Skip to main content

Nitric Oxide and Plant Ion Channel Control

  • Chapter
  • First Online:
Nitric Oxide in Plant Growth, Development and Stress Physiology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 5))

Abstract

Nitric oxide (NO) has profound effects on the regulation of ion channels in plants. Although direct evidence to date comes exclusively from electrophysiological studies of guard cells, there is good reason to expect similar patterns of action in other plant cell types as well. As in animals, NO appears to act through two distinct mechanisms. One mechanism is mediated via stimulation of guanylate cyclase, which leads to a rise in cyclic ADP-ribose and, in turn, an increase in the efficacy of Ca2+ release triggered by Ca2+ entry across the plasma membrane. This signal cascade underpins intracellular Ca2+ release and the elevation of cytosolic-free [Ca2+] by the water-stress hormone abscisic acid and leads to profound changes in K+ and Cl channel activities, to facilitate the ion fluxes for stomatal closure. The second mechanism appears to arise from direct, covalent modification of ion channels by NO, notably of the outward-rectifying K+ channel at the guard cell plasma membrane. The physiological significance of this process of S-nitrosylation has yet to be explored in depth, but almost certainly is allied to plant cell responses to pathogen attack and apoptosis. Both processes, and ion transport in guard cells generally, are now sufficiently well-defined for a full description with accurate kinetics and flux equations in which all of the key parameters are constrained by experimental data. Thus, guard cells are now a prime focus for integrative (so-called systems biology) approaches. Applications of integrative analysis have already demonstrated the potential for accurately predicting physiological behaviours and signal interactions with membrane ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud HM, Hazen SL (2000) Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem 275:37524–37532

    PubMed  CAS  Google Scholar 

  • Ahern GP, Klyachko VA, Jackson MB (2002) cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25:510–517

    PubMed  CAS  Google Scholar 

  • Allan AC, Fricker MD, Ward JL, Beale MH, Trewavas AJ (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6:1319–1328

    PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffman T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    PubMed  CAS  Google Scholar 

  • Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10:1055–1069

    PubMed  CAS  Google Scholar 

  • Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR (1995) Sensitivity to abscisic acid of guard cell K+ channels is suppressed by abi1–1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA 92:9520–9524

    PubMed  CAS  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    PubMed  CAS  Google Scholar 

  • Assmann SM (2003) OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci 8:151–153

    PubMed  CAS  Google Scholar 

  • Becker D, Zeilinger C, Lohse G, Depta H, Hedrich R (1993) Identification and biochemical characterization of the plasma membrane H+-ATPase in guard cells of Vicia faba L. Planta 190:44–50

    CAS  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    PubMed  CAS  Google Scholar 

  • Bhatia CR, Sybenga J (1965) Effect of nitric oxide on X-ray sensitivity of Crotalaria intermedia seeds. Mutat Res 2:332–338

    PubMed  CAS  Google Scholar 

  • Bihler H, Eing C, Hebeisen S, Roller A, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. Plant Physiol 139:417–424

    PubMed  CAS  Google Scholar 

  • Black CR, Black VJ (1979) The effects of low concentrations of sulphur dioxide on stomatal conductance and epidermal cell survival in field bean (Vicia faba L). J Exp Bot 30:291–298

    CAS  Google Scholar 

  • Blatt MR (1987) Electrical characteristics of stomatal guard cells: the contribution of ATP-dependent, electrogenic transport revealed by current-voltage and difference-current-voltage analysis. J Membr Biol 98:257–274

    CAS  Google Scholar 

  • Blatt MR (1988) Potassium-dependent bipolar gating of potassium channels in guard cells. J Membr Biol 102:235–246

    Google Scholar 

  • Blatt MR (1992) K+ channels of stomatal guard cells: characteristics of the inward rectifier and its control by pH. J Gen Physiol 99:615–644

    PubMed  CAS  Google Scholar 

  • Blatt MR (2000a) Ca2+ signaling and control of guard-cell volume in stomatal movements. Curr Opin Plant Biol 3:196–204

    PubMed  CAS  Google Scholar 

  • Blatt MR (2000b) Cellular signaling and volume control in stomatal movements in plants. Ann Rev Cell Dev Biol 16:221–241

    CAS  Google Scholar 

  • Blatt MR (2004) Concepts and techniques in plant membrane physiology. In: Blatt MR (ed) Membrane transport in plants. Blackwell, Oxford, pp 1–39

    Google Scholar 

  • Blatt MR, Armstrong F (1993) K+ channels of stomatal guard cells: abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191:330–341

    CAS  Google Scholar 

  • Blatt MR, Gradmann D (1997) K+-sensitive gating of the K+ outward rectifier in Vicia guard cells. J Membr Biol 158:241–256

    PubMed  CAS  Google Scholar 

  • Blatt MR, Thiel G (1994) K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin. Plant J 5:55–68

    PubMed  CAS  Google Scholar 

  • Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature 346:766–769

    PubMed  CAS  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol 11:66–75

    PubMed  CAS  Google Scholar 

  • Broillet MC (2000) A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO. J Biol Chem 275:15135–15141

    PubMed  CAS  Google Scholar 

  • Brune B, von Knethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 351:261–272

    PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsiscalcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    PubMed  CAS  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    PubMed  CAS  Google Scholar 

  • Clementi E, Riccio M, Sciorati C, Nistico G, Meldolesi J (1996) The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose – Role of the nitric oxide cGMP pathway. J Biol Chem 271:17739–17745

    PubMed  CAS  Google Scholar 

  • Clint GM, Blatt MR (1989) Mechanisms of fusicoccin action: evidence for concerted modulations of secondary K+ transport in a higher-plant cell. Planta 178:495–508

    CAS  Google Scholar 

  • Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidonsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737

    PubMed  CAS  Google Scholar 

  • Davies WJ, Jones HG (eds)(1991) Abscisic acid: physiology and biochemistry. Bios Scientific, Oxford

    Google Scholar 

  • Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    PubMed  CAS  Google Scholar 

  • Demple B (2002) Signal transduction by nitric oxide in cellular stress responses. Mol Cell Biochem 234:11–18

    PubMed  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir L, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    PubMed  CAS  Google Scholar 

  • Dietrich P, Hedrich R (1994) Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel. Planta 195:301–304

    Google Scholar 

  • Dreyer I, MullerRober B, Kohler B (2004a) Voltage-gated ion channels. In: Blatt MR (ed) Membrane transport in plants. Blackwell, Oxford, pp 150–192

    Google Scholar 

  • Dreyer I, Poree F, Schneider A, Mittelstadt J, Bertl A, Sentenac H, Thibaud JB, Mueller-Roeber B (2004b) Assembly of plant Shaker-like K-out channels requires two distinct sites of the channel alpha-subunit. Biophys J 87:858–872

    PubMed  CAS  Google Scholar 

  • Eu JP, Sun JH, Xu L, Stamler JS, Meissner G (2000) The skeletal muscle calcium release channel: Coupled O-2 sensor and NO signaling functions. Cell 102:499–509

    PubMed  CAS  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang YQ, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059

    PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    PubMed  CAS  Google