Advertisement

Endosperm pp 57-71 | Cite as

The Embryo Surrounding Region

  • M. Cosségal
  • V. Vernoud
  • N. Depège
  • P.M. RogowskyEmail author
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 8)

Abstract

There is converging evidence in maize, wheat, barley, Arabidopsis and other species that the endosperm in proximity of the embryo is cytologically different from the remaining endosperm. Gene expression restricted to this embryo surrounding region (ESR) reinforces the notion of a specialized endosperm domain at least in maize and Arabidopsis. The ESR is a dynamic structure that is set apart prior to cellularisation and starts to disappear with the onset of reserve accumulation in the developing seed. During later developmental stages it is frequently succeeded by a liquid filled space around the embryo. While the cytological characteristics of the regions surrounding the embryo are quite similar between the species analyzed, their functional equivalence has not yet been established. Possible functions of the ESR include nutrition or defense of the embryo as well as signaling between the embryo and the endosperm.

Keywords

Endosperm Development Globular Embryo Sucrose Transporter Starchy Endosperm Maize Endosperm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balandin M, Royo J, Gomez E, Muniz LM, Molina A, Hueros G (2005) A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Plant Mol Biol 58:269–282 PubMedCrossRefGoogle Scholar
  2. Bate NJ, Niu X, Wang Y, Reimann KS, Helentjaris TG (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 134:246–254 PubMedCrossRefGoogle Scholar
  3. Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836 PubMedCrossRefGoogle Scholar
  4. Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509 PubMedCrossRefGoogle Scholar
  5. Bonello JF, Opsahl-Ferstad HG, Perez P, Dumas C, Rogowsky PM (2000) Esr genes show different levels of expression in the same region of maize endosperm. Gene 246:219–227 PubMedCrossRefGoogle Scholar
  6. Bonello J-F, Sevilla-Lecoq S, Berne A, Risueno M-C, Dumas C, Rogowsky PM (2002) Esr proteins are secreted by the cells of the embryo surrounding region. J Exp Bot 53:1559–1568 PubMedCrossRefGoogle Scholar
  7. Brown RC, Lemmon BE, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma 222:167–174 PubMedCrossRefGoogle Scholar
  8. Brown RC, Lemmon BE, Nguyen H, Olsen OA (1999) Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod 12:32–42 CrossRefGoogle Scholar
  9. Brown RC, Lemmon BE, Olsen O-A (1994) Endosperm development in barley: Microtubule involvement in the morphogenetic pathway. Plant Cell 6:1241–1252 PubMedCrossRefGoogle Scholar
  10. Chourey PS, Jain M, Li QB, Carlson SJ (2005) Genetic control of cell wall invertases in developing endosperm of maize. Planta 1–9 Google Scholar
  11. Clark JK, Sheridan WF (1991) Isolation and characterisation of 51 embryo-specific mutations of maize. Plant Cell 3:935–951 PubMedCrossRefGoogle Scholar
  12. Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284 PubMedCrossRefGoogle Scholar
  13. Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942 PubMedCrossRefGoogle Scholar
  14. Drea S, Leader DJ, Arnold BC, Shaw P, Dolan L, Doonan JH (2005) Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17:2172–2185 PubMedCrossRefGoogle Scholar
  15. Engell K (1989) Embryology of barley: Time course and analysis of controlled fertilization and early embryo formation based on serial sections. Nord J Bot 9:265–280 CrossRefGoogle Scholar
  16. Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17:2542–2553 PubMedCrossRefGoogle Scholar
  17. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914 PubMedCrossRefGoogle Scholar
  18. Hong LS Kitano H, Satoh H, Nagato Y (1996) How is embryo size genetically regulated in rice? Dev Suppl 122:2051–2058 Google Scholar
  19. Huber AG, Grabe DF (1987a) Endosperm Morphogenesis in Wheat—Termination of Nuclear Division. Crop Sci 27:1252–1256 CrossRefGoogle Scholar
  20. Huber AG, Grabe DF (1987b) Endosperm Morphogenesis in Wheat—Transfer of Nutrients from the Antipodals to the Lower Endosperm. Crop Sci 27:1248–1252 CrossRefGoogle Scholar
  21. Ingouff M, Haseloff J, Berger F (2005) Polycomb group genes control developmental timing of endosperm. Plant J 42:663–674 PubMedCrossRefGoogle Scholar
