GB, Mrksich M, Whitesides GM (1998) Effect of surface wettability on the adsorption of proteins and detergents. J Am Chem Soc 120:3464–3473

    Article  CAS  Google Scholar 

  • Silberzan P, Perutz S, Kramer EJ, Chaudhury MK (1994) Study of the self-adhesion hysteresis of a siloxane elastomer using the JKR method. Langmuir 10:2466–2470

    Article  CAS  Google Scholar 

  • Sinde E, Carballo J (2000) Attachment of Salmonella. and Listeria monocytogenes to stainless steel, rubber and PTFE: the Influence of the free energy Food Microbiol 17:439–447

    Article  CAS  Google Scholar 

  • Smeltzer MS (2008) Biofilms and aseptic loosening. Springer Ser Biofilms. doi: 10.1007/7142_2008_1

    Google Scholar 

  • Speranza G, Gottardi G, Pederzolli C, Lunelli L, Carli E, Lui A, Brugnara M, Anderle M (2004) Role of chemical interactions in bacterial adhesion to polymer surfaces. Biofouling 25:(11)2029–2037

    CAS  Google Scholar 

  • Stanley MS, Callow ME, Callow JA (1999) Monoclonal antibodies to adhesive cell coat glycoproteins secreted by zoospores of the green alga Enteromorpha. Planta 210:61–71

    Article  PubMed  CAS  Google Scholar 

  • Stein J, Truby K, Wood CD (2003) Silicon foul release coatings: effect of interaction of oil and coating functionalities on the magnitude of macro fouling attachment strengths. Biofouling 195:71–82

    Article  CAS  Google Scholar 

  • Sun Y, Akhremitchev B, Walker GC (2004) Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples. Langmuir 20:5837–5845

    Article  PubMed  CAS  Google Scholar 

  • Swain GWJ, Schultz MP (1996) The testing and evaluation of non-toxic antifouling coatings. Biofouling 10:187–197

    Article  CAS  Google Scholar 

  • Tang Y, Finlay JA, Kowalke GL (2005) Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling 21:(1)59–71

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Albrecht DA (1998) Regulation of apoptosis by cellular interactions with the extracellular matrix. In: Lockshin RA, Zakeri Z, Tilly JL (eds.) When cells die: a comprehensive evaluation of apoptosis and programmed cell death. Wiley-Liss, New York, pp. 411–427

    Google Scholar 

  • Truby K, Wood C, Stein J, Cella J, Carpenter J (2000) Evaluation of the performance enhancement of silicone biofouling-release coatings by oil incorporation. Biofouling 15:(1–3)141–150

    CAS  Google Scholar 

  • Uilk J, Johnston EE, Bullock S, Wynne KJ (2002) Surface characterization, microstructure and wetting of networks from α,ω-dihydroxy(polydimethylsiloxane) and 1,1,2,2-tetrahydrotridecafluoro octyltriethoxysilane. J Macromol Chem Phys 203:1506–1511

    Article  CAS  Google Scholar 

  • Van deVivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286

    CAS  Google Scholar 

  • Van Loosdrecht MCM, Lyklemam J, Norde W, Zehnder AJB (1990) Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat Sci 52:103–113

    Article  Google Scholar 

  • Velegol SB, Logan BE (2004) Correction to: “Contributions of bacterial surface polymers, electrostatics and cell elasticity to shape of AFM force curves”. Langmuir 20:3820

    Article  CAS  Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of stability of lyophobic colloids. Amsterdam Elsevier,

    Google Scholar 

  • Vladkova TG (1995) Modification of polymer surfaces for medical application. Presented at XIII conference on modification of polymers, Kudowa Zdroj, Poland, 11–15 Sept 1995

    Google Scholar 

  • Vladkova TG (2001) Some possibilities to polymer surface modification. Sofia UCTM,

    Google Scholar 

  • Vladkova T, Krasteva N, Kostadinova A, Altankov GP (1999) Preparation of PEG-coated surfaces and a study for their interaction with living cells. J Biomat Sci 10:(6)609–615

    Article  CAS  Google Scholar 

  • Vladkova TG, Keranov Il Dineff PD, Avramova IA, Altankov GP (2005) Plasma based Ar+. beam assisted PDMS surface modification Nucl Instrum Methods Phys Res B 236:552–562

    Article  ADS  CAS  Google Scholar 

  • Vladkova TG, Dineff PD, Zlatanov I, Katirolyi S, Venkatesan R, Murthy S (2006) Composition coating for biofouling protection. Bulgarian Patent Appl no 109779; WO 2008/074102 A1

    Google Scholar 

  • Vreeland V, Waite JH, Epstein L (1998) Polyphenols and oxidases in substratum adhesion by marine algae and molluscs. J Phycol 34:1–8

    Article  CAS  Google Scholar 

  • Wagner VE, Koberstein JT, Bryers JD (2004) Protein and bacterial adhesion. Biomaterials 25:2247–2263

    Article  PubMed  CAS  Google Scholar 

  • Waite JH (1999) Reverse engineering of bioadhesion in marine mussels. Ann N Y Acad Sci 18:301–309

    Article  ADS  Google Scholar 

  • Walker GC, Sun Y, Guo S, Finlay JA, Callow ME, Callow JA (2005) Surface mechanical properties of the spore adhesive of the green alga Ulva. J Adhesion 81:1101–1118

    Article  CAS  Google Scholar 

  • Wang J, Mao GP, Ober CK, Kramer EJ (1997) Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: synthesis, liquid crystalline structure, and critical surface tension. Macromolecules 30:1906–1914

    Article  CAS  ADS  Google Scholar 

  • Wynne KJ, Swain GW, Fox RB, Bullock S, Uilk J (2000) Two silicone nontoxic fouling release coatings: hydrosilation cured PDMS and CaCO3. filled ethoxysiloxane cured RTV11 Biofouling 16:277–288

    CAS  Google Scholar 

  • Xu L-C, Logan BE (2005) Atomic force microscopy colloid probe analysis of interactions between proteins and surfaces. Environ Sci Technol 39:(10)3592–3600

    Article  PubMed  CAS  Google Scholar 

  • Youngblood JP, Andruzzi L, Ober CK, Hexemer A, Kramer EJ, Callow JA (2003) Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. Biofouling 19:91–97

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang S, Müller-Steinhagen H (2004) Tailored surface free energy of membrane diffusers to minimize microbial adhesion. Appl Surf Sci 230:371–378

    Article  ADS  CAS  Google Scholar 

  • Zhili L, Brokken-Zijp JCM, de With G (2004) Determination of the elastic moduli of silicone rubber coatings and films using depth-sensing indentation. Polymer 45:5403–5406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vladkova .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Vladkova, T. (2008). Surface Modification Approach to Control Biofouling. In: Springer Series on Biofilms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7142_2008_22

Download citation

  • DOI: https://doi.org/10.1007/7142_2008_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics