Skip to main content

Virus Transmission—Getting Out and In

  • Chapter
  • First Online:
Viral Transport in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 7))

Abstract

Logically, most plant viruses being vector-transmitted, the majority of viral transport mechanisms associated to the transmission step have been approached through the study of virus-vector relationships. However, in the case of non-vector vertical transmission through the seeds, some viruses have evolved specific patterns to colonize either the gametes or the embryo, thereby connecting viral transport within the plant to that in between plants. Moreover, though it may appear counter intuitive and has been largely overlooked, some specific virus accumulation within cells or organs, as well as specific control of multiple infections of single cells, can also directly affect the success and efficiency of vector transmission, again connecting viral transport mechanisms inside and outside the host plants. This work summarizes the data available on viral transport outside the plant in various vectors, and also highlights a few available examples and proposes hypotheses for illustrating the concept that some viral trafficking within plants is specifically intended to prepare ulterior acquisition by the vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akad F, Dotan N, Czosnek H (2004) Trapping of Tomato yellow leaf curl virus (TYLCV) and other plant viruses with a GroEL homologue from the whitefly Bemisia tabaci. Arch Virol 149:1481–1497

    PubMed  CAS  Google Scholar 

  • Armour SL, Melcher U, Pirone TP, Lyttle DJ, Essenberg RC (1983) Helper component for aphid transmission encoded by region II of cauliflower mosaic virus DNA. Virology 129:25–30.

    CAS  PubMed  Google Scholar 

  • Blanc S (2004) Insect transmission of viruses. In: Gillespie SH, Smith GL, Osbourn A (eds) Microbe-vector interactions in vector-borne diseases. Cambridge University Press, Cambridge, pp 42–61

    Google Scholar 

  • Blanc S, Ammar ED, Garcia-Lampasona S, Dolja VV, Llave C, Baker J, Pirone TP (1998) Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J Gen Virol 79:3119–22

    PubMed  CAS  Google Scholar 

  • Blanc S, Cerutti M, Chaabihi H, Louis C, Devauchelle G, Hull R (1993a) Gene II product of an aphid-nontransmissible isolate of cauliflower mosaic virus expressed in a baculovirus system possesses aphid transmission factor activity. Virology 192:651–654

    PubMed  CAS  Google Scholar 

  • Blanc S, Cerutti M, Usmany M, Vlak JM, Hull R (1993b) Biological activity of cauliflower mosaic virus aphid transmission factor expressed in a heterologous system. Virology 192:643–650

    PubMed  CAS  Google Scholar 

  • Blanc S, Lopez-Moya JJ, Wang R, Garcia-Lampasona S, Thornbury D W, Pirone TP (1997) A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141–147

    PubMed  CAS  Google Scholar 

  • Blanc S, Schmidt I, Vantard M, Scholthof HB, Khul G, Esperandieu P, Cerutti M, Louis C (1996) The aphid transmission factor of cauliflower mosaic virus forms a stable complex with microtubules in both insect and plant cells. Proc Natl Acad Sci USA 93:15158–15163

    PubMed  CAS  Google Scholar 

  • Bocharov G, Ford N J, Edwards J, Breinig T, Wain-Hobson S, Meyerhans A (2005) A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J Gen Virol 86:3109–3118

    PubMed  CAS  Google Scholar 

  • Boevink P, Oparka KJ (2005) Virus-host interactions during movement processes. Plant Physiol 138:1815–1821

    PubMed  CAS  Google Scholar 

  • Bosque-Perez NA (2000) Eight decades of maize streak virus research. Virus Res 71:107–121

    PubMed  CAS  Google Scholar 

  • Brault V, Perigon S, Reinbold C, Erdinger M, Scheidecker D, Herrbach E, Richards K, Ziegler-Graff V (2005) The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. J Virol 79:9685–9693

    PubMed  CAS  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    PubMed  CAS  Google Scholar 

  • Broadbent L (1965) The epidemiology of tomato mosaic virus, IX. Seed transmission of TMV. Ann Appl Biol 56:177–205

