Skip to main content
Book cover

Endosperm pp 159–177Cite as

Endosperm Cell Walls: Formation, Composition, and Functions

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 8))

Abstract

This chapter deals with the mechanisms by which endosperm cell walls arise, with the composition and synthesis of endosperm cell wall polysaccharides, and with their specific functions during seed development and germination. The endosperm cell walls differ from somatic cell walls in polysaccharide composition. Endosperm walls often contain massive amounts of storage hemicelluloses such as mannan, galactomannan, glucomannans, xyloglucans, (1,3;1,4)-β-glucans but very little of cellulose. These hemicelluloses act as carbohydrate stores for the germinating embryo and, depending on their specific physico-chemical properties, may also play additional roles in water retention during post-imbibition drought, mechanical protection of the embryo, and signaling. In recent years, many of the genes responsible for the synthesis of endosperm cell wall polysaccharides have been identified. Endosperm cell walls have also evolved special mechanisms of formation. In the nuclear-type of endosperm development, which is the most common type in all analyzed species, the endosperm becomes multinucleate (syncytial) before cellularizing. Cellularization proceeds by the simultaneous formation of syncytial-type cell plates between sister and non-sister nuclei. Syncytial-type cell plates form at the boundaries of nuclear cytoplasmic domains, which are defined by radial systems of microtubules that organize on the envelope of endosperm nuclei. These cell plates are associated with clusters of microtubules called mini-phragmoplasts that transport the cell plate-forming vesicles to the division plane. In contrast to phragmoplasts in dividing somatic cells, mini-phragmoplasts never form a coherent cytoskeletal structure around the expanding cell plate. Syncytial-type cell plates undergo several developmental stages before completion of the new cell wall: vesicle fusion intermediates, wide tubules and wide tubular networks, convoluted fenestrated sheets, and planar fenestrated sheets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews P, Hough L, Jones JKN (1953) Mannose-containing polysaccharides. Part 3. The polysaccharides in the seeds of Iris ochroleuca and I. sibrica. J Chem Soc 79:1186–1192

    Article  Google Scholar 

  • Austin JR 2nd, Segui-Simarro JM, Staehelin LA (2005) Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis. J Cell Sci 118:3895–3903

    Article  CAS  Google Scholar 

  • Bacic A, Stone BA (1981a) Isolation and ultrastructure of aleurone cell walls from wheat and barley. Aust J Plant Physiol 8:453–474

    Article  Google Scholar 

  • Bacic A, Stone BA (1981b) Chemistry and organisation of aleurone cell wall components from wheat and barley. Aust J Plant Physiol 8:475–495

    Article  CAS  Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of cereal (1→3, 1→4)-β-d-glucans as functional food ingredients. J Cereal Sci 42:1–13

    Article  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2001a) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2001b) Phragmoplasts in the abscence of nuclear division. J Plant Growth Regul 20:151–161

    Article  CAS  Google Scholar 

  • Brown RC, Lemmon BE, Olsen OA (1994) Endosperm development in barley: microtubule involvement in the morphogenetic pathway. Plant Cell 6:1241–1252

    Article  PubMed  Google Scholar 

  • Buckeridge MS, Dietrich SMC (1996) Mobilisation of the raffinose family oligosaccharides and galactomannan in germinating seeds of Sesbania marginata Benth. (Leguminosae-Faboideae). Plant Sci 117:33–43

    Article  CAS  Google Scholar 

  • Buckeridge MS, Vergara CE, Carpita NC (1999) The mechanism of synthesis of a mixed-linkage (1→3),(1→4)-β-d-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol 120:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Buckeridge MS, Pessoa dos Santos H, Tine MAS (2000) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    Article  CAS  Google Scholar 

  • Buckeridge MS, Vergara CE, Carpita NC (2001) Insight into multi-site mechanisms of glycosyl transfer in (1→4)-β-glycans provided by the cereal mixed-linkage (1→3),(1→4)-β-glucan synthase. Phytochemistry 57:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Buckeridge MS, Rocha DC, Reid JSG, Dietrich SMC (1992) Xyloglucan structure and postgerminative metabolism in seeds of Copaifera langsdorfii from savanna and forest populations. Physiol Plant 86:145–151

