Endosperm pp 91-110 | Cite as

Arabidopsis as a Model for Understanding the Basics of Endosperm Development

  • F. BergerEmail author
  • J. N. Fitz Gerald
  • M. Ingouff
Part of the Plant Cell Monographs book series (CELLMONO, volume 8)


Arabidopsis thaliana has emerged as a model species for understanding the basic mechanisms of endosperm development that are conserved in many Angiosperms. In this work, we focus on the genetic, molecular and cellular studies in Arabidopsis that have contributed to our current knowledge. Although initially syncytial, the endosperm differentiates several domains, the origin and function of which will be reviewed. This syncytial phase is followed by a cellular phase. We discuss the mechanisms controlling transitions between the two major phases. This work also emphasizes the major role played by endosperm in the control of seed size. Such regulation involves complex co-ordination with other seed components and epigenetic controls.


Seed Development Endosperm Development Curr Opin Plant Biol Endosperm Cellularization Autonomous Endosperm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ach RA, Taranto P, Gruissem W (1997) A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 9:1595–1606 PubMedCrossRefGoogle Scholar
  2. Adams S, Vinkenoog R, Spielman M, Dickinson HG, Scott RJ (2000) Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127:2493–2502 PubMedGoogle Scholar
  3. Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836 PubMedCrossRefGoogle Scholar
  4. Berger F (1999) Endosperm development. Curr Opin Plant Biol 2:28–32 PubMedCrossRefGoogle Scholar
  5. Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:42–50 PubMedCrossRefGoogle Scholar
  6. Berger F (2004) Plant sciences. Imprinting–a green variation. Science 303:483–485 PubMedCrossRefGoogle Scholar
  7. Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670 PubMedCrossRefGoogle Scholar
  8. Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509 PubMedCrossRefGoogle Scholar
  9. Brown RC, Lemmon BE, Nguyen H, Olsen O-A (1999) Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod 12:32–42 CrossRefGoogle Scholar
  10. Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727 PubMedCrossRefGoogle Scholar
  11. Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276 PubMedCrossRefGoogle Scholar
  12. Chaudhury AM, Berger F (2001) Maternal control of seed development. Semin Cell Dev Biol 12:381–386 PubMedCrossRefGoogle Scholar
  13. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228 PubMedCrossRefGoogle Scholar
  14. Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA Glycosylase Domain Protein, Is Required for Endosperm Gene Imprinting and Seed Viability in Arabidopsis. Cell 110:33–42 PubMedCrossRefGoogle Scholar
  15. Cross JC (2005) How to make a placenta: mechanisms of trophoblast cell differentiation in mice–a review. Placenta 26(A):3-9 CrossRefGoogle Scholar
  16. Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10:397–406 PubMedCrossRefGoogle Scholar
  17. Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531 PubMedCrossRefGoogle Scholar
  18. Dickinson H (2003) Plant cell cycle: cellularisation of the endosperm needs spatzle. Curr Biol 13:146–148 CrossRefGoogle Scholar
  19. Drea S, Leader DJ, Arnold BC, Shaw P, Dolan L, Doonan JH (2005) Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17:2172–2185 PubMedCrossRefGoogle Scholar
  20. Dubreucq B, Berger N, Vincent E, Boisson M, Pelletier G, Caboche M, Lepiniec L (2000) The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. Plant J 23:643–652 PubMedCrossRefGoogle Scholar
  21. Ebel C, Mariconti L, Gruissem W (2004) Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429:776–780 PubMedCrossRefGoogle Scholar
  22. Edgar BA, Kiehle CP, Schubiger G (1986) Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44:365–372 PubMedCrossRefGoogle Scholar
  23. Edgar BA, O'Farrell PH (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57:177–187 PubMedCrossRefGoogle Scholar
  24. Favery B, Chelysheva LA, Lebris M, Jammes F, Marmagne A, De Almeida-Engler J, Lecomte P, Vaury C, Arkowitz RA, Abad P (2004) Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16:2529–2540 PubMedCrossRefGoogle Scholar
  25. Friedman W (1998) The evolution of double fertilization and endosperm: an “historical” perspective. Sex Plant Reprod 11:1–16 CrossRefGoogle Scholar
  26. Garcia D, Fitz Gerald JN, Berger F (2005) Maternal Control of Integument Cell Elongation and Zygotic Control of Endosperm Growth Are Coordinated to Determine Seed Size in Arabidopsis. Plant Cell 17:52–60 PubMedCrossRefGoogle Scholar
