Skip to main content

A Strategy To Pursue in Selecting a Natural Antifoulant: A Perspective

  • Chapter
  • First Online:
Springer Series on Biofilms

Abstract

With the ban of tributyl tin and its analogs and the fact that copper and its derivatives are under legislative pressure, we must consider alternatives for the control of biofouling. So-called fouling-release coatings are one potential solution, but they do not control microfouling well. Compounds derived from macrobiota that appear to be fouling-free appear to be suitable molecules for investigation as components of antifouling coatings. If a molecule is to be active against a variety of organisms, it is important that it inhibit some universal metabolic process. Ideally, such a molecule would interfere with the surface sensing process itself and the events that result from the reception of that signal. Cell signaling in all eukaryotes is mediated by changes in the internal Ca2+ concentration. Therefore, a molecule that interferes with Ca-mediated events would be an ideal candidate to inhibit cellular adhesion and thus fouling. Using an image analysis-directed assay with diatoms and Ca-fluorophores to detect Ca fluxes, we report how 2-n-pentyl-4-quinolinol, D-600,and trans, trans-2,4-decadienal influence diatom adhesion and motility. All three molecules show activity as antifoulants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrejaustkast E, Hertel R, Marme D (1985) Specific binding of the calcium antagonist[3.H] verapamil to membrane fractions from plants J Biol Chem 260:5411–5414

    Google Scholar 

  • Armbrust EV et al. (2004) The genome of the diatom Thalassiosira pseudonana. : ecology, evolution and metabolism Science 306:79–86

    Article  PubMed  ADS  CAS  Google Scholar 

  • Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B (2004) A live bioprobe for studying diatom-surface interactions. Biophys J 87:4284–4297

    Article  PubMed  CAS  Google Scholar 

  • Baier RE (1980) Substrata influences on adhesion of microorganisms and their resultant new surface properties. In: Bitton G, Marshall KC Adsorption of microorganism to surfaces.Wiley, New York, pp. 59–104

    Google Scholar 

  • Berridge MJ, Bootman MD, Lipp P (1998) Calcium – a life or death signal. Nature 395:645–648

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bohlander GS (1991) Biofilm effects on drag: measurements on ships. Trans Inst Marine Engineers (C) 103:135–138

    Google Scholar 

  • Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 10:197–205

    Article  CAS  Google Scholar 

  • Caldwell GS, Bentley MG, Olive PJW (2004) First evidence of sperm motility inhibition by the diatom aldehyde 2E. ,4E decadienal Mar Ecol Progr Series 273:97–108.

    Article  CAS  Google Scholar 

  • Callow ME (1986) Fouling of “in service” ships. Botanica Marina 29:351–357

    Article  Google Scholar 

  • Chamberlain AHL (1976) Algal settlement and secretion of adhesive materials. In: Sharpley JM, Kaplan AM Proceedings of the third international biodegradation and biodeterioration symposium,Applied Science, London, pp. 417–432

    Google Scholar 

  • Characklis WG, Cooksey KE (1983) Biofilms and microbial fouling. Adv Appl Microbiol 29:93–138

    Article  CAS  Google Scholar 

  • Cohn SA, McGuire JR, (2000) Using diatom motility as an indicator of environmental stress: effects of toxic sediment elutriates. Diatom Res 15:19–29

    Google Scholar 

  • Cooksey KE (1981) Requirement for calciumin adhesion of a fouling diatomto glass. Appl Environ Microbiol 41:1378–1382

    PubMed  CAS  Google Scholar 

  • Cooksey B, Cooksey KE (1980) Calcium is necessary for motility in the diatom Amphora coffeaeformis. Plant Physiol 65:129–131

    Article  PubMed  CAS  Google Scholar 

  • Cooksey KE, Cooksey B (1986) Adhesion of fouling diatoms to surfaces: some biochemistry. In: Evans LV, Hoagland KD Algal biofouling.Elsevier, Amsterdam, pp. 41–53

    Chapter  Google Scholar 

  • Cooksey B, Cooksey KE (1988) Chemical signal-response in diatoms of the genus Amphora. J Cell Biol 91:523–529

    CAS  Google Scholar 

  • Dahms HU, Dobretsov S, Quian PY (2004) The effect of bacterial and diatom biofilms on the settlement of the bryozoanBugula neritina. J Exp Mar Biol Ecol 313:191–209

    Article  Google Scholar 

  • Dolle R, Nultsch W (1988) Specific binding of the calcium blocker[3.H] verapamil to membrane fractions of Chlamydomonas reinhardtii Arch Microbiol 49:451–456

    Article  Google Scholar 

  • Findlay JA, Callow ME, Ista LK, Lopez GP, Callow JA (2002) The influence of surface wettabilityon the adhesion strength of settled spores of the green alga Enteromorpha. and the diatom Amphora Integr Comp Biol 42:1116–1122

    Article  Google Scholar 

  • Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annu Rev Pharmacol 17:149–166

    Article  CAS  Google Scholar 

  • Holland R, Dugdale TM, Wetherbee R, Brennan AB, Finlay JA, Callow JA, Callow ME (2004) Adhesion and motility of fouling diatoms on a silicone elastomer. Biofouling 20:323–329

    Article  PubMed  CAS  Google Scholar 

  • Holm ER, Kavanagh CJ, Meyer AE, Wiebe D, Nedved BT, Wendt D, Smith CM, Hadfield GM, Swain G, Wood CD, Truby K, Stein J, Montemarano J (2006) Interspecific variation in patterns of adhesionof marine foulingto silicone surfaces. Biofouling 22:233–243

    Article  PubMed  CAS  Google Scholar 

  • Ianora A, Miralto A, Poulet SA, Carotenuto Y, Buttino I (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffman F, Pavia H, Potin P, Poulet SA, Toth G (2006) New trends in marine chemical ecology. Estuaries Coasts 29:531–551

    CAS  Google Scholar 

  • Jelic-Mrcelic G, Sliskovic M, Antolic B (2006) Biofouling communities on test panels coated with TBTand TBT-free copper-based antifouling paints. Biofouling 22:293–302

    Article  PubMed  CAS  Google Scholar 

  • Long RA, Qureshi A, Faulkner DJ, Azam F (2003) 2-n. -Pentyl-4-quinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles Appl Environ Microbiol 69:568–576

    Article  PubMed  CAS  Google Scholar 

  • Maki JS, Mitchell R (2002) Biofouling in the marine environment. In: Bitton G (ed.) Encyclopedia of environmental microbiology.Wiley-Interscience, New York, pp. 610–619

    Google Scholar 

  • Marszalek DS, Gerchacov SM, Udey LR (1979). Influence of substrate composition on marine microfouling. Appl Environ Microbiol 38:987–995

    Google Scholar 

  • Miralto A, Barone G, Romano G, Poulet SA, Ianora A (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    Article  ADS  CAS  Google Scholar 

  • Rittschof D, Clare AS, Costlow JD (1986) Barnacle settlement inhibitors from Sea Pansies, Renilla reniformis. Bull Mar Sci 39:376–382

    Google Scholar 

  • Romano G, Russo GL, Buttino I, Ianora , A Mirealto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206:3484–3494

    Article  Google Scholar 

  • Sieburth JMc (1979) Sea microbes.Oxford University Press, New York, p. 489

    Google Scholar 

  • Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591

    Article  CAS  Google Scholar 

  • Terlizzi A, Conte E, Zupo V, Mazzella L (2000) Biological succession on silicone fouling-releasesurfaces: long-term exposure tests. Biofouling 15:327–342

    Article  CAS  Google Scholar 

  • Vardi A, Formiggini F, Casotti R, De Martino A, Ribalet F, Miralto A, Bowler C (2006) A stress surveillance system based on calcium and nitric oxidein marine diatoms. PLOS Biol 4:411–419

    Article  CAS  Google Scholar 

  • Webster DR, Cooksey KE, Rubin RW (1985) An investigation of the involvement of cytoskeletal structures and secretionin gliding motilityof the marine diatom Amphora coffeaeformis. Cell Motility 5:103–122

    Article  CAS  Google Scholar 

  • Wetherbee R, Lind JL, Burke J, Quatrano RS (1998) The first kiss: establishment and control of the initial adhesion of raphid diatoms. J Phycol 23:9–15

    Article  Google Scholar 

  • Wigglesworth-Cooksey B, Cooksey KE, (1992) Can diatoms sense surfaces? State of our knowledge. Biofouling 5:227–238

    Article  CAS  Google Scholar 

  • Wigglesworth-Cooksey B, van der Mei H, Busscher HJ, Cooksey KE (1999) The influence of surface chemistry on the control of cellular behavior: studies with a marine diatom and a wettability gradient. Colloids Surf B Biointerfaces 15:71–79

    Article  CAS  Google Scholar 

  • Wigglesworth-Cooksey B, Long RA, Cooksey KE (2007) An antibiotic from the marine environment with antimicrobial fouling activity. Environ Toxicol 22:275–280

    Article  PubMed  CAS  Google Scholar 

  • Wratten SJ, Wolfe MS, Anderson RJ, Faulkner DJ (1977) Antibiotic metabolites from a marine pseudomonad. Antimicrob Agents Chemother 11:411–414

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.E. Cooksey* .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Cooksey*, K., Wigglesworth-Cooksey, B., Long, R. (2008). A Strategy To Pursue in Selecting a Natural Antifoulant: A Perspective. In: Springer Series on Biofilms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7142_2008_11

Download citation

  • DOI: https://doi.org/10.1007/7142_2008_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics