Skip to main content

Marine Epibiosis: Concepts, Ecological Consequences and Host Defence

  • Chapter
  • First Online:
Springer Series on Biofilms

Part of the book series: Springer Series on Biofilms

Abstract

The sessile mode of life is widespread in a variety of marine phyla. Sessile life requires a stable substratum. On the benthos, motile life stages and sessile adults compete for rigid surfaces making non-living, i.e. inanimate, hard substratum a limited resource. Epibiosis is a direct consequence of surface limitation and results in spatially close associations between two or more living organisms belonging to the same or different species. These associations can be specifically guided by host chemistry resulting in species-specific symbiotic or pathogenic assemblages. Most colonizers, however, are non-specific substratum generalists. The ecological consequences for the overgrown host (basibiont) and the colonizer (epibiont) can be positive and negative. The predominantly disadvantageous nature of epibiosis by microorganisms for the basibiont has resulted in a variety of defence mechanisms against microcolonizers, including physical and chemical modes of action. Besides antimicrobial effects of secondary metabolites emanating from the host, recent studies increasingly demonstrate that epibiotic bacteria associated with the host deter growth and attachment of co-occurring bacterial species or new epibiotic colonizers competing for the same niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40

    Article  Google Scholar 

  • Berntsson KM, Jonsson PR, Lejhall M, Gatenholm P (2000) Analysis of behavioral rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus. J Exp Mar Biol Ecol 251:59–83

    Article  PubMed  Google Scholar 

  • Bouarab K, Potin P, Weinberger F, Correa J, Kloareg B (2001) The Chondrus crispus Acrochaete operculata. host-pathogen association, a novel model in glycobiology and applied phycopathology J Appl Phycol 13:185–193

    Article  CAS  Google Scholar 

  • Brouns JJWM, Heijs FML (1986) Production and biomass of the seagrass Anhalus acovoides. (Lf) Royle and its epiphytes Aquat Bot 25:21–45

    Article  Google Scholar 

  • Butman CA (1987) Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr Mar Biol A Rev 25:113–165

    Google Scholar 

  • Clare AS (1996) Marine natural product antifoulants. Biofouling 9:211–229

    Article  CAS  Google Scholar 

  • Clare AS, Matsumura K (2000) Nature and perception of barnacle settlement pheromones. Biofouling 15:57–71

    Article  CAS  Google Scholar 

  • Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to non-toxic antifouling. Invert Reprod Dev 22:67–76

    CAS  Google Scholar 

  • Coon SL, Fitt WK, Bonar DB (1990) Competence and delay of metamorphosis in the Pacific oyster Crassostrea gigas. Mar Biol 106:379–387

    Article  Google Scholar 

  • Cooney RP, Pantos O, Le Tissier MDA, Barer MR, O’Donnell AG, Bythell JC (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413

    Article  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217

    Article  PubMed  CAS  Google Scholar 

  • Davis AR, Targett NM, McConnell OJ, Young CM (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In: Scheuer (ed.) PJ Bioorganic marine chemistry, vol 3. Springer, Heidelberg Berlin New York, pp. 85–114

    Google Scholar 

  • Dixon J, Schroeter SC, Kastendick J (1981) Effects of encrusting bryozoan, Membranipora membranacea. on the loss of blades and fronds by the giant kelp, Macrocystis pyrifera (Laminariales) J Phycol 17:341–345

    Article  Google Scholar 

  • Dobretsov S, Dahms HU, Harder T, Qian PY (2006) Allelochemical defense of the macroalga Caulerpa racemosa. against epibiosis: evidence of field and laboratory assays Mar Ecol Prog Ser 318:165–175

    Article  CAS  Google Scholar 

  • Dreanno C, Matsumura K, Dohmae N, Takio K, Hirota H, Kirby R, Clare AS (2006) An α-2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc Natl Acad Sci U S A 103:14396–14401

    Article  PubMed  ADS  CAS  Google Scholar 

  • Egan S, Thomas T, Holmström C, Kjelleberg S (2000) Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ Microbiol 2:343–347