  27. Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Phys 131:1661–1670 CrossRefGoogle Scholar
  28. Ge L, Yong JW, Goh NK, Chia LS, Tan SN, Ong ES (2005) Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 829:26–34 PubMedCrossRefGoogle Scholar
  29. Gehring M, Choi Y, Fischer RL (2004) Imprinting and seed development. Plant Cell 16(Suppl):203–213 CrossRefGoogle Scholar
  30. Glotzer M (2003) Cytokinesis: progress on all fronts. Curr Opin Cell Biol 15:684–90 PubMedCrossRefGoogle Scholar
  31. Gross-Hardt R, Lenhard M, Laux T (2002) WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:1129–1138 PubMedCrossRefGoogle Scholar
  32. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450 PubMedCrossRefGoogle Scholar
  33. Guitton AE, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr Biol 15:750–754 PubMedCrossRefGoogle Scholar
  34. Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berger F (2004) Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–2981 PubMedCrossRefGoogle Scholar
  35. Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev 6:609–618 PubMedCrossRefGoogle Scholar
  36. Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477 PubMedCrossRefGoogle Scholar
  37. Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15:295–302 PubMedCrossRefGoogle Scholar
  38. Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555–2565 PubMedCrossRefGoogle Scholar
  39. Ingouff M, Fitz Gerald JN, Guerin C, Robert H, Sørensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005a) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7:374–380 PubMedCrossRefGoogle Scholar
  40. Ingouff M, Haseloff J, Berger F (2005b) Polycomb group genes control developmental timing of endosperm. Plant J 42:663–674 PubMedCrossRefGoogle Scholar
  41. Ingouff M, Jullien J, Berger F (2006) The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 18:3491–3501 PubMedCrossRefGoogle Scholar
  42. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102:3117–3122 PubMedCrossRefGoogle Scholar
  43. Jullien PE, Katz A, Oliva M, Ohad N, Berger F (2006a) Polycomb Group Complexes Self-Regulate Imprinting of the Polycomb Group Gene MEDEA in Arabidopsis. Curr Biol 16:486–942 PubMedCrossRefGoogle Scholar
  44. Jullien PE, Kinoshita T, Ohad N, Berger F (2006b) Maintenance of DNA Methylation during the Arabidopsis Life Cycle Is Essential for Parental Imprinting. Plant Cell 18:1360–1372 PubMedCrossRefGoogle Scholar
  45. Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. Embo J 20:3609–3616 PubMedCrossRefGoogle Scholar
  46. Jürgens GMU (1994) Arabidopsis. In: Bard JBL (ed) Embryos, Colour Atlas of Development. Wolfe Publishing, London, pp 7–21 Google Scholar
  47. Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719 PubMedCrossRefGoogle Scholar
  48. Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191 PubMedCrossRefGoogle Scholar
  49. Köhler C, Grossniklaus U (2005) Seed development and genomic imprinting in plants. Prog Mol Subcell Biol 38:237–262 PubMedCrossRefGoogle Scholar
  50. Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003a) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. Embo J 22:4804–4814 PubMedCrossRefGoogle Scholar
  51. Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003b) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Gene Dev 17:1540–1553 PubMedCrossRefGoogle Scholar
  52. Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319 PubMedCrossRefGoogle Scholar
  53. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and Biochemistry of Seed Flavonoids. Annu Rev Plant Biol 57:405–430 PubMedCrossRefGoogle Scholar
  54. Lid SE, Olsen L, Nestestog R, Aukerman M, Brown RC, Lemmon B, Mucha M, Opsahl-Sorteberg HG, Olsen OA (2005) Mutation in the Arabidopisis thaliana DEK1 calpain gene perturbs endosperm and embryo development while over-expression affects organ development globally. Planta 221:339–351 PubMedCrossRefGoogle Scholar
  55. Liu PP, Koizuka N, Homrichhausen TM, Hewitt JR, Martin RC, Nonogaki H (2005) Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Plant J 41:936–944 PubMedCrossRefGoogle Scholar
  56. Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5:1383–1399 PubMedCrossRefGoogle Scholar
  57. Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71 PubMedCrossRefGoogle Scholar
  58. Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642 PubMedCrossRefGoogle Scholar
  59. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536 PubMedCrossRefGoogle Scholar
  60. Lur HS, Setter TL (1993) Role of Auxin in Maize Endosperm Development (Timing of Nuclear DNA Endoreduplication, Zein Expression, and Cytokinin). Plant Physiol 103:273–280 PubMedGoogle Scholar
  61. Maheshwari P (1950) An Introduction to the Embryology of Angiosperms. McGraw-Hill, New-York Google Scholar
  62. Mansfield SG, Briarty LG (1990)a Endosperm cellularization in Arabidopsis thaliana. Arab Inf Serv 27:65–72 Google Scholar
  63. Mansfield SG, Briarty LG (1990)b Development of the free-nuclear endosperm in Arabidopsis thaliana. Arab Inf Serv 27:53–64 Google Scholar
  64. Mayer U, Herzog U, Berger F, Inze D, Jürgens G (1999) Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. Eur J Cell Biol 78:100–108 PubMedGoogle Scholar
  65. McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ, Venugopala Reddy G, Meyerowitz EM, Bowman JL, Gasser CS (2006) ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant J 46:522–531 PubMedCrossRefGoogle Scholar
  66. Meister RJ, Kotow LM, Gasser CS (2002) SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development 129:4281–4289 PubMedGoogle Scholar
  67. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138 PubMedCrossRefGoogle Scholar
  68. Nguyen H, Brown RC, Lemmon BE (2002) Cytoskeletal organization of the micropylar endosperm in Coronopus didymus L. (Brassicaceae). Protoplasma 219:210–220 PubMedCrossRefGoogle Scholar
  69. Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128 PubMedCrossRefGoogle Scholar
  70. Olsen OA (2001) Endosperm development: Cellularization and cell fate specification. Ann Rev Plant Physiol Plant Mol Biol 52:241–267 CrossRefGoogle Scholar
  71. Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16(Suppl):214-227 CrossRefGoogle Scholar
  72. Otegui M, Staehelin LA (2000a) Cytokinesis in flowering plants: more than one way to divide a cell. Curr Opin Plant Biol 3:493–502 PubMedCrossRefGoogle Scholar
  73. Otegui M, Staehelin LA (2000b) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12:933–947 PubMedCrossRefGoogle Scholar
  74. Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051 PubMedCrossRefGoogle Scholar
  75. Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITITIVE 4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899 PubMedCrossRefGoogle Scholar
  76. Raz V, Bergervoet JH, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252 PubMedGoogle Scholar
  77. Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54 PubMedCrossRefGoogle Scholar
  78. Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A Novel Class of MYB Factors Controls Sperm-Cell Formation in Plants. Curr Biol 15:244–248 PubMedCrossRefGoogle Scholar
  79. Roy PJ, Stuart JM, Lund J, Kim SK (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418:975–979 PubMedGoogle Scholar
  80. Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261 PubMedCrossRefGoogle Scholar
  81. Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–41 PubMedGoogle Scholar
  82. Sieber P, Gheyselinck J, Gross-Hardt R, Laux T, Grossniklaus U, Schneitz K (2004) Pattern formation during early ovule development in Arabidopsis thaliana. Dev Biol 273:321–334 PubMedCrossRefGoogle Scholar
  83. Sørensen MB, Chaudhury AM, Robert H, Bancharel E, Berger F (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11:277–281 PubMedCrossRefGoogle Scholar
  84. Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–5576 PubMedCrossRefGoogle Scholar
  85. Spielman M, Vinkenoog R, Dickinson HG, Scott RJ (2001) The epigenetic basis of gender in flowering plants and mammals. Trends Genet 17:705–711 PubMedCrossRefGoogle Scholar
  86. Stangeland B, Salehian Z, Aalen R, Mandal A, Olsen OA (2003) Isolation of GUS marker lines for genes expressed in Arabidopsis endosperm, embryo and maternal tissues. J Exp Bot 54:279–290 PubMedCrossRefGoogle Scholar
  87. Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Kuttner F, Lepiniec L, Stierhof YD, Schwarz H, Jürgens G, Mayer U (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 16:959–971 PubMedCrossRefGoogle Scholar
  88. Vielle-Calzada JP, Baskar R, Grossniklaus U (2000) Delayed activation of the paternal genome during seed development. Nature 404:91–94 PubMedCrossRefGoogle Scholar
  89. Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–2381 PubMedCrossRefGoogle Scholar
  90. Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L (2002) Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot (Lond) 90:369–377 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Chromatin and Reproduction Group, Temasek Life Sciences Laboratory, 1 Research LinkNational University of SingaporeSingaporeSingapore

Personalised recommendations