Skip to main content

MAP Kinase Cascades Controlling Cell Division, Plant Growth and Development

  • Chapter
  • First Online:
Plant Growth Signaling

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 10))

Abstract

Mitogen-activated protein (MAP) kinase cascades are conserved among all eukaryotes. Plant genomes encode many components of the MAP kinase cascade, suggesting divergent roles in mediating various external and internal signals. In this chapter, we summarize the roles for MAP kinase cascades involved in plant cell division and development. Recently, a MAP kinase pathway, called the NACK–PQR pathway, has been shown to directly control the expansion of the phragmoplast by phosphorylating MAP65-1. In addition, there has been an advance in the understanding of the roles of MAP kinase pathways in embryogenesis, development of stomata and root hairs, and transmission of signals generated by ethylene and auxin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki S, Ito M, Soyano T, Nishihama R, Machida Y (2004) Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M-phase-specific genes in tobacco. J Biol Chem 279:32979–32988

    Article  PubMed  CAS  Google Scholar 

  • Banno H, Hirano K, Nakamura T, Irie K, Nomoto S, Matsumoto K, Machida Y (1993) NPK1, a tobacco gene that encodes a protein with a domain homologous to yeast BCK1, STE11, and Byr2 protein kinases. Mol Cell Biol 13:4745–4752

    PubMed  CAS  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497

    Article  PubMed  CAS  Google Scholar 

  • Calderini O, Bögre L, Vicente O, Binarova P, Heberle-Bors E, Wilson C (1998) A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci 111:3091–3100

    PubMed  CAS  Google Scholar 

  • Calderini O, Glab N, Bergounioux C, Heberle-Bors E, Wilson C (2001) A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem 276:18139–18145

    Article  PubMed  CAS  Google Scholar 

  • Champion A, Picaud A, Henry Y (2004) Reassessing the MAP3K and MAP4K relationships. Trends Plant Sci 9:123–129

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J (2006) Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18:308–320

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluska F, Schlicht M, Hlavacka A, Samaj J, Friml J, Gadella TW (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Field C, Li R, Oegema K (1999) Cytokinesis in eukaryotes: a mechanistic comparison. Curr Opin Cell Biol 11:68–80

    Article  PubMed  CAS  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hulskamp M, Parekh NS, Grini P, Schneitz K, Zimmermann I, Lolle SJ, Pruitt RE (1997) The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Dev Biol 187:114–124

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Soyano T, Nishihama R, Machida Y (2002) The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. Plant J 32:789–798

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Araki S, Matsunaga S, Itoh T, Nishihama R, Machida Y, Doonan JH, Watanabe A (2001) G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13:1891–1905

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 3:291–297

    Article  PubMed  CAS  Google Scholar 

  • Jouannic S, Champion A, Segui-Simarro JM, Salimova E, Picaud A, Tregear J, Testillano P, Risueño MC, Simanis V, Kreis M, Henry Y (2001) The protein kinases AtMAP3Kε1 and BnMAP3Kε1 are functional homologues of S. pombe cdc7p and may be involved in cell division. Plant J 26:637–649

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G (2005) Plant cytokinesis: fission by fusion. Trends Cell Biol 15:277–283

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G, Mayer U (1994) Arabidopsis. In: Bard J (ed) A colour atlas of develping embryos. Wolfe, London, pp 7–21

    Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119

    Article  PubMed  CAS  Google Scholar 

  • MAPK G (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Mizoguchi T, Gotoh Y, Nishida E, Yamaguchi-Shinozaki K, Hayashida N, Iwasaki T, Kamada H, Shinozaki K (1994) Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J 5:111–122

    Article  PubMed  CAS  Google Scholar 

  • Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785–796

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 20:381–388

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Fuchs E, Ovecka M, Wysocka-Diller J, Benfey PN, Hauser MT (2002) Two new loci, PLEIADE and HYADE, implicate organ-specific regulation of cytokinesis in Arabidopsis. Plant Physiol 130:312–324

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ and Hauser MT (2004) The plant microtubule-associated protein AtMAP65–3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    Article  PubMed  CAS  Google Scholar 

  • Nakashima M, Hirano K, Nakashima S, Banno H, Nishihama R, Machida Y (1998) The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant: correlation with cell proliferation. Plant Cell Physiol 39:690–700

    PubMed  CAS  Google Scholar 

  • Nishihama R, Banno H, Kawahara E, Irie K, Machida Y (1997) Possible involvement of differential splicing in regulation of the activity of Arabidopsis ANP1 that is related to mitogen-activated protein kinase kinase kinases (MAPKKKs). Plant J 12:39–48

    Article  PubMed  CAS  Google Scholar 

  • Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15:352–363

    Article  PubMed  CAS  Google Scholar 

  • Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99

    Article  PubMed  CAS  Google Scholar 

  • Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282–1288

    Article  PubMed  CAS  Google Scholar 

  • Samaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluska F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    Article  PubMed  CAS  Google Scholar 

  • Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Machida Y (2006) MAP65: a bridge linking a MAP kinase to microtubule turnover. Curr Opin Plant Biol 9:563–570

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65–1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Sazuka T, Aichi I, Kawai T, Matsuo N, Kitano H, Matsuoka M (2005) The rice mutant dwarf bamboo shoot 1: a leaky mutant of the NACK-type kinesin-like gene can initiate organ primordia but not organ development. Plant Cell Physiol 46:1934–1943

    Article  PubMed  CAS  Google Scholar 

  • Shou H, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101:3298–3303

    Article  PubMed  CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Sieberer BJ, Ketelaar T, Esseling JJ, Emons AM (2005) Microtubules guide root hair tip growth. New Phytol 167:711–719

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bögre L, Hussey PJ (2006) Control of the AtMAP65–1 interaction with microtubules through the cell cycle. J Cell Sci 119:3227–3237

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65–1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047

    Article  PubMed  CAS  Google Scholar 

  • Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Spielman M, Preuss D, Li FL, Browne WE, Scott RJ, Dickinson HG (1997) TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development 124:2645–2657

    PubMed  CAS  Google Scholar 

  • Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jürgens G, Mayer U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 12:153–158

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–1211

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    Article  PubMed  CAS  Google Scholar 

  • Yang CY, Spielman M, Coles JP, Li Y, Ghelani S, Bourdon V, Brown RC, Lemmon BE, Scott RJ, Dickinson HG (2003) TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J 34:229–240

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Machida .

Editor information

László Bögre Gerrit Beemster

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, T., Machida, Y. (2008). MAP Kinase Cascades Controlling Cell Division, Plant Growth and Development. In: Bögre, L., Beemster, G. (eds) Plant Growth Signaling. Plant Cell Monographs, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_153

Download citation

Publish with us

Policies and ethics