Skip to main content

Tubule-Guided Movement of Plant Viruses

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 7))

Abstract

Plant viruses move from cell to cell through plasmodesmata, which are complex gatable pores in the cell wall. While plasmodesmata normally allow the diffusion of only small molecules, they can be biochemically or structurally modified by virus-encoded movement proteins to enable the passage of either infectious ribonucleoprotein complexes or entire virus particles. In the latter case, the movement protein forms a transport tubule inside the plasmodesmal pore or at the surface of isolated cells. In this review, we describe the functional relevance of the tubules in the transport of viruses, speculative models for this movement mechanism, as well as the host components that seem to contribute to this type of transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfonso YB, Cantrill L, Jackson D (2006) Plasmodesmata: Cell–Cell Channels in Plants. In: Baluska F, Volkmann D, Barlow PW (eds) Cell–Cell Channels. Landes Biosciences, Austin TX, p 340

    Google Scholar 

  • Alzhanova DV, Napuli AJ, Creamer R, Dolja VV (2001) Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007

    PubMed  CAS  Google Scholar 

  • Ashby J, Boutant E, Seemanpillai M, Sambade A, Ritzenthaler C, Heinlein M (2006) Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80:8329–8344

    PubMed  CAS  Google Scholar 

  • Atabekov JG, Dorokhov YL (1984) Plant virus-specific transport function and resistance of plants to viruses. Adv Virus Res 29:313–364

    PubMed  CAS  Google Scholar 

  • Belin C, Schmitt C, Gaire F, Walter B, Demangeat G, Pinck L (1999) The nine C-terminal residues of the grapevine fanleaf nepovirus movement protein are critical for systemic virus spread. J Gen Virol 80:1347–1356

    PubMed  CAS  Google Scholar 

  • Boevink P, Oparka KJ (2005) Virus–host interactions during movement processes. Plant Physiol 138:1815–1821

    PubMed  CAS  Google Scholar 

  • Brill LM, Dechongkit S, DeLaBarre B, Stroebel J, Beachy RN, Yeager M (2004) Dimerization of recombinant tobacco mosaic virus movement protein. J Virol 78:3372–3377

    PubMed  CAS  Google Scholar 

  • Brill LM, Nunn RS, Kahn TW, Yeager M, Beachy RN (2000) Recombinant tobacco mosaic virus movement protein is an RNA-binding, alpha-helical membrane protein. Proc Natl Acad Sci USA 97:7112–7117

    PubMed  CAS  Google Scholar 

  • Canto T, Palukaitis P (1999) Are tubules generated by the 3a protein necessary for Cucumber mosaic virus movement? Mol Plant Microbe Interact 12:985–993

    CAS  Google Scholar 

  • Canto T, Prior DA, Hellwald KH, Oparka KJ, Palukaitis P (1997) Characterization of Cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237–248

    PubMed  CAS  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-Cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    PubMed  CAS  Google Scholar 

  • Carvalho CM, Pouwels J, van Lent JW, Bisseling T, Goldbach RW, Wellink J (2004) The movement protein of cowpea mosaic virus binds GTP and single-stranded nucleic acid in vitro. J Virol 78:1591–1594

    PubMed  CAS  Google Scholar 

  • Carvalho CM, Wellink J, Ribeiro SG, Goldbach RW, van Lent JW (2003) The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84:2271–2277

    PubMed  CAS  Google Scholar 

  • Castellano MA (1987) Electron microscopy of two olive viruses in host tissues. J Submicr Cytol 19:495–508

    Google Scholar 

  • Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. Embo J 19:913–920

    PubMed  CAS  Google Scholar 

  • Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876

    PubMed  CAS  Google Scholar 

  • Cheng CP, Tzafrir I, Lockhart BE, Olszewski NE (1998) Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. J Gen Virol 79:925–929

    PubMed  CAS  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647

    PubMed  CAS  Google Scholar 

  • Citovsky V, Knorr D, Zambryski P (1991) Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein. Proc Natl Acad Sci USA 88:2476–2480