    Article  CAS  Google Scholar 

  • Buckeridge MS, Crombie HJ, Mendes CJM, Reid JSG, Gidley MJ, Vieira CCJ (1997) A new family of oligosaccharides from the xyloglucan of Hymenaea coubaril L. (Leguminosae) cotyledons. Carbohydr Res 303:233–237

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans. Science 311:1940–1942

    Article  PubMed  CAS  Google Scholar 

  • Canaday J, Stoppin-Mellet V, Mutterer J, Lambert AM, Schmit AC (2000) Higher plant cells: Gamma-tubulin and microtubule nucleation in the absence of centrosomes. Microscopy Res Tech 49:487–495

    Article  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Ann Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Stam M, Blanc E, Henrissat B (2003) Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci 8:563–565

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Wood PJ, Blackwell B, Nikiforuk J (2000) Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-d-glucan: Comparison with other cereal β-d-glucans. Carbohydr Polym 41:249–258

    Article  CAS  Google Scholar 

  • DeMason DA (1997) Endosperm structure and development. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic, Dordrecht, pp 73–115

    Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Article  PubMed  CAS  Google Scholar 

  • Dutta S, Bradford KJ, Nevins DJ (1997) Endo-β-mannanase activity present in cell wall extracts of lettuce endosperm prior to radicle emergence. Plant Physiol 113:155–161

    PubMed  CAS  Google Scholar 

  • Edwards ME, Marshall E, Gidley MJ, Reid JSG (2002) Transfer specificity of detergent-solubilized fenugreek galactomannan galactosyltransferase. Plant Physiol 129:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Edwards ME, Dickson CA, Chengappa S, Sidebottom C, Gidley MJ, Reid JSG (1999) Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J 19:691–697

    Article  PubMed  CAS  Google Scholar 

  • Edwards ME, Choo T-S, Dickson CA, Scott C, Gidley MJ, Reid JSG (2004) The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls. Plant Physiol 134:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Faik A, Price NJ, Raikhel NV, Keegstra K (2002) An Arabidopsis gene encoding an alpha-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci USA 99:7797–7802

    Article  PubMed  CAS  Google Scholar 

  • Freitas RA, Martin S, Santos GL, Valenga F, Buckeridge MS, Reicher F, Sierakowski MR (2005) Physico-chemical properties of seed xyloglucans from different sources. Carbohydr Polym 60:507–514

    Article  CAS  Google Scholar 

  • Gidley MJ, Lillford PJ, Rowlands DW, Lang P, Dentini M, Crescenzi V, Edwards M, Fanutti C, Reid JSG (1991) Structure and solution properties of tamarind-seed polysaccharide. Carbohydr Res 214:299–314

    Article  PubMed  CAS  Google Scholar 

  • Goldberg R, Guillou L, Prat R, Dubacq JP, Roland JC (1992) Structure and biochemistry of endosperm breakdown in Asparagus officinalis seedlings. Plant Physiol Biochem 30:477–485

    CAS  Google Scholar 

  • Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, Dupree P (2003) AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiol 131:547–557

    Article  PubMed  CAS  Google Scholar 

  • Hantus S, Pauly M, Darvill AG, Albersheim P, York WS (1997) Structural characterization of novel l-galactose-containing oligosaccharide subunits of jojoba seed xyloglucans. Carbohydr Res 304:11–20

    Article  PubMed  CAS  Google Scholar 

  • Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Coutinho PM, Davies GJ (2001) A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol 47:55–72

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Delauney AJ, Verma DPS (2001) A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13:755–768

    Article  PubMed  CAS  Google Scholar 

  • Hopf H, Kandler O (1977) Characterization of the reserve cellulose of the endosperm of Carum carvi as a β(1→4)-mannan. Phytochemistry 16:1715–1717

    Article  CAS  Google Scholar 

  • Jürgens G (2005) Cytokinesis in higher plants. Ann Rev Plant Biol 56:281–299

    Article  CAS  Google Scholar 

  • Keegstra K, Walton J (2006) β-Glucans – brewer's bane, dietician's delight. Science 311:1872–1873

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226

    Article  PubMed  CAS  Google Scholar 

  • Lima DU, Loh W, Buckeridge MS (2004) Xyloglucan–cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiol Biochem 42:389–394

    Article  PubMed  CAS  Google Scholar 

  • Lima NN, Rechia CGV, Ganter J, Reicher F, Sierakowski MR (1995) Oligosaccharides derived from the xyloglucan isolated from the seeds of Hymenaea courbaril var stilbocarpa. Int J Biol Macromol 17:413–415

    Article  PubMed  CAS  Google Scholar 

  • Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, Shoue DA, Carpita NC, Reiter W-D (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670

    Article  PubMed  CAS  Google Scholar 

  • McDougall GJ, Fry SC (1988) Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan. Planta 175:412–416

    Article  CAS  Google Scholar 

  • McDougall GJ, Fry SC (1990) Xyloglucan oligosaccharides promote growth and activate cellulase – Evidence for a role of cellulase in cell expansion. Plant Physiol 93:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Meier H, Reid JSG (1977) Morphological aspects of galactomannan formation in the endosperm of Trigonella foenum-graecum L. (Leguminosae). Planta 133:243–248

    Article  CAS  Google Scholar 

  • Mineyuki Y (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Article  Google Scholar 

  • Mo B, Bewley JD (2003) The relationship between β-mannosidase and endo-β-mannanase activities in tomato seeds during and following germination: a comparison of seed populations and individual seeds. J Exp Bot 54:2503–2510

    Article  PubMed  CAS  Google Scholar 

  • Mo BX, Bewley JD (2002) β-Mannosidase (EC 3.2.1.25) activity during and following germination of tomato (Lycopersicon esculentum Mill.) seeds: purification, cloning and characterization. Planta 215:141–152

    Article  PubMed  CAS  Google Scholar 

  • Olsen O-A (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–227

    Article  PubMed  CAS  Google Scholar 

  • Otegui M, Lima C, Maldonado S, De Lederkremer RM (1998) Histological and chemical characterization of Myrsine laetevirens seed. Int J Plant Sci 159:762–772

    Article  Google Scholar 

  • Otegui M, Lima C, Madonado S, de Lederkremer RM (1999) Development of the endosperm of Myrsine laetevirens (Myrsinaceae). I. Cellularization and deposition of cell-wall storage carbohydrates. Int J Plant Sci 160:491–500

    Article  CAS  Google Scholar 

  • Otegui MS, Staehelin LA (2000a) Cytokinesis in flowering plants: more than one way to divide a cell. Curr Opin Plant Biol 3:493–502

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Staehelin LA (2000b) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12:933–947

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Austin JR 2nd (2006) Visualization of membrane-cytoskeletal interactions during plant cytokinesis. In: McIntosh JR (ed) Cellular electron microscopy. Methods in cell biology, vol 79. Elsevier, San Diego, CA, pp 221–240

    Chapter  Google Scholar 

  • Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051.

    Article  PubMed  CAS  Google Scholar 

  • Pena MJ, Ryden P, Madson M, Smith AC, Carpita NC (2004) The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell Walls in Arabidopsis during growth. Plant Physiol 134:443–451

    Article  PubMed  CAS  Google Scholar 

  • Perrin RM, DeRocher AE, Bar-Peled M, Zeng W, Norambuena L, Orellana A, Raikhel NV, Keegstra K (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979

    Article  PubMed  CAS  Google Scholar 

  • Perrin RM, Jia Z, Wagner TA, O'Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003) Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiol 132:768–778

    Article  PubMed  CAS  Google Scholar 

  • Petkowicz CLD, Reicher F, Chanzy H, Taravel FR, Vuong R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44:107–112

    Article  CAS  Google Scholar 

  • Philippe S, Robert P, Barron C, Saulnier L, Guillon F (2006) Deposition of cell wall polysaccharides in wheat endosperm during grain development: Fourier transform-infrared microspectroscopy study. J Agric Food Chem 54:2303–2308

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Gunning BES, Brown RC, Lemmon BE, Cleary AL (1999) The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell division. Am J Bot 86:153–172

