Skip to main content

The Structure and Expression of Cereal Storage Protein Genes

  • Chapter
  • First Online:
Endosperm

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 8))

Abstract

The cereal endosperm stores several types of protein. All cereals appear to store 7S globulins in their aleurone cells and prolamins in their starchy endosperm cells. In addition, the major storage proteins in the starchy endosperm of rice and oats are related to the 11S globulins of dicotyledonous seeds. Smaller amounts of proteins related to 11S globulins are also present in wheat while rice, maize and wheat also contain α-globulins. There are also clear gradients in protein amount and composition within the starchy endosperm, with higher protein contents in the subaleurone cells and in the vitreous parts of the maize endosperm. A number of mutant genes have been identified in maize, sorghum and barley which result in reductions in the accumulation of either all prolamins or specific prolamin groups leading to a high lysine phenotype. The prolamins are encoded by multigene families whose expression is regulated temporally and spatially. This regulation is determined by promoter elements such as the prolamin box which comprises endosperm (E) and nitrogen (N) elements, the opaque-2 (O2) binding site and the HMW glutenin subunit gene enhancer. Transcription factors that bind to these sites include prolamin box binding factor (PBF) (a Dof class Cys2Cys2 zinc finger DNA binding protein), opaque-2 (O2) and OHP1 (basic leucine zipper transcription factors) from maize, and ESBF-I and -II, SPA and BLZ1 from wheat. Prolamin genes may be silenced by several mechanisms including the presence of in-frame stop codons within coding sequences, promoter inactivity and reduced RNA stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albani D, Hammond-Kosack MCU, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: A seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Anderson OD, Greene FC (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Axtell JD, Van Scoyoc SW, Christensen PJ, Ejeta G (1979) Current status of protein quality improvement in grain sorghum. In: Seed Protein Improvement in Cereals and Grain Legumes, vol II. Int Atomic Energy Agency, Vienna, pp 357–365

    Google Scholar 

  • Barro F, Rooke L, Békés F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barceló P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Thompson RD (1986) Synthesis of messenger-RNAs coding for abundant endosperm proteins during wheat grain development. Plant Sci 46:117–125

    Article  CAS  Google Scholar 

  • Bechtel DB, Wilson JD, Shewry PR (1991) Immunocytochemical localization of the wheat storage protein triticin in developing endosperm tissue. Cereal Chem 68:573–577

    Google Scholar 

  • Boston RS, Fontes EBP, Shank BB, Wrobel RL (1991) Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants. Plant Cell 3:497–505

    Article  PubMed  CAS  Google Scholar 

  • Bright SWJ, Shewry PR (1983) Improvement of protein quality in cereals. CRC Crit Rev Plant Sci 1:49–93

    Article  CAS  Google Scholar 

  • Burgess SR, Shewry PR (1986) Identification of homologous globulins from embryos of wheat, barley, rye and oats. J Exp Bot 37:1863–1871

    Article  CAS  Google Scholar 

  • Burr FA, Burr B (1982) Three mutations in Zea mays affecting zein accumulation: a comparison of zein polypeptides, in vitro synthesis and processing, mRNA levels, and genomic organization. J Cell Biol 94:201–206

    Article  PubMed  CAS  Google Scholar 

  • Bustos AD, Rubio P, Jouve N (2000) Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor Appl Genet 100:1085–1094

    Article  Google Scholar 

  • Casey R (1999) Distribution of Some Properties of Seed Globulins. In: Shewry PR, Casey R (eds) Seed Proteins. Kluwer Academic Publishers, Dordrecht, pp 4159–4169

    Google Scholar 

  • Chui C-F, Falco SC (1995) A new methionine-rich seed storage protein from maize. Plant Physiol 107:291

    Article  PubMed  CAS  Google Scholar 

  • Ciceri P, Gianazza E, Lazzari B, Lippoli G, Genga A, Hoschek G, Schmidt RJ, Viotti A (1997) Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell 9:97–108