  22. Kiesselbach TA (1949) Reproduction and kernel development in the structure and reproduction of corn. University of Nebraska, Lincoln, Nebraska, pp 63–83 Google Scholar
  23. Kiesselbach TA, Walker ER (1952) Structure of Certain Specialized Tissues in the Kernel of Corn. Am J Bot 39:561–569 CrossRefGoogle Scholar
  24. Kim JY, Mahe A, Guy S, Brangeon J, Roche O, Chourey PS, Prioul JL (2000) Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 245:89–102 PubMedCrossRefGoogle Scholar
  25. Leduc N, Matthys-Rochon E, Rougier M, Mogensen L, Holm P, Magnard JL, Dumas C (1996) Isolated maize zygotes mimic in vivo embryonic development and express microinjected genes when cultured in vitro. Dev Biol 177:190–203 PubMedCrossRefGoogle Scholar
  26. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536 PubMedCrossRefGoogle Scholar
  27. Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueno MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574 PubMedCrossRefGoogle Scholar
  28. Magnard JL, Lehouque G, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM (2003) ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Mol Biol 53:821–836 PubMedCrossRefGoogle Scholar
  29. Mansfield SG, Briarty LG (1990a) Development of the free-nuclear endosperm in Arabidopsis thaliana (L). Arab Inf Serv 27:53–64 Google Scholar
  30. Mansfield SG, Briarty LG (1990b) Endosperm cellularization in Arabidopsis thaliana (L). Arab Inf Serv 27:53–64 Google Scholar
  31. Mol R, Matthys-Rochon E, Dumas C (1993) In vitro culture of fertilized embryo sacs of maize: Zygotes and two-celled proembryos can develop into plants. Planta 189:213–217 CrossRefGoogle Scholar
  32. Nguyen H, Brown RC, Lemmon BE (2001) Patterns of cytoskeletal organization reflect distinct developmental domains in endosperm of Coronopus didymus (Brassicaceae). Int J Plant Sci 162:1–14 CrossRefGoogle Scholar
  33. Norstog K (1972) Early development of the barley embryo: fine structure. Am J Bot 59:123–132 CrossRefGoogle Scholar
  34. Olsen OA (2001) ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267 PubMedCrossRefGoogle Scholar
  35. Opsahl-Ferstad HG, Le Deunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246 PubMedCrossRefGoogle Scholar
  36. Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agric Res 53:882–916 Google Scholar
  37. Schel JHN, Kieft H, Lammeren AAM (1984) Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays). Can J Bot 62:2842–2853 CrossRefGoogle Scholar
  38. Serna A, Maitz M, O'Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Faleri C, Cai G, Lottspeich F, Thompson RD (2001) Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant J 25:687–698 PubMedCrossRefGoogle Scholar
  39. Sevilla-Lecoq S, Deguerry F, Matthys-Rochon E, Perez P, Dumas C, Rogowsky PM (2003) Analysis of ZmAE3 upstream sequences in maize endosperm and androgenic embryos. Sex Plant Reprod 16:1–8 Google Scholar
  40. Smart MG, O'Brien TP (1983) The development of the wheat embryo in relation to the neighbouring tissues. Protoplasma 114:1–13 CrossRefGoogle Scholar
  41. Sorensen MB, Chaudhury AM, Robert H, Bancharel E, Berger F (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11:277–281 PubMedCrossRefGoogle Scholar
  42. van Lammeren AAM (1987) Embryogenesis in Zea mays L A structural approach to maize caryopsis development in vivo and in vitro. Agricultural University Wageningen, Wageningen Google Scholar
  43. van Lammeren AAM, Kieft H, Ma F, van Veenendaal WLH (1996) Light microscopical study of endosperm formation in Brassica napus L. Acta Soc Bot Pol 65:267–272 Google Scholar
  44. Wegel E, Pilling E, Calder G, Drea S, Doonan J, Dolan L, Shaw P (2005) Three-dimensional modelling of wheat endosperm development. New Phytol 168:253–262 PubMedCrossRefGoogle Scholar
  45. Wobus U, Weber H (1999) Sugars as signal molecules in plant seed development. Biol Chem 380:937–944 PubMedCrossRefGoogle Scholar
  46. Yeung EC, Clutter ME (1979) Embryogeny of Phaseolus coccineus: the ultrastructure and development of the suspensor. Can J Bot 57:120–136 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Cosségal
    • 1
  • V. Vernoud
    • 1
  • N. Depège
    • 1
  • P.M. Rogowsky
    • 1
    Email author
  1. 1.UMR 5667 CNRS-INRA-ENSL-UCBL, IFR128 BioSciences Lyon-GerlandENS-LyonLyon Cedex 07France

Personalised recommendations