    CAS  Google Scholar 

  • Champagne J, Benhamou N, Leclerc D (2004) Localization of the N-terminal domain of cauliflower mosaic virus coat protein precursor. Virology 324:257–262

    PubMed  CAS  Google Scholar 

  • Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559

    PubMed  CAS  Google Scholar 

  • de Assis Filho FM, Stavisky J, Reitz SR, Deom CM, Sherwood JL (2005) Midgut infection by Tomato spotted wilt virus and vector incompetence of Frankliniella tritici. J Appl Entomol 129:548–550

    Google Scholar 

  • Dietrich C, Maiss E (2003) Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J Gen Virol 84:2871–2876

    PubMed  CAS  Google Scholar 

  • Doolittle SP, Walker MN (1928) Aphid transmission of cucumber mosaic. Phytopathology 18:143

    Google Scholar 

  • Drucker M, Froissart R, Hebrard E, Uzest M, Ravallec M, Esperandieu P, Mani J C, Pugniere M, Roquet F, Fereres A, Blanc S (2002) Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proc Natl Acad Sci USA 99:2422–2427

    PubMed  CAS  Google Scholar 

  • Edwards MC (1995) Mapping of the seed transmission determinants of barley stripe mosaic virus. Mol Plant Microbe Interact 8:906–915

    PubMed  CAS  Google Scholar 

  • Espinoza AM, Medina V, Hull R, Markham PG (1991) Cauliflower mosaic virus gene II product forms distinct inclusion bodies in infected plant cells. Virology 185:337–344

    PubMed  CAS  Google Scholar 

  • Filichkin SA, Brumfield S, Filichkin TP, Young MJ (1997) In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J Virol 71:569–577

    PubMed  CAS  Google Scholar 

  • Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18:2545–2556

    PubMed  CAS  Google Scholar 

  • Foster TM, Lough TJ, Emerson SJ, Lee RH, Bowman JL, Forster RL, Lucas WJ (2002) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14:1497–1508

    PubMed  CAS  Google Scholar 

  • Froissart R, Michalakis Y, Blanc S (2002) Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathology 92:576–579

    PubMed  Google Scholar 

  • Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y (2005) Recombination every day: Abundant recombination in a virus during a single multi-cellular host infection. PLOS Biology 3:389–395

    CAS  Google Scholar 

  • Froissart R, Wilke CO, Montville R, Remold SK, Chao L, Turner PE (2004) Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics 168:9–19

    PubMed  Google Scholar 

  • Gardner RC, Howarth AJ, Hahn P, Brown-Luedi M, Shepherd RJ, Messing J (1981) The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Res 9:2871–2888

    PubMed  CAS  Google Scholar 

  • Gergerich RC (2001) Elucidation of transmission mechanisms: Mechanism of virus transmission by leaf-feeding beetles. In: Harris K, Smith OP, Duffus JE (eds) Virus-Insect-Plant interactions. Academic Press, San Diego, pp 133–140

    Google Scholar 

  • Gergerich RC, Scott HA (1991) Determinants in the specificity of virus transmission by leaf-feeding beetles. In: Harris KF (eds) Advances in disease vector research. Springer, Berlin Heidelberg New York, pp 1–13

    Google Scholar 

  • Ghanim M, Czosnek H (2000) Tomato yellow leaf curl geminivirus (TYLCV-Is) is transmitted among whiteflies (Bemisia tabaci) in a sex-related manner. J Virol 74:4738–4745

    PubMed  CAS  Google Scholar 

  • Ghanim M, Morin S, Zeidan M, Czosnek H (1998) Evidence for transovarial transmission of tomato yellow leaf curl virus by its vector, the whitefly Bemisia tabac. Virology 240:295–303

    PubMed  CAS  Google Scholar 

  • Gildow F (1993) Evidence for receptor-mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathology 83:270–277

    Google Scholar 

  • Goldman V, Czosnek H (2002) Whiteflies (Bemisia tabaci) issued from eggs bombarded with infectious DNA clones of Tomato yellow leaf curl virus from Israel (TYLCV) are able to infect tomato plants. Arch Virol 147:787–801