    PubMed  CAS  Google Scholar 

  • daSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:1753–1771

    PubMed  CAS  Google Scholar 

  • Dawson WO, Bubrik P, Grantham GL (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology. Phytopathology 78:783–789

    CAS  Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394

    CAS  PubMed  Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    PubMed  CAS  Google Scholar 

  • Dorokhov YL, Makinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461:223–228

    PubMed  CAS  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30

    PubMed  CAS  Google Scholar 

  • Esau K (1968) Viruses in plant hosts: form, distribution and pathologic effects. University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Flasinski S, Dzianott A, Pratt S, Bujarski JJ (1995) Mutational analysis of the coat protein gene of Brome mosaic virus: effects on replication and movement in barley and in Chenopodium hybridum. Mol Plant-Microbe Interact 8:23–31

    PubMed  CAS  Google Scholar 

  • Francki RIB, Milne RG, Hatta T (1985) Cucumovirus group. In: Francki RIB, Milne RG, Hatta T (eds) An Atlas of Plant Viruses. CRC Press, Boca Raton, pp 53–100

    Google Scholar 

  • Godefroy-Colburn T, Erny C, Schoumacher F, Berna A, Gagey M-J, Stussi-Garaud C (1991) Cell-to-cell movement of plant viruses. Plenum Publishing Co ed. New York, R.G. Herrmann & B.A. Larkins

    Google Scholar 

  • Grieco F, Castellano MA, Di Sansebastiano GP, Maggipinto G, Neuhaus JM, Martelli GP (1999) Subcellular localization and in vivo identification of the putative movement protein of olive latent virus 2. J Gen Virol 80:1103–1109

    PubMed  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. The Plant Cell 14 Suppl:S303–325

    Google Scholar 

  • Heese M, Gansel X, Sticher L, Wick P, Grebe M, Granier F, Jurgens G (2001) Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J Cell Biol 155:239–249

    PubMed  CAS  Google Scholar 

  • Heinlein M (2006) TMV movement protein targets cell–cell channels in plants and prokaryotes: possible roles of tubulin- and FtsZ-based cytoskeletons. In: Baluska F, Volkmann D, Barlow PW (eds) Cell–Cell Channels. Landes Bioscience, Austin TX, p 340

    Google Scholar 

  • Heinlein M (2002a) Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signaling. Curr Opin Plant Biol 5:543–552

    PubMed  CAS  Google Scholar 

  • Heinlein M (2002b) The spread of tobacco mosaic virus infection: insights into the cellular mechanism of RNA transport. Cell Mol Life Sci 59:58–82

    PubMed  CAS  Google Scholar 

  • Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164

    PubMed  CAS  Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985

    PubMed  CAS  Google Scholar 

  • Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998a) Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    PubMed  CAS  Google Scholar 

  • Heinlein M, Wood MR, Thiel T, Beachy RN (1998b) Targeting and modification of prokaryotic cell-cell junctions by tobacco mosaic virus cell-to-cell movement protein. Plant J 14:345–351

    PubMed  CAS  Google Scholar 

  • Huang M, Jongejan L, Zheng H, Zhang L, Bol J (2001a) Intracellular localization and movement phenotypes of Alfalfa mosaic virus movement protein mutants. Mol Plant Microbe Interact 14:1063–1074

    PubMed  CAS  Google Scholar 

  • Huang Z, Andrianov V, Han Y, Howell S (2001b) Identification of Arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 47:663–675

    PubMed  CAS  Google Scholar 

  • Huang Z, Han Y, Howell S (2000) Formation of surface tubules and fluorescent foci in Arabidopsis thaliana protoplasts expressing a fusion between the green fluorescent protein and the cauliflower mosaic virus movement protein. Virology 271:58–64