    Article  PubMed  CAS  Google Scholar 

  • Faulkner DJ (2000) Marine pharmacology. Antonie Van Leeuwenhoek 77:135–145

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RL, Callow ME (1992) The settlement, attachment and establishment of marine algal spores. Br Phycol J 27:303–329

    Article  Google Scholar 

  • Gil-Turness MS, Fenical W (1992) Embryos of Homarus americanus. are protected by epibiotic bacteria Biol Bull 182:105–108

    Article  Google Scholar 

  • Grossart HP, Kiørboe T Tang K, Ploug H (2003) Bacterial colonization of particles: growth and interactions. Appl Environ Microbiol 69:3500–3509

    Article  PubMed  CAS  Google Scholar 

  • Hadfield MG, Scheuer D (1985) Evidence for a soluble metamorphic inducer in Phestilla sibogae:. ecological, chemical and biological data Bull Mar Sci 37:556–566

    Google Scholar 

  • Hadfield MG, Paul VJ (2001). Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae: 431–461. In: McClintock JB, Baker BJ (eds.) Marine chemical ecology. CRC, Boca Raton, pp. 1–610

    Google Scholar 

  • Hahn KO (1989) Induction of settlement in competent abalone larvae. In Hahn (ed.) KO Handbook of culture of abalone and other marine gastropods. CRC, Boca Raton, pp. 101–112

    Google Scholar 

  • Harder T, Lam C, Qian PY (2002) Induction of larval settlement of the polychaete Hydroides elegans. (Haswell) by marine biofilms: an investigation of monospecific diatom films as settlement cues Mar Ecol Prog Ser 229:105–112

    Article  Google Scholar 

  • Harder T, Lau SCK, Dobretsov S, Fang TK, Qian PY (2003) A distinctive epibiotic bacterial community on the soft coral Dendronephthya. sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis FEMS Microbiol Ecol 43:337–347

    Article  CAS  PubMed  Google Scholar 

  • Harder T, Dobretsov S, Qian PY (2004a) . Waterborne, polar macromolecules act as algal antifoulants in the seeweed Ulva reticulata Mar Ecol Prog Ser 274:131–141

    Article  Google Scholar 

  • Harder T, Lau SCK, Tam WY, Qian PY (2004b) A bacterial culture-independent method to investigate chemically mediated control of bacterial epibiosis in marine invertebrates by using TRFLP analysis and natural bacterial populations. FEMS Microbiol Ecol 47:93–99

    Article  CAS  Google Scholar 

  • Harlin MM (1973) Transfer of products between epiphytic marine algae and host plants. J Phycol 9:243–248

    CAS  Google Scholar 

  • Hay ME (1986) Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Am Nat 128:617–641

    Article  ADS  Google Scholar 

  • Hellio C, Bremer G, Pons AM, Le Gal Y (2000) Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France. Appl Microbiol Biotechnol 54:543–549

    Article  PubMed  CAS  Google Scholar 

  • Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas. species are associated with higher organisms and produce biologically active extracellular agents FEMS Microbiol Ecol 30:285–293

    PubMed  Google Scholar 

  • Holmström C, James S, Egan S, Kjelleberg S (1996) Inhibition of common fouling organisms by pigmented marine bacterial isolates. Biofouling 10:251–259

    Article  Google Scholar 

  • Huggett MJ, Williamson JE, De Nys R, Kjelleberg S, Steinberg PD (2006) Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma. in response to bacteria from the surface of coralline algae Oecologia 149:604–619

    Article  PubMed  Google Scholar 

  • Jagels R (1973) Studies of a marine grass, Thalassia testudinum. I. Ultrastructure of the osmoregulatory leaf cells Am J Bot 60:1003–1009

    Article  Google Scholar 

  • Jensen PR, Harvell CD, Wirtz K, Fenical W (1996) Antimicrobial activity of extracts of Caribbean gorgonian corals. Mar Biol 125:411–419

    Article  Google Scholar 

  • Johnson CR, Sutton DC (1994) Bacteria on the surface of crustose coralline algae induce metamorphosis of the crown-of-thorns starfish Acanthaster planci. Mar Biol 120:305–310

    Article  Google Scholar 

  • Johnson CR, Muir DG, Reysenbach AL (1991) Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae. Mar Ecol Prog Ser 74:281–294