    PubMed  CAS  Google Scholar 

  • Govier DA, Kassanis B (1974) A virus induced component of plant sap needed when aphids acquire potato virus Y from purified preparations. Virology 61:420–426

    PubMed  CAS  Google Scholar 

  • Gray S, Gildow FE (2003) Luteovirus-aphid interactions. Annu Rev Phytopathol 41:539–566

    PubMed  CAS  Google Scholar 

  • Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63:128–148

    PubMed  CAS  Google Scholar 

  • Haas M, Geldreich A, Bureau M, Dupuis L, Leh V, Vetter G, Kobayashi K, Hohn T, Ryabova L, Yot P, Keller M (2005) The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. Plant Cell 17:927–943

    PubMed  CAS  Google Scholar 

  • Harris KF (1977) An ingestion-egestion hypothesis of non circulative virus transmission. In: Harris KF, Maramorosch K (eds) Aphids as virus vectors. Academic Press, New York, pp 166–208

    Google Scholar 

  • Harris KF, Smith OP, Duffus JE (2001) Virus-insect-plant interactions. Academic Press, San Diego, pp 376

    Google Scholar 

  • Hibino H, Cabauatan PQ (1987) Infectivity neutralization of rice tungro-associated viruses acquired by vector leafhoppers. Phytopathology 77:473–476

    Google Scholar 

  • Hogenhout SA, Redinbaugh MG, Ammar ED (2003) Plant and animal rhabdovirus host range: a bug's view. Trends Microbiol 11:264–271

    PubMed  CAS  Google Scholar 

  • Hohn T, Fütterer J (1997) The proteins and functions of plant pararetroviruses: knowns and unknowns. Crit Rev Plant Sci 16:133–167

    CAS  Google Scholar 

  • Howarth AJ, Gardner RC, Messing J, Shepherd RJ (1981) Nucleotide sequence of naturally occurring deletion mutants of cauliflower mosaic virus. Virology 112:678–685

    CAS  PubMed  Google Scholar 

  • Hull R (2001) Matthews' plant virology, 4th ed. Academic Press, San Diego

    Google Scholar 

  • Hull R, Plaskitt A (1970) Electron microscopy on the behavior of two strains of alfalfa mosaic virus in mixed infections. Virology 42:773–776

    PubMed  CAS  Google Scholar 

  • Hunt RE, Nault LR, Gingery LE (1988) Evidence for infectivity of maize chlorotic dwarf virus and for an helper component in its leafhopper transmission. Phytopathology 78:499–504

    Google Scholar 

  • Jridi C, Martin JF, Marie-Jeanne V, Labonne G, Blanc S (2006) Distinct viral populations differentiate and evolve independently in a single perennial host plant. J Virol 80:2349–2357

    PubMed  CAS  Google Scholar 

  • Jung A, Maier R, Vartanian JP, Bocharov G, Jung V, Fischer U, Meese E, Wain-Hobson S, Meyerhans A (2002) Multiply infected spleen cells in HIV patients. Nature 418:144

    PubMed  CAS  Google Scholar 

  • Kakani K, Reade R, Rochon D (2004) Evidence that vector transmission of a plant virus requires conformational change in virus particles. J Mol Biol 338:507–517

    PubMed  CAS  Google Scholar 

  • Kakani K, Robbins M, Rochon D (2003) Evidence that binding of cucumber necrosis virus to vector zoospores involves recognition of oligosaccharides. J Virol 77:3922–3928

    PubMed  CAS  Google Scholar 

  • Kakani K, Sgro JY, Rochon D (2001) Identification of specific cucumber necrosis virus coat protein amino acids affecting fungus transmission and zoospore attachment. J Virol 75:5576–5583

    PubMed  CAS  Google Scholar 

  • Karsies A, Merkle T, Szurek B, Bonas U, Hohn T, Leclerc D (2002) Regulated nuclear targeting of cauliflower mosaic virus. J Gen Virol 83:1783–1790