    Article  PubMed  CAS  Google Scholar 

  • Coleman CE, Larkins BA (1999) The Prolamins of Maize. In Shewry PR, Case R (eds) Seed Proteins. Kluwer Academic Publishers, Dordrecht, pp 109–139

    Google Scholar 

  • Colot V, Robert LS, Kavanagh TA, Bevan MW, Thompson RD (1987) Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J 6:3559–3564

    PubMed  CAS  Google Scholar 

  • Dannenhoffer JM, Bostwick DE, Or E, Larkins BA (1995) opaque-15, a maize mutation with properties of a defective opaque-2 modifier. Proc Natl Acad Sci USA 92:1931–1935

    Article  PubMed  CAS  Google Scholar 

  • Davies JT, Shewry PR, Harris N (1993) Spatial and temporal patterns of B hordein synthesis in developing barley (Hordeum vulgare L.) caryopses. Cell Biol Int Rep 17:195–203

    Article  CAS  Google Scholar 

  • Doll H, Køie B, Eggum BO (1974) Induced high lysine mutants in barley. Rad Bot 14:73–80

    Article  CAS  Google Scholar 

  • Duffus CM, Cochrane MP (1992) Grain structure and composition. In: Shewry PR (ed) Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB International, Wallingford, pp 291–317

    Google Scholar 

  • Dunwell JM, Gane PJ (1998) Microbial relatives of seed storage proteins: conservation of motifs in a functionally diverse superfamily of enzymes. J Mol Evol 46:147–154

    Article  PubMed  CAS  Google Scholar 

  • Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochem 65:7–17

    Article  CAS  Google Scholar 

  • DuPont FM, Hurkman WJ, Vensel WH, Chan R, Lopez R, Tanaka CK, Altenbach SB (2006) Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development. J Cereal Sci 44:101–112

    Article  CAS  Google Scholar 

  • Esen A (1987) A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L). J Cereal Sci 5:117–128

    Article  CAS  Google Scholar 

  • FAO (1997) Production Volume 51, FAO, Rome

    Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucl Acids Res 13:7327–7339

    Article  PubMed  CAS  Google Scholar 

  • Forde J, Malpica J-M, Halford NG, Shewry PR, Anderson OD, Greene FC, Miflin BJ (1985) The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.). Nucl Acids Res 13:6817–6831

    Article  PubMed  CAS  Google Scholar 

  • Geevers HO, Lake JK (1992) Development of modified opaque-2 maize in South Africa. In: Mertz E (ed) Quality Protein Maize. Am Soc Cereal Chem, St Paul, MN, pp 49–78

    Google Scholar 

  • Giese H, Hopp E (1984) Influence of nitrogen nutrition on the amount of hordein, protein Z and β-amylase messenger RNA in developing endosperms of barley. Carlsberg Res Commun 49:365–383

    Article  CAS  Google Scholar 

  • Gillikin JW, Zhang F, Coleman CE, Bass HW, Larkins BA, Boston RS (1997) A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiol 114:345–352

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Rubenstein I (1981) Complex organisation of zein genes in maize. Gene 13:239–249

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Forde J, Shewry PR, Kreis M (1989) Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci 62:207–216

    Article  CAS  Google Scholar 

  • Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB, Tatham AS, Shewry PR (1992). Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83:373–378

    Article  CAS  Google Scholar 

  • Hammond-Kosack MCU, Holdsworth MJ, Bevan MW (1993) in vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. EMBO J 12:545–554

    PubMed  CAS  Google Scholar 

  • Harberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet 198:234–242

    Article  CAS  Google Scholar 

  • Harberd NP, Flavell RB, Thompson RD (1987) Identification of a transposon-like insertion in a Glu-1 allele of wheat. Mol Gen Genet 209:326–332