    PubMed  CAS  Google Scholar 

  • Isogai M, Saitou Y, Takahashi N, Itabashi T, Terada M, Satoh H, Yoshikawa N (2003) The 50-kDa protein of Apple chlorotic leaf spot virus interferes with intracellular and intercellular targeting and tubule-inducing activity of the 39-kDa protein of Grapevine berry inner necrosis virus. Mol Plant Microbe Interact 16:188–195

    PubMed  CAS  Google Scholar 

  • Jansen KA, Wolfs CJ, Lohuis H, Goldbach RW, Verduin BJ (1998) Characterization of the Brome mosaic virus movement protein expressed in E. coli. Virology 242:387–394

    PubMed  CAS  Google Scholar 

  • Jorgensen RA, Atkinson RG, Forster RLS, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    PubMed  CAS  Google Scholar 

  • Kalasjan JA, Litvak LA, Marinescu VG (1979) Tubular structures in grapevine tissue after infection with grapevine fanleaf virus. Arch Phytopathol Pflanzenschutz 15:373–376

    Google Scholar 

  • Kaplan IB, Shintaku MH, Li Q, Zhang L, Marsh LE, Palukaitis P (1995) Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology 209:188–199

    PubMed  CAS  Google Scholar 

  • Kaplan IB, Zhang L, Palukaitis P (1998) Characterization of cucumber mosaic virus. V. Cell-to-cell movement requires capsid protein but not virions. Virology 246:221–231

    PubMed  CAS  Google Scholar 

  • Kasteel D, van der Wel N, Jansen K, Goldbach R, van Lent J (1997) Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and Brome mosaic virus. J Gen Virol 78:2089–2093

    PubMed  CAS  Google Scholar 

  • Kasteel D, Wellink J, Verver J, van Lent J, Goldbach R, van Kammen A (1993) The involvement of cowpea mosaic virus M RNA-encoded proteins in tubule formation. J Gen Virol 74:1721–1724

    PubMed  CAS  Google Scholar 

  • Kasteel DT, Perbal MC, Boyer JC, Wellink J, Goldbach RW, Maule AJ, van Lent JW (1996) The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. J Gen Virol 77:2857–2864

    PubMed  CAS  Google Scholar 

  • Kim KS, Fulton JP (1971) Tubules with virus-like particles in leaf cells infected with Bean pod mottle virus. Virology 43:329–337

    PubMed  CAS  Google Scholar 

  • Kitajima EW, Lauritis JA (1969) Plant virions in plasmodesmata. Virology 37:681–685

    PubMed  CAS  Google Scholar 

  • Kitajima EW, Lauritis JA, Swift H (1969) Fine structure of zinnia leaf tissues infected with dahlia mosaic virus. Virology 39:240

    PubMed  CAS  Google Scholar 

  • Knapp E, Dawson WO, Lewandowski DJ (2001) Conundrum of the lack of defective RNAs (dRNAs) associated with tobamovirus infections: dRNAs that can move are not replicated by the wild-type virus; dRNAs that are replicated by the wild-type virus do not move. J Virol 75:5518–5525

    PubMed  CAS  Google Scholar 

  • Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    PubMed  CAS  Google Scholar 

  • Koonin EV, Mushegian AR, Ryabov EV, Dolja VV (1991) Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72:2895–2903

    PubMed  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    PubMed  CAS  Google Scholar 

  • Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    PubMed  CAS  Google Scholar 

  • Lauber M, Waizenegge I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jurgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493

    PubMed  CAS  Google Scholar 

  • Lee JY, Yoo BC, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299:392–396

    PubMed  CAS  Google Scholar 

  • Lekkerkerker A, Wellink J, Yuan P, van Lent J, Goldbach R, van Kammen AB (1996) Distinct functional domains in the cowpea mosaic virus movement protein. J Virol 70:5658–5661

    PubMed  CAS  Google Scholar 

  • Lewandowski DJ, Adkins S (2005) The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 342:26–37