    PubMed  CAS  Google Scholar 

  • Kassanis B, Govier DA (1971a) The role of the helper virus in aphid transmission of potato aucuba mosaic virus and potato virus C. J Gen Virol 13:221–228

    Google Scholar 

  • Kassanis B, Govier DA (1971b) New evidence on the mechanism of transmission of potato C and potato aucuba mosaic viruses. J Gen Virol 10:99–101

    PubMed  CAS  Google Scholar 

  • Kassanis B, Russell GE, White RF (1978) Seed and pollen transmission of beet cryptic virus in sugar beet plants. Phytopathology 91:76–79

    Google Scholar 

  • Kim I, Kobayashi K, Cho E, Zambryski PC (2005) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950

    PubMed  CAS  Google Scholar 

  • Kunik T, Palanichelvam K, Czosnek H, Citovsky V, Gafni Y (1998) Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J 13:393–399

    PubMed  CAS  Google Scholar 

  • Kuno G, Chang GJ (2005) Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637

    PubMed  CAS  Google Scholar 

  • Leclerc D, Burri L, Kajava AV, Mougeot JL, Hess D, Lustig A, Kleemann G, Hohn T (1998) The open reading frame III product of cauliflower mosaic virus forms a tetramer through a N-terminal coiled-coil. J Biol Chem 273:29015–29021

    PubMed  CAS  Google Scholar 

  • Leh V, Jacquot E, Geldreich A, Haas M, Blanc S, Keller M, Yot P (2001) Interaction between cauliflower mosaic virus ORFIII product and the coat protein is required for transmission of the virus by aphids. J Virol 75:100–106

    PubMed  CAS  Google Scholar 

  • Leh V, Jacquot E, Geldreich A, Hermann T, Leclerc D, Cerrutti M, Yot P, Keller M, Blanc S (1999) Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. EMBO J 18:7077–7085

    PubMed  CAS  Google Scholar 

  • Lett JM, Granier M, Hippolyte I, Grondin M, Royer M, Blanc S, Reynaud B, Peterschmitt M (2002) Spatial and temporal distribution of geminiviruses in leafhoppers of the genus Cicadulina monitored by conventional and quantitative polymerase chain reaction. Phytopathology 92:65–74

    PubMed  Google Scholar 

  • Liu S, He X, Park G, Josefsson C, Perry KL (2002) A conserved capsid protein surface domain of Cucumber mosaic virus is essential for efficient aphid vector transmission. J Virol 76:9756–9762

    PubMed  CAS  Google Scholar 

  • Lung MCY, Pirone TP (1973) Studies on the reason for differential transmissibility of cauliflower mosaic virus isolates by aphids. Phytopathology 63:910–914

    Article  Google Scholar 

  • Lung MCY, Pirone TP (1974) Acquisition factor required for aphid transmission of purified cauliflower mosaic virus. Virology 60:260–264

    PubMed  CAS  Google Scholar 

  • MacFarlane S (2003) Molecular determinants of the transmission of plant viruses by nematodes. Mol Plant Pathol 4:211–215

    CAS  PubMed  Google Scholar 

  • Martin B, Collar JL, Tjallingii WF, Fereres A (1997) Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J Gen Virol 78:2701–2705

    PubMed  CAS  Google Scholar 

  • Maule AJ, Wang D (1996) Seed transmission of plant viruses: a lesson in biological complexity. Trends Microbiol 4:153–158

    PubMed  CAS  Google Scholar 

  • Mellor PS (2000) Replication of arboviruses in Insect Vectors. J Comp Pathol 123:231–247

    PubMed  CAS  Google Scholar 

  • Mink GI (1993) Pollen- and seed-transmitted viruses and viroids. Annu Rev Phytopathol 31:375–402

    PubMed  CAS  Google Scholar 

  • Moreno A, Hebrard E, Uzest M, Blanc S, Fereres A (2005a) A single amino acid position in the helper component of cauliflower mosaic virus can change the spectrum of transmitting vector species. J Virol 79:13587–13593