    Article  PubMed  CAS  Google Scholar 

  • Hill DE, Hope IA, Macke JP, Struhl K (1986) Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234:451–457

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32

    Article  PubMed  CAS  Google Scholar 

  • Hinton JJC (1953) The distribution of protein in the maize kernel in comparison with that of wheat. Cereal Chem 30:441–445

    CAS  Google Scholar 

  • Holdsworth MJ, Munoz-Blanco J, Hammond-Kosack M, Colot V, Schuch W, Bevan MW (1995) The maize transcription factor Opaque-2 activates a wheat glutenin promoter in plant and yeast cells. Plant Mol Biol 29:711–720

    Article  PubMed  CAS  Google Scholar 

  • Hsia CC, Anderson OD (2001) Isolation, characterization of wheat ω-gliadin genes. Theor Appl Genet 103:37–44

    Article  CAS  Google Scholar 

  • Hwang Y-S, Ciceri P, Parsons RL, Moose SP, Schmidt RJ, Huang N (2004) The maize O2 and PBF proteins act additively to promote transcription from storage protein gene promoters in rice endosperm cells. Plant Cell Physiol 45:1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2005) Expression profile of two storage protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiol 139:1870–1880

    Article  PubMed  Google Scholar 

  • Kent NL (1966) Subaleurone endosperm cells of high protein content. Cereal Chem 43:585–601

    CAS  Google Scholar 

  • Kim CS, Gunter BG, Kraft J, Boston RS, Yans S, Jung R, Larkins BA (2004) A defective signal peptide in a 19-kD α-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant. Plant Physiol 134:380–387

    Article  PubMed  CAS  Google Scholar 

  • Kirihara JA, Petri JB, Messing JW (1988) Isolation and sequence of a gene encoding a methionine-rich 10-kDA zein protein from maize. Gene 71:359–370

    Article  PubMed  CAS  Google Scholar 

  • Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR (1985) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183:499–502

    Article  PubMed  CAS  Google Scholar 

  • Kridl JC, Vieira J, Rubenstein I, Messing J (1984) Nucleotide sequence analysis of a zein genomic clone with a short open reading frame. Gene 28:113–118

    Article  PubMed  CAS  Google Scholar 

  • Kriz AL (1999) 7S Globulins of Cereals. In: Shewry PR, Casey R (eds) Seed Proteins. Kluwer Academic Publishers, Dordrecht, pp 477–498

    Google Scholar 

  • Lamacchia C, Shewry PR, Di Fonzo N, Forsyth J, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 355:243–250

    Article  Google Scholar 

  • Langridge P, Feix G (1983) A zein gene of maize is transcribed from two widely separated promoter regions. Cell 34:1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Pintor-Toro JA, Feix G (1982) Direction of zein gene transcription in maize genomic clones. Biochem Biophys Res Commun 107:1236–1242

    Article  PubMed  CAS  Google Scholar 

  • Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1991) Gamma-zein content is related to endosperm modification in quality protein maize. Crop Sci 31:1655–1662

    Article  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1995) Genetic analysis of opaque-2 modifier gene activity in maize endosperm. Theor Appl Genet 19:274–281

    Google Scholar 

  • Maier U-G, Browm JWS, Toloczyki C, Feix G (1987) Binding of a nuclear factor to a consensus sequence in the 5' flanking region of zein genes from maize. EMBO J 6:17–22

    PubMed  CAS  Google Scholar 

  • Margiotta B, Colaprico G, D'Ovidio R, Lafiandra D (1993) Characterization of high M r subunits of glutenin by combined chromatographic (RP-HPLC) and electrophoretic separations and restriction fragment length polymorphism (RFLP) analyses of their encoding genes. J Cereal Sci 17:221–236

    Article  CAS  Google Scholar 

  • Marks MD, Lindell JS, Larkins BA (1985a) Quantitative analysis of the accumulation of zein mRNA during maize endosperm development. J Biol Chem 260:16445–16450

    PubMed  CAS  Google Scholar 

  • Marks MD, Lindell JS, Larkins BA (1985b) Nucleotide sequence analysis of zein mRNAs from maize endosperm. J Biol Chem 260:16451–16459

    PubMed  CAS  Google Scholar 

  • Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native β-hordein promoter in barley endosperm. Plant J 16:53–62

    Article  PubMed  CAS  Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280

    Article  PubMed  CAS  Google Scholar 

  • Millet M-O, Montembault A, Autran J-C (1991) Hordein compositional differences in various anatomical regions of the kernel between two different barley types. Sciences des Alimentations 11:155–161

    CAS  Google Scholar 

  • Müller M, Knudsen S (1993) The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4:343–355

    Article  PubMed  Google Scholar 

  • Munck L, Karlsson KE, Hagberg A, Eggum BO (1970) Gene for improved nutritional value in barley seed protein. Science 168:985–987

    Article  PubMed  CAS  Google Scholar 

  • Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda T (1996) Cloning of the rice seed α-globulin-encoding gene: sequence similarity of the 5'-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  PubMed  CAS  Google Scholar 

  • Nelson OE, Mertz ET, Bates LS (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469–1470

    Article  CAS  PubMed  Google Scholar 

  • Norre F, Peyrot C, Garcia C, Rancé I, Drevet J, Theisen M, Gruber V (2002) Powerful effect of an atypical bifactorial endosperm box from wheat HMWG-Dx5 promoter in maize endosperm. Plant Mol Biol 50:699–712

    Article  PubMed  CAS  Google Scholar 

  • Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences. J Biol Chem 260:8203–8213.

    PubMed  CAS  Google Scholar 

  • Osborne TB (1924) The Vegetable Proteins, 2nd edn. Longmans, Green & Co, London, p 154

    Google Scholar 

  • Pedersen K, Bloom KS, Anderson JN, Glover DV, Larkins BA (1980) Analysis of the complexity and frequency of zein genes in the maize genome. Biochem 19:1644–1650

    Article  CAS  Google Scholar 

  • Pedersen K, Argos P, Naravanna SVL, Larkins BA (1986) Sequence analysis and characterisation of a maize gene encoding a high-sulfur zein protein of M r 15000. J Biol Chem 261:6279–6284

    PubMed  CAS  Google Scholar 

  • Pirovano L, Lanzini S, Hartings H, Lazzaroni N, Rossi V, Joshi R, Thompson RD (1994) Structural and functional analysis of an Opaque-2 related gene from sorghum. Plant Mol Biol 24:515–523

    Article  PubMed  CAS  Google Scholar 

  • Prat S, Perez-Grau L, Puigdomenech P (1987) Multiple variability in the sequence of a family of maize endosperm proteins. Gene 52:41–49

    Article  PubMed  CAS  Google Scholar 

  • Pysh LD, Aukerman MJ, Schmidt RJ (1993) OHP1: a maize basic domain/leucine zipper protein that interacts with opaque2. Plant Cell 5:227–236

    Article  PubMed  CAS  Google Scholar 

  • Rafalski JA (1986) Structure of wheat gamma-gliadin genes. Gene 43:221–229

    Article  PubMed  CAS  Google Scholar 

  • Robert LS, Thompson RD, Flavell RB (1989) Tissue-specific expression of a wheat high molecular weight glutenin gene in transgenic tobacco. Plant Cell 1:569–578

    Article  PubMed  CAS  Google Scholar 

  • Sabelli P, Shewry PR (1991) Characterization and organisation of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor Appl Genet 83:209–216

    Article  Google Scholar 

  • Salamini F, Di Fonzo N, Gentinetta E, Soave C (1979) A dominant mutation interferring with protein accumulation in maize seeds. In: Seed Protein Improvement in Cereals and Grain Legumes. Proceedings of Food and Agriculture Organisation—Int Atomic Energy Agency Symp. Int Atomic Energy Agency, Vienna, pp 97–108

    Google Scholar 

  • Salamini F, Foranasani E, Gentinetta E (1983) Mucuronate, Mc, a dominant gene of maize which interacts with opaque-2 to suppress zein synthesis. Theor Appl Genet 65:123–128

    Article  CAS  Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci USA 87:46–50

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman M, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kDa zein genes. Plant Cell 4:689–700

    Article  PubMed  CAS  Google Scholar 

  • Scott MP, Sangtong V, Moran D (2002) A Wheat DNA Fragment Exhibits Reduced Pollen Transmission in Transgenic Maize. Maize Genetics Conference Abstracts 44:130

    Google Scholar 

  • Shewry PR (2000) Seed Proteins. In: Black M, Bewley JD (eds) Seed Technology and its Biological Basis. Sheffield Academic Press, Sheffield, pp 42–84

    Google Scholar 

  • Shewry PR, Darlington H (2002) The proteins of the mature barley grain and their role in determining malting performance. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality. Food Products Press, NY, pp 503–521

    Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Faulks AR, Miflin BJ (1980) The effect of high-lysine mutations on the protein fractions of barley grain. Biochem Genet 18:133–151

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Brennan C, Tatham AS, Warburton T, Fido R, Smith D, Griggs D, Cantrell I, Harris N (1996) The development, structure and composition of the barley grain in relation to its end use properties. In: Cereals 96—Proc 46th Australian Cereal Chemistry Conf, Sydney, September 1996 158–162

    Google Scholar 

  • Shewry PR, Halford NG, Belton PS, Tatham AS (2003) Gluten, the elastomeric protein of wheat seeds. In: Shewry PR, Tatham AS, Bailey A (eds) Elastomeric Proteins. Cambridge University Press, Cambridge, pp 279–301

    Chapter  Google Scholar 

  • Shewry PR, Jenkins J, Beaudoin F, Mills ENC (2004) The classification, functions and evolutionary relationships of plant proteins in relation to food allergens. In: Mills ENC, Shewry PR (eds) Plant Food Allergens. Blackwell Science, Oxford, pp 24–41

    Google Scholar 

  • Shotwell MA (1999) Oat Globulins. In: Shewry PR, Casey R (eds) Seed Proteins. Kluwer Academic Publishers, Dordrecht, pp 389–400

    Google Scholar 

  • Singh NK, Axtell JD (1973) High lysine mutant gene (hl) that improves protein quality and biological value of grain sorghum. Crop Sci 3:535–539

    Article  Google Scholar 

  • Singh NK, Shepherd KW (1987) Solubility behaviour, synthesis, degradation and subcellular location of a new class of disulphide-linked proteins in wheat endosperm. Aust J Plant Physiol 14:245–252

    CAS  Google Scholar 

  • Singh NK, Shepherd KW, Langridge P, Green LC (1991a) Purification and biochemical characterization of triticin, a legume-like protein in wheat endosperm. J Cereal Sci 3:207–219

    Article  Google Scholar 

  • Singh NK, Shepherd KW, Langridge P, Gruen LC (1991b) Purification and biochemical characterization of triticin, a legumin-like protein in wheat endosperm. J Cereal Sci 13:207–219

    Article  CAS  Google Scholar 

  • Sørensen MB, Cameron-Mills V, Brandt A (1989) Transcriptional and post-transcriptional regulation of gene expression in developing barley endosperm. Mol Gen Genet 217:195–201

    Article  Google Scholar 

  • Spena A, Viotti A, Pirrotta V (1982) A homologous repetitive block structure underlies the heterogeneity of heavy and light chain zein genes. EMBO J 1:1589–1594

    PubMed  CAS  Google Scholar 

  • Stöger E, Parker M, Christou P, Casey R (2001) Pea legumin overexpressed in wheat endosperm assembles into an ordered paracrystalline matrix. Plant Physiol 125:1732–1742

    Article  PubMed  Google Scholar 

  • Takaiwa F, Ogawa M, Okita TW (1999) Rice Glutelins. In: Shewry PR, Casey R (eds) Seed Proteins. Kluwer Academic Publishers, Dordrecht, pp 401–425

    Google Scholar 

  • Tatham AS, Shewry PR (2000) Elastomeric proteins—biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571

    Article  PubMed  CAS  Google Scholar 

  • Thomas MS, Flavell RB (1990) Identification of an enhancer element for the endopserm-specific expression of high molecular weight glutenin. Plant Cell 2:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Waverczak W, Ward K, Sher N, Ketudat M, Schmidt RJ, Messing J (1992) Mutations of the 22- and 27-kD zein promoters affect transactivation by the opaque-2 protein. Plant Cell 4:701–709

    Article  PubMed  CAS  Google Scholar 

  • Vettore AL, Yunes JA, Cord Neto G, Da Silva M, Arruda P, Leite A (1998) The molecular and functional characterization of an opaque-2 homologue gene from Coix and a new classification of plant bZIP proteins. Plant Mol Biol 36:249–263

    Article  PubMed  CAS  Google Scholar 

  • Villegas E, Vasal SK, Bjarnarson M (1992) Quality Protein Maize—What is it and how was it developed. In: Mertz ET (ed) Quality Protein Maize. Am Soc Cereal Chem, St Paul, MN, pp 27–48

    Google Scholar 

  • Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol 49:645–651

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons R, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690

    Article  PubMed  CAS  Google Scholar 

  • Wallace JC, Lopes MA, Paiva E, Larkins BA (1990) New methods for extraction and quantitation of zeins reveal a high content of γ-zein in modified opaque-2 maize. Plant Physiol 92:191–196

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Wang D, Shewry PR, Halford NG (2002) Isolation, characterization of five novel high molecular weight subunits of glutenin genes from Triticum timopheevi and Aegilops cylindrica. Theor Appl Genet 104:828–839

    Article  PubMed  CAS  Google Scholar 

  • Wandelt C, Feix G (1989) Sequence of a 21 kD zein gene from maize containing an in-frame stop codon. Nucl Acids Res 17:2354

    Article  PubMed  CAS  Google Scholar 

  • Watson SA (1987) Structure and Composition. In: Watson SA, Ramstad PE (eds) Corn: Chemistry and Technology. Am Assoc Cereal Chem, St Paul, MN, pp 53–82

    Google Scholar 

  • Wilson DR, Larkins BA (1984) Zein gene organization in maize and related grasses. J Mol Biol 20:330–340

    CAS  Google Scholar 

  • Woo Y-M, Hu DW-N, Larkins BA, Jung R (2001) Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13:2297–2317

    Article  PubMed  CAS  Google Scholar 

  • Yupsanis T, Burgess SR, Jackson PJ, Shewry PR (1990) Characterization of the major component from aleurone cells of barley (Hordeum vulgare L). J Exp Bot 41:385–392

    Article  CAS  Google Scholar 

  • Yunes JA, Cord Neto G, Silva G, Leite A, Ottoboni LMM, Aruda P (1994) The transcriptional activator Opaque-2 recognizes two different target sequences in the 22 kDa-like prolamin genes. Plant Cell 6:237–249

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Shewry PR, Jones H, Barcelo P, Lazzeri PA, Halford NG (2001) Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J 28:431–442

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dickinson JR, Paul MJ, Halford NG (2003) Molecular cloning of an Arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta 217:668–675

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Shewry .

Editor information

Odd-Arne Olsen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halford, N.G., Shewry, P.R. (2007). The Structure and Expression of Cereal Storage Protein Genes. In: Olsen, OA. (eds) Endosperm. Plant Cell Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_114

Download citation

Publish with us

Policies and ethics