    PubMed  CAS  Google Scholar 

  • Li Q, Palukaitis P (1996) Comparison of the nucleic acid- and NTP-binding properties of the movement protein of cucumber mosaic cucumovirus and tobacco mosaic tobamovirus. Virology 216:71–79

    PubMed  CAS  Google Scholar 

  • Linstead PJ, Hills GJ, Plaskitt KA, Wilson IG, Harker CL, Maule AJ (1988) The subcellular location of the gene I product of cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol 69:1809–1818

    CAS  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Gilbertson RL (1994) Plasmodesmata in relation to viral movement within leaf tissues. Ann Rev Phytopathol 32:387–411

    CAS  Google Scholar 

  • Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726

    PubMed  CAS  Google Scholar 

  • Martelli GP, Russo M (1985) Virus-host relationships, symptomatological and ultrastructural aspects. Plenum Press, New York

    Google Scholar 

  • Mas P, Beachy RN (1998) Distribution of TMV movement protein in single living protoplasts immobilized in agarose. Plant J 15:835–842

    CAS  Google Scholar 

  • Matsushita Y, Deguchi M, Youda M, Nishiguchi M, Nyunoya H (2001) The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 12:57–66

    PubMed  CAS  Google Scholar 

  • Maule AJ (1991) Virus movement in infected plants. Crit Rev Plant Sci 9:457–473

    CAS  Google Scholar 

  • McLean B, Zupan J, Zambryski P (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. The Plant Cell 7:2101–2114

    PubMed  CAS  Google Scholar 

  • Melcher U (2000) The “30K” superfamily of viral movement proteins. J Gen Virol 81:257–266

    PubMed  CAS  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30 kdprotein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–2563

    PubMed  CAS  Google Scholar 

  • Mushegian AR, Koonin EV (1993) Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Arch Virol 133:239–257

    PubMed  CAS  Google Scholar 

  • Nagano H, Okuno T, Mise K, Furusawa I (1997) Deletion of the C-terminal 33 amino acids of cucumber mosaic virus movement protein enables a chimeric Brome mosaic virus to move from cell to cell. J Virol 71:2270–2276

    PubMed  CAS  Google Scholar 

  • Nebenführ A (2002) Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. Curr Opin Plant Biol 5:507–512

    PubMed  Google Scholar 

  • Nebenführ A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108

    PubMed  Google Scholar 

  • Okinaka Y, Mise K, Suzuki E, Okuno T, Furusawa I (2001) The C terminus of Brome mosaic virus coat protein controls viral cell-to-cell and long-distance movement. J Virol 75:5385–5390

    PubMed  CAS  Google Scholar 

  • Olesen P, Robards AW (1990) The neck region of plasmodesmata: general architecture and some functional aspects. In: Robards AW, Lucas WJ, Pitts JD, Jongsma HJ, Spray DC (eds) Parallels in Cell-to-Cell Junctions in Plants and Animals. Springer, Berlin Heidelberg New York, pp 145–170

    Google Scholar 

  • Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    PubMed  CAS  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Palukaitis P, Garcia-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323

    PubMed  CAS  Google Scholar 

  • Perbal MC, Thomas CL, Maule AJ (1993) Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 195:281–285

    PubMed  CAS  Google Scholar 

  • Pouwels J, Kornet N, van Bers N, Guighelaar T, van Lent J, Bisseling T, Wellink J (2003) Identification of distinct steps during tubule formation by the movement protein of Cowpea mosaic virus. J Gen Virol 84:3485–3494

    PubMed  CAS  Google Scholar 

  • Pouwels J, van der Krogt GN, van Lent J, Bisseling T, Wellink J (2002) The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to the cell periphery. Virology 297:48–56

    PubMed  CAS  Google Scholar 

  • Pouwels J, van der Velden T, Willemse J, Borst JW, van Lent J, Bisseling T, Wellink J (2004) Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 85:3787–3796