    PubMed  CAS  Google Scholar 

  • Moreno A, Palacios I, Blanc S, Fereres A (2005b) Intracellular salivation is the mechanism involved in the inoculation of Cauliflower mosaic virus by its major vectors brevicoryne brassicae and Myzus persicae. Ann Entomol Soc Am 98:763–769

    Google Scholar 

  • Morilla G, Krenz B, Jeske H, Bejarano ER, Wege C (2004) Tete a tete of tomato yellow leaf curl virus and tomato yellow leaf curl sardinia virus in single nuclei. J Virol 78:10715–10723

    PubMed  CAS  Google Scholar 

  • Morin S, Ghanim M, Sobol I, Czosnek H (2000) The GroEL protein of whitefly Bemisia tabaci interacts with the coat protein of transmissible and non-transmissible begomoviruses in the yeast two-hybrid system. Virology 276:404–416

    PubMed  CAS  Google Scholar 

  • Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, Van den Heuvel JFJM (1999) A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virology 256:75–84

    PubMed  CAS  Google Scholar 

  • Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90:521–541

    Google Scholar 

  • Nault LR, Ammar ED (1989) Leafhopper and planthopper transmission of plant viruses. Ann Rev Entomol 34:503–529

    Google Scholar 

  • Ng JC, Josefsson C, Clark AJ, Franz AW, Perry KL (2005) Virion stability and aphid vector transmissibility of Cucumber mosaic virus mutants. Virology 332:397–405

    PubMed  CAS  Google Scholar 

  • Ng JC, Liu S, Perry KL (2000) Cucumber mosaic virus mutants with altered physical properties and defective in aphid vector transmission. Virology 276:395–403

    PubMed  CAS  Google Scholar 

  • Ng JC, Tian T, Falk BW (2004) Quantitative parameters determining whitefly (Bemisia tabaci) transmission of Lettuce infectious yellows virus and an engineered defective RNA. J Gen Virol 85:2697–2707

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Prior DA, Santa Cruz S, Padgett HS, Beachy R N (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J 12:781–789

    PubMed  CAS  Google Scholar 

  • Peng YH, Kadoury D, Gal-On A, Huet H, Wang Y, Raccah B (1998) Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J Gen Virol 79(4):897–904

    PubMed  CAS  Google Scholar 

  • Perry KL, Zhang L, Palukaitis P (1998) Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii. Virology 242:204–210

    PubMed  CAS  Google Scholar 

  • Perry KL, Zhang L, Shintaku MH, Palukaitis P (1994) Mapping determinants in cucumber mosaic virus for transmission by Aphis gossypii. Virology 205:591–595

    PubMed  CAS  Google Scholar 

  • Pfeiffer ML, Gildow FE, Gray SM (1997) Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. J General Virol 78:495–503

    Google Scholar 

  • Pirone TP, Blanc S (1996) Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247

    PubMed  CAS  Google Scholar 

  • Pirone TP, Megahed ES (1966) Aphid transmissibility of some purified viruses and viral RNAs. Virology 30:631–637

    PubMed  CAS  Google Scholar 

  • Pirone TP, Perry KL (2002) Aphids-Non-Persistent Transmission. In: Plumb RT (ed) Advances in Botanical Research. Academic Press, New York, pp 1–19

    Google Scholar 

  • Plisson C, Drucker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P (2003) Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem 278:23753–23761

    PubMed  CAS  Google Scholar 

  • Plisson C, Uzest M, Drucker M, Froissart R, Dumas C, Conway J, Thomas D, Blanc S, Bron P (2005) Structure of the mature P3-virus particle complex of cauliflower mosaic virus revealed by cryo-electron microscopy. J Mol Biol 346:267–277

    PubMed  CAS  Google Scholar 

  • Powell G (2005) Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. J Gen Virol 86:469–472

    PubMed  CAS  Google Scholar 

  • Power AG (2000) Insect transmission of plant viruses: a constraint on virus variability. Curr Opin Plant Biol 3:336–340