    Article  Google Scholar 

  • Johnson CR, Sutton DC, Olson RR, Giddins R (1991) Settlement of crown-of-thorns starfish: role of bacteria on surfaces of coralline algae and a hypothesis for deepwater recruitment. Mar Ecol Prog Ser 71:143–162

    Article  Google Scholar 

  • Joint I, Tait K, Callow ME, Callow JE, Milton D, Williams P (2002) Cell-to-cell communication across the procaryote – eucaryote boundary. Science 298:1207

    Article  PubMed  Google Scholar 

  • Kato T, Kumanireng AS, Ichinose I, Kitahara Y, Kakinuma Y, Nishihira M, Kato M (1975) Active components of Sargassum tortile. effecting the settlement of swimming larvae of Coryne uchidai Experientia 31:433–434

    Article  PubMed  CAS  Google Scholar 

  • Keough MJ (1986) The distribution of a bryozoan on seagrass blades: settlement, growth and mortality. Ecology 67:846–857

    Article  Google Scholar 

  • Kolattukudy PE, Rogers LM, Li D, Hwang CS, Flaishman MA (1995) Surface signaling in pathogenesis. Proc Natl Acad Sci U S A 92:4080–4087

    Article  PubMed  ADS  CAS  Google Scholar 

  • Krug PJ, Manzi AE (1999) Waterborne and surface-associated carbohydrates as settlement cues for larvae of the specialist marine herbivore Alderia modesta. Biol Bull 197:94–103

    Article  CAS  Google Scholar 

  • Kubanek J, Whalen KE, Engel S, Kelly SR, Henkel TP, Fenical W, Pawlik JR (2002) Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 131:125–136

    Article  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci U S A 100:6916–6921

    Article  PubMed  ADS  CAS  Google Scholar 

  • Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in brown algal kelp, Laminaria digitata. Plant Physiol 12:278–291

    Article  Google Scholar 

  • Laihonen P, Furman ER (1986) The site of settlement indicates commensalism between blue mussel and its epibiont. Oecologia 71:38–40

    Article  Google Scholar 

  • Lambert WJ, Todd CD, Hardege JD (1997) Partial characterization and biological activity of a metamorphic inducer of the dorid nudibranch Adalaria proxima. (Gastropoda: Nudibranchia) Invertebr Biol 116:71–81

    Article  Google Scholar 

  • Lau SCK, Mak KKW, Chen F, Qian PY (2002) Bioactivity of bacterial strains from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans. Mar Ecol Prog Ser 226:301–310

    Article  Google Scholar 

  • Lee O, Qian PY (2004) Potential control of bacterial epibiosis on the surface of the sponge Mycale adhaerens. Aquat Microb Ecol 34:11–21

    Article  Google Scholar 

  • Lemos ML Toranzo AE, Barja JL (1985) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbiol Ecol 11:149–163

    Article  CAS  Google Scholar 

  • Littler MM, Littler DS (1999) Blade abandonment/proliferation: a novel mechanisms for rapid epiphyte control in marine macrophytes. Ecology 80:1736–1746

    Article  Google Scholar 

  • Maida M, Coll JC, Samarco PW (1994) Shedding new light on scleractinian coral recruitment. J Exp Mar Biol Ecol 180:189–202

    Article  Google Scholar 

  • Maki JS, Mitchell R (2002) Biofouling in the marine environment. In: Bitton G (ed.) Encyclopedia of environmental microbiology. Wiley, New York, pp. 610–619

    Google Scholar 

  • Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg PD, Kjelleberg S (1999) Inhibition of LuxR-based AHL regulation by halogenated furanones from Delisea pulchra. Microbiology 145:283–291

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K, Nagano M, Fusetani N (1998) Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle, Balanus amphitrite. J Exp Zool 281:12–20

    Article  Google Scholar 

  • Maximilien R, de Nys R, Holmström C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonization by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246

    Article  Google Scholar 

  • Michalek K, Bowden BF (1997) A natural algacide from soft coral Sinularia flexibilis. (Coelenterata, Octocorallia, Alcyonacea) J Chem Ecol 23:259–273