    Article  Google Scholar 

  • Reid JSG (1985) Cell wall storage carbohydrates in seeds: Biochemistry of the seed “gums” and “hemicelluloses”. Adv Bot Res 11:125–155

    Article  CAS  Google Scholar 

  • Reid JSG, Bewley DJ (1979) A dual role for the endosperm and its galactomannan reserves in the germinative physiology of fenugreek (Trigonella foenum-graecum L.), an endospermic leguminous seed. Planta 147:145–150

    Article  CAS  Google Scholar 

  • Reid JSG, Edwards ME, Dickson CA, Scott C, Gidley MJ (2003) Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls. Plant Physiol 131:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Ren YL, Picout DR, Ellis PR, Ross-Murphy SB, Reid JSG (2005) A novel xyloglucan from seeds of Afzelia africana Se. Pers. – extraction, characterization, and conformational properties. Carbohydr Res 340:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143

    Article  PubMed  CAS  Google Scholar 

  • Samuels LA, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Sanchez RA, deMiguel L (1997) Phytochrome promotion of mannan-degrading enzyme activities in the micropylar endosperm of Datura ferox seeds requires the presence of the embryo and gibberellin synthesis. Seed Sci Res 7:27–33

    Article  CAS  Google Scholar 

  • Scheible W-R, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr Opin Plant Biol 7:285–295

    Article  PubMed  CAS  Google Scholar 

  • Segui-Simarro JM, Austin JR 2nd, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  PubMed  CAS  Google Scholar 

  • Skendi A, Biliaderis CG, Lazaridou A, Izydorczyk MS (2003) Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J Cereal Sci 38:15–31

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  PubMed  CAS  Google Scholar 

  • Sorensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jurgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–5576

    Article  PubMed  CAS  Google Scholar 

  • Tosh SM, Wood PJ, Wang Q, Weisz J (2004) Structural characteristics and rheological properties of partially hydrolyzed oat β-glucan: the effects of molecular weight and hydrolysis method. Carbohydr Polym 55:425–436

    Article  CAS  Google Scholar 

  • Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter W-D (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 99:3340–3345

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Rechia C, Reicher F, Rita Sierakowski M, Heyraud A, Driguez H, Lienart Y (1998) Xyloglucan octasaccharide XXLGol derived from the seeds of Hymenaea courbaril acts as a signaling molecule. Plant Physiol 116:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Verma DPS, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47:693–701

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Ellis PR, RossMurphy SB, Reid JSG (1996) A new polysaccharide from a traditional Nigerian plant food: Detarium senegalense Gmelin. Carbohydr Res 284:229–239

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Takahashi K, Matsuda K (1980) Carbohydrates of jojoba seed 2. Isolation and characterization of oligosaccharides from purified cellulase digest of jojoba (Simmondsia chinensis) seed xyloglucan. Agric Biol Chem 44:791–797

    CAS  Google Scholar 

  • Williams HA, Bewley D, Greenwood JS, Bourgault R, Mo B (2001) The storage cell walls in the endosperm of Asparagus officinalis L. seeds during development and following germination. Seed Sci Res 11:305–315

    CAS  Google Scholar 

  • Woodward JR, Fincher GB, Stone BA (1983) Water-soluble (1→3), (1→4)-β-d-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydr Polym 3:207–225

    Article  CAS  Google Scholar 

  • Yamagaki T, Mitsuishi Y, Nakanishi H (1998) Determination of structural isomers of xyloglucan octasaccharides using post-source decay fragment analysis in MALDI-TOF mass spectrometry. Tetrahedron Lett 39:4051–4054

    Article  CAS  Google Scholar 

  • Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110:1029–1034

    PubMed  CAS  Google Scholar 

  • York WS, Harvey LK, Guillen R, Albersheim P, Darvill AG (1993) Structural analysis of tamarind seed xyloglucan oligosaccharides using beta-galactosidase digestion and spectroscopic methods. Carbohydr Res 248:285–301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa S. Otegui .

Editor information

Odd-Arne Olsen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otegui, M.S. (2007). Endosperm Cell Walls: Formation, Composition, and Functions. In: Olsen, OA. (eds) Endosperm. Plant Cell Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_113

Download citation

Publish with us

Policies and ethics