    PubMed  CAS  Google Scholar 

  • Raccah B, Huet H, Blanc S (2001) Potyviruses. In: Harris K, Duffus JE, Smith OP (eds) Virus-Insect-Plant interactions. Academic Press, San Diego, pp 181–206

    Google Scholar 

  • Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA. rna-mediated cross-protection between viruses. Plant Cell 11:1207–1216

    PubMed  CAS  Google Scholar 

  • Redinbaugh MG, Hogenhout SA (2005) Plant rhabdoviruses. Curr Top Microbiol Immunol 292:143–163

    PubMed  CAS  Google Scholar 

  • Reichel C, Beachy RN (2000) Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol 74:3330–3337

    PubMed  CAS  Google Scholar 

  • Reinbold C, Herrbach E, Brault V (2003) Posterior midgut and hindgut are both sites of acquisition of Cucurbit aphid-borne yellows virus in Myzus persicae and Aphis gossypii. J Gen Virol 84:3473–3484

    PubMed  CAS  Google Scholar 

  • Riedel D, Lesemann DE, Maiss E (1998) Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Arch Virol 143:2133–2158

    PubMed  CAS  Google Scholar 

  • Roberts IM, Wang D, Findlay K, Maule AJ (1998) Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement. Virology 245:173–181

    PubMed  CAS  Google Scholar 

  • Roberts IM, Wang D, Thomas CL, Maule AJ (2003) Pea seed-borne mosaic virus seed transmission exploits novel symplastic pathways to infect the pea embryo and is, in part, dependent upon chance. Protoplasma 222:31–43

    PubMed  CAS  Google Scholar 

  • Rochon D, Kakani K, Robbins M, Reade R (2004) Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. Annu Rev Phytopathol 42:211–241

    PubMed  CAS  Google Scholar 

  • Roossinck MJ (1997) Mechanisms of plant virus evolution. Annu Rev Phytopathol 35:191–209

    PubMed  CAS  Google Scholar 

  • Ruiz-Ferrer V, Boskovic J, Alfonso C, Rivas G, Llorca O, Lopez-Abella D, Lopez-Moya JJ (2005) Structural analysis of tobacco etch potyvirus HC-pro oligomers involved in aphid transmission. J Virol 79:3758–3765

    PubMed  CAS  Google Scholar 

  • Saenz P, Salvador B, Simon-Mateo C, Kasschau KD, Carrington JC, Garcia JA (2002) Host-specific involvement of the HC protein in the long-distance movement of potyviruses. J Virol 76:1922–1931

    PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Lazarowitz SG (1996) Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 6:353–358

    PubMed  CAS  Google Scholar 

  • Schwach F, Vaistij FE, Jones L, Baulcombe DC (2005) An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852

    PubMed  CAS  Google Scholar 

  • Seddas P, Boissinot S, Strub JM, Van Dorsselaer A, Van Regenmortel MH, Pattus F (2004) Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 325:399–412

    PubMed  CAS  Google Scholar 

  • Stenger DC, Hein GL, Gildow FE, Horken KM, French R (2005) Plant virus HC-Pro is a determinant of eriophyid mite transmission. J Virol 79:9054–9061

    PubMed  CAS  Google Scholar 

  • Storey HH (1933) Investigations of the mechanims of transmission of plant viruses by insect vectors. Proc R Soc Lond Ser B 113:463–485

    Google Scholar 

  • Szecsi J, Ding XS, Lim CO, Bendahmane M, Cho MJ, Nelson R S, Beachy RN (1999) Development of Tobacco mosaic virusinfection sites in Nicotiana benthamiana. Mol Plant Microbe Interact 12:143–152

    CAS  Google Scholar 

  • Tegeder M, Offler CE, Frommer WB, Patrick JW (2000) Amino acid transporters are localized to transfer cells of developing pea seeds. Plant Physiol 122:319–326

    PubMed  CAS  Google Scholar 

  • Tegeder M, Wang XD, Frommer WB, Offler CE, Patrick JW (1999) Sucrose transport into developing seeds of Pisum sativum L. Plant J 18:151–161