    Article  CAS  Google Scholar 

  • Mitchell R, and Chet I (1975) Bacterial attack of corals in polluted seawater. Microb Ecol 2:227–233

    Article  Google Scholar 

  • Morse DE (1990) Recent progress in larval settlement and metamorphosis: closing the gaps molecular biology and ecology. Bull Mar Sci 46:465–483

    Google Scholar 

  • Morse ANC, Morse DE (1984) Recruitment and metamorphosis of Haliotis. larvae induced by molecules uniquely available at the surface of crustose red alga J Exp Mar Biol Ecol 75:191–215

    Article  CAS  Google Scholar 

  • Mullineaux LS, Butman CA (1991) Initial contact, exploration and attachment of barnacle (Balanus amphitrite. ) cyprids settling in flow Mar Biol 110:93–103

    Article  Google Scholar 

  • Nakanishi K, Nishijima M, Nomoto AM, Yamazali A, Saga N (1999) Requisite morphologic interaction for attachment between Ulva pertusa. (Chlorophyta) and symbiotic bacteria Mar Biotech 1:107–111

    Article  CAS  Google Scholar 

  • Nylund G, Cervin G, Hermansson, Pavia H (2005) Chemical inhibition of bacterial colonization by the red alga Bonnemaisonia hamifera. Mar Ecol Prog Ser 302:27–36

    Article  CAS  Google Scholar 

  • Nylund G, Pavia H (2005) Chemical versus mechanical inhibition of fouling in the red alga Dilsea carnosa. Mar Ecol Prog Ser 299:111–121

    Article  Google Scholar 

  • Paul NA, de Nys R Steinberg PD (2006) Chemical defence against bacteria in the red alga Asparagopsis armata. : linking structure with function Mar Ecol Prog Ser 306:87–101

    Article  CAS  Google Scholar 

  • Qian PY, Pechenik JA (1998) Effects of larval starvation and delayed metamorphosis on juvenile survival and growth of the tube-dwelling polychaete Hydroides elegans. (Haswell) J Exp Mar Biol Ecol 227:169–185

    Article  Google Scholar 

  • Qian PY, Rittschof D, Sreedhar B (2000) Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae. Mar Ecol Prog Ser 207:109–121

    Article  Google Scholar 

  • Rao D, Webb S, Kjelleberg S (2005) competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez SR, Ojeda FP, Inestrosa NC (1993) Settlement of benthic marine invertebrates. Mar Ecol Prog Ser 97:193–207

    Article  Google Scholar 

  • Salomon CE, Deerinck T, Elissman MH, Faulkner DJ (2001) The cellular localization of dercitamide in the Palauan sponge Oceanapia sagittaria. Mar Biol 139:313–319

    Article  CAS  Google Scholar 

  • Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63

    Article  CAS  Google Scholar 

  • Sieburth JM, Tootle JL (1981) Seasonality of microbial fouling on Ascophyllum nodosum. (L.) Lejol., Fucus vesiculosus L., Polysiphonia lanosa (L.) Tandy and Chondrus crispus Stackh J Phycol 17:57–64

    Article  Google Scholar 

  • Silberstein K, Chiffings AW, McComb AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. 3. The effect of epiphytes on productivity of Posidonia australis. Hook F Aquat Bot 24:355–371

    Article  Google Scholar 

  • Slattery M, McClintock JB, Heine JN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77

    Article  CAS  Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (2001) Chemical mediation of surface colonization, In: McClintock JB, Baker JB Marine chemical ecology. CRC, Boca Raton, pp. 355–387

    Google Scholar 

  • Steinberg PD, de Nys R, Kjelleberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28:1935–1951

    Article  PubMed  CAS  Google Scholar 

  • Swanson RL Williamson JE, De Nys R, Kumar N, Bucknall MP, Steinberg PD (2004) Induction of settlement of larvae of the sea urchin Holopneustes purpurascens. by histamine from a host alga Biol Bull 206:161–172

    Article  PubMed  CAS  Google Scholar 

  • Swanson RL, de Nys R, Huggett MJ, Green JK, Steinberg PD (2006) In situ quantification of a natural settlement cue and recruitment of the Australian sea urchin Holopneustes purpurascens. Mar Ecol Prog Ser 314:1–14