    PubMed  CAS  Google Scholar 

  • Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    CAS  Google Scholar 

  • Rao AL, Grantham GL (1996) Molecular studies on bromovirus capsid protein. II. Functional analysis of the amino-terminal arginine-rich motif and its role in encapsidation, movement, and pathology. Virology 226:294–305

    PubMed  CAS  Google Scholar 

  • Rao AL, Grantham GL (1995) Biological significance of the seven amino-terminal basic residues of Brome mosaic virus coat protein. Virology 211:42–52

    PubMed  CAS  Google Scholar 

  • Ritzenthaler C, Nebenführ A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin LA, Robinson DG (2002) Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14:237–261

    PubMed  CAS  Google Scholar 

  • Ritzenthaler C, Schmit A-C, Michler P, Stussi-Garaud C, Pinck L (1995) Grapevine fanleaf nepovirus putative movement protein is involved in tubule formation in vivo. Mol Plant Microbe Interact 8:379–387

    CAS  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Google Scholar 

  • Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528

    PubMed  CAS  Google Scholar 

  • Sánchez-Navarro J, Bol J (2001) Role of the Alfalfa mosaic virus movement protein and coat protein in virus transport. Mol Plant Microbe Interact 14:1051–1062

    PubMed  Google Scholar 

  • Sanchez-Navarro JA, Carmen Herranz M, Pallas V (2006) Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology 346:66–73

    PubMed  CAS  Google Scholar 

  • Satoh H, Matsuda H, Kawamura T, Isogai M, Yoshikawa N, Takahashi T (2000) Intracellular distribution, cell-to-cell trafficking and tubule-inducing activity of the 50 kDamovement protein of Apple chlorotic leaf spot virus fused to green fluorescent protein. J Gen Virol 81:2085–2093

    PubMed  CAS  Google Scholar 

  • Schmitz I, Rao AL (1996) Molecular studies on bromovirus capsid protein. I. Characterization of cell-to-cell movement-defective RNA3 variants of Brome mosaic virus. Virology 226:281–293

    PubMed  CAS  Google Scholar 

  • Schoumacher F, Erny C, Berna A, Godefroy-Colburn T, Stussi-Garaud C (1992a) Nucleic acid-binding properties of the alfalfa mosaic virus movement protein produced in yeast. Virology 188:896–899

    PubMed  CAS  Google Scholar 

  • Schoumacher F, Gagey MJ, Maira M, Stussi-Garaud C, Godefroy-Colburn T (1992b) Binding of RNA by the alfalfa mosaic virus movement protein is biphasic. FEBS Lett 308:231–234

    PubMed  CAS  Google Scholar 

  • Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci USA 97:2373–2378

    PubMed  CAS  Google Scholar 

  • Stavolone L, Villani ME, Leclerc D, Hohn T (2005) A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci USA 102:6219–6224

    PubMed  CAS  Google Scholar 

  • Storms MM, Kormelink R, Peters D, van Lent JW, Goldbach RW (1995) The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493

    PubMed  CAS  Google Scholar 

  • Storms MMH, van der Schoot C, Prins M, Kormelink R, van Lent JWM, Goldbach RW (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13:131–140

    CAS  Google Scholar 

  • Stussi-Garaud C, Haeberle A-M, Ritzenthaler C, Rohfritsch O, Lebeurier G (1994) Electron microscopy of plant viruses. Biol Cell 80:147–153

    Google Scholar 

  • Suzuki M, Kuwata S, Kataoka J, Masuta C, Nitta N, Takanami Y (1991) Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183:106–113

    PubMed  CAS  Google Scholar 

  • Takeuchi M, Ueda T, Sato K, Abe H, Nagata T, Nakano A (2000) A dominant negative mutant of sar1 GTPase inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 23:517–525

    PubMed  CAS  Google Scholar 

  • Takeuchi M, Ueda T, Yahara N, Nakano A (2002) Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 31:499–515

    PubMed  CAS  Google Scholar 

  • Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145–157

    CAS  Google Scholar 

  • Thomas CL, Maule AJ (1999) Identification of inhibitory mutants of Cauliflower mosaic virus movement protein function after expression in insect cells. J Virol 73:7886–7890

    PubMed  CAS  Google Scholar 

  • Thomas CL, Maule AJ (1995a) Identification of structural domains within the cauliflower mosaic virus movement protein by scanning deletion mutagenesis and epitope tagging. Plant Cell 7:561–572

    PubMed  CAS  Google Scholar 

  • Thomas CL, Maule AJ (1995b) Identification of the cauliflower mosaic virus movement protein RNA-binding domain. Virology 206:1145–1149

    PubMed  CAS  Google Scholar 

  • Tucker EB (1982) Translocation in the staminal hairs of Setcreasea purpurea. Protoplasma 113:193–201

    CAS  Google Scholar 

  • Tylicki A, Burza W, Malepszy S, Kuras M (2003) Changes in the organization of the tubulin cytoskeleton during the early stages of Solanum lycopersicoides Dun. protoplast culture. Plant Cell Rep 22:312–319

    PubMed  CAS  Google Scholar 

  • van Bel AJ, van Kesteren WJ (1999) plasmodesmata, structure, function, role in cell communication. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • van der Scheer C, Groenewegen J (1971) Structure in cells of Vigna unguiculata infected with cowpea mosaic virus. Virology 46:493–497

    PubMed  Google Scholar 

  • van der Wel NN, Goldbach RW, van Lent JW (1998) The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata. Virology 244:322–329

    PubMed  Google Scholar 

  • van Lent J, Storms M, van der Meer F, Wellink J, Goldbach R (1991) Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol 72:2615–2623

    PubMed  Google Scholar 

  • van Lent J, Wellink J, Goldbach R (1990) Evidence for the involvement of the 58K and 48K proteins in the intracellular movement of cowpea mosaic virus. J Gen Virol 71:219–223

    Google Scholar 

  • van Lent JWM, Schmitt-Keichinger C (2006) Viral Movement Proteins Induce Tubule Formation in Plant and Insect Cells. In: Baluska F, Volkmann D, Barlow PW (eds) Cell–cell channels. Landes Biosciences, Austin Tx, pp 160–175

    Google Scholar 

  • von Bargen S, Salchert K, Paape M, Piechulla B, Kellmann JW (2001) Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. Plant Physiol Biochem 39:1083–1093

    Google Scholar 

  • Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250

    CAS  Google Scholar 

  • Wellink J, van Kammen A (1989) Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and the capsid proteins. J Gen Virol 70:2279–2286

    CAS  Google Scholar 

  • Wellink J, van Lent JW, Verver J, Sijen T, Goldbach RW, van Kammen A (1993) The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol 67:3660–3664

    PubMed  CAS  Google Scholar 

  • Wieczorek A, Sanfacon H (1993) Characterization and subcellular localization of Tomato ringspot nepovirus putative movement protein. Virology 194:734–742

    PubMed  CAS  Google Scholar 

  • Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745

    PubMed  CAS  Google Scholar 

  • Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17:525–536

    PubMed  CAS  Google Scholar 

  • Yang YD, Elamawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG (2005) Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell 17:1513–1531

    PubMed  CAS  Google Scholar 

  • Zambryski P, Crawford K (2000) Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu Rev Cell Dev Biol 16:393–421

    PubMed  CAS  Google Scholar 

  • Zheng H, Wang G, Zhang L (1997) Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Mol Plant Microbe Interact 8:1010–1014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Ritzenthaler .

Editor information

Elisabeth Waigmann Manfred Heinlein

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritzenthaler, C., Hofmann, C. (2007). Tubule-Guided Movement of Plant Viruses. In: Waigmann, E., Heinlein, M. (eds) Viral Transport in Plants. Plant Cell Monographs, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_105

Download citation

Publish with us

Policies and ethics