    PubMed  CAS  Google Scholar 

  • Thornbury DW, Hellman GM, Rhoads RE, Pirone TP (1985) Purification and characterization of potyvirus helper component. Virology 144:260–267

    CAS  PubMed  Google Scholar 

  • Trutnyeva K, Bachmaier R, Waigmann E (2005) Mimicking carboxyterminal phosphorylation differentially effects subcellular distribution and cell-to-cell movement of Tobacco mosaic virus movement protein. Virology 332:563–577

    PubMed  CAS  Google Scholar 

  • Ullman DE, Whitfield AE, German TL (2005) Thrips and tospoviruses come of age: mapping determinants of insect transmission. Proc Natl Acad Sci USA 102:4931–4932

    PubMed  CAS  Google Scholar 

  • Unseld S, Höhnle M, Ringel M, Frischmuth T (2001) Subecellular targetting of the coat protein of African cassava mosaic geminivirus. Virology 286:373–383

    PubMed  CAS  Google Scholar 

  • Van den Heuvel J, Verbeek M, van der Wilk F (1994) Endosymbiotic bacteria associated with circulative transmission of Potato Leafroll Virus by Myzus persicae. J Virol 75:2559–2565

    Google Scholar 

  • van den Heuvel JF, Bruyere A, Hogenhout SA, Ziegler-Graff V, Brault V, Verbeek M, van der Wilk F, Richards K (1997) The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J Virol 71:7258–7265

    PubMed  Google Scholar 

  • Van den Heuvel JFJM, Saskia A, Hogenhout SA, van der Wilk F (1999) Recognition and receptors in virus transmission by arthropods. Trends Microbiol 7:71–76

    Google Scholar 

  • Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348

    PubMed  CAS  Google Scholar 

  • Waigmann E, Chen MH, Bachmaier R, Ghoshroy S, Citovsky V (2000) Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. EMBO J 19:4875–4884

    PubMed  CAS  Google Scholar 

  • Wang D, MacFarlane SA, Maule AJ (1997) Viral determinants of pea early browning virus seed transmission in pea. Virology 234:112–117

    PubMed  CAS  Google Scholar 

  • Wang D, Maule AJ (1992) Early embryo invasion as a determinant in pea of the seed transmission of pea seed-borne mosaic virus. J Gen Virol 73(7):1615–1620

    PubMed  Google Scholar 

  • Wang RY, Ammuar ED, Thornbury DW, Lopez-Moya JJ, Pirone TP (1996) Loss of potyvirus transmissibility and helper-component activity correlate with non-retention of virions in aphid stylets. J Gen Virol 77:861–867

    Article  PubMed  CAS  Google Scholar 

  • Weber KA, Hampton RO (1980) Transmission of two purified carlaviruses by the pea aphid. Phypathology 70:631–633

    Article  Google Scholar 

  • Whittaker GR, Helenius A (1998) Nuclear import and export of viruses and virus genomes. Virology 246:1–23

    PubMed  CAS  Google Scholar 

  • Whittaker GR, Kann M, Helenius A (2000) Viral entry into the nucleus. Annu Rev Cell Dev Biol 16:627–651

    PubMed  CAS  Google Scholar 

  • Woolston CJ, Czaplewski LG, Markham PG, Goad AS, Hull R, Davies JW (1987) Location and sequence of a region of Cauliflower Mosaic virus gene II responsible for Aphid transmissibility. Virology 160:246–251

    CAS  Google Scholar 

  • Yelina NE, Savenkov EI, Solovyev AG, Morozov SY, Valkonen JP (2002) Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76:12981–12991

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Blanc .

Editor information

Elisabeth Waigmann Manfred Heinlein

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanc, S. (2007). Virus Transmission—Getting Out and In. In: Waigmann, E., Heinlein, M. (eds) Viral Transport in Plants. Plant Cell Monographs, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_099

Download citation

Publish with us

Policies and ethics