    Article  Google Scholar 

  • Tamburri MN, Zimmer-Faust RK, Tamplin ML (1992) Natural sources and properties of chemical inducers mediating settlement of oyster larvae: a re-examination. Biol Bull 183:327–338

    Article  Google Scholar 

  • Tatewaki M, Provasoli L, Pintner IJ (1983) Morphogenesis of Monostroma oxyspermum. (Kuetz.) Doty (Chlorophyceae) in axenic culture, especially in bialgal culture J Phycol 19:409–416

    Article  Google Scholar 

  • Terry LA, Edyvean RGJ (1981) Microalgae and corrosion. Bot Mar 24:177–183

    Article  CAS  Google Scholar 

  • Thevanathan R, Nirmala M, Manoharan A, Gangadharan A, Rajarajan R, Dhamotharan R, Selvaraj S (2000) On the occurrence of nitrogen fixing bacteria as epibacterial flora of some marine green algae. Seaweed Res Utiln 22:189–197

    Google Scholar 

  • Todd CD, Keough MJ (1994) Larval settlement in hard substratum epifaunal assemblages: a manipulative field study of the effects of substratum filming and the presence of incumbents. J Exp Mar Biol Ecol 181:159–187

    Article  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1994) Narains: N,N. -dimethylguanidinium styryl sulfates, metamorphosis inducers of ascidian larvae from a marine sponge Jaspis sp Tetrahedron Lett 35:5873–5874

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1995) Pipecolate derivatives, anthosamines A and B, inducers of larval metamorphosis in ascidians, from a marine sponge Anthosigmella aff. raromicrosclera. Tetrahedron 51:6687–6694

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1999) Lumichrome – a larval metamorphosis-inducing substance in the ascidian Halocynthia roretzi. Eur J Biochem 264:785–789

    Article  PubMed  CAS  Google Scholar 

  • Turner EJ, Zimmer-Faust RK, Palmer MA, Luckenback (1994) Settlement of oyster Crassostrea virginica. larvae: effects of water flow and a water-soluble chemical cue Limnol Oceanogr 39:1579–1593

    Article  CAS  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Wahl M (1997) Living attached: aufwuchs, fouling, epibiosis. In: Nagabushanam R, Thompson MF (eds.) Fouling organisms of the Indian Ocean: biology and control technology. Oxford and IBH, New Delhi, pp. 31–83

    Google Scholar 

  • Wahl M, Hay ME (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102:329–340

    Article  Google Scholar 

  • Wahl M Mark O (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66

    Article  Google Scholar 

  • Wahl M, Hay ME, Enderlein P (1997) Effects of epibiosis on consumer-prey interactions. Hydrobiologia 355:49–59

    Article  Google Scholar 

  • Weinberger F, Friedlander M (2000) Response of Gracilaria conferta. (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes J Phycol 36:1079–1086

    Article  CAS  Google Scholar 

  • Wieczorek SK, Todd CD (1998) Inhibition and facilitation of the settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–93

    Article  Google Scholar 

  • Williamson JE, De Nys R Kumar N Carson DG Steinberg PD (2000) Induction of metamorphosis in the sea urchin Holopneustes purpurascens by a metabolite complex from the algal host Delisea pulchra. Biol Bull 198–332–345

    Article  PubMed  Google Scholar 

  • Wilsanand V, Wagh AB, Bapuji M (1999) Effect of alcohol extracts of demospongiae on growth of periphytic diatoms. Ind J Mar Sci 28:274–279

    Google Scholar 

  • Yvin JC, Chevolet L, Chevolet-Maguer AM, Cochard JC (1985) First isolation of jacarone from an alga, Delesseria sanguinea:. a metamorphosis inducer of Pecten larvae J Nat Prod 48:814–816

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilmann Harder .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Harder, T. (2008). Marine Epibiosis: Concepts, Ecological Consequences and Host Defence. In: Springer Series on Biofilms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7142_2008_16

Download citation

  • DOI: https://doi.org/10.1007/7142_2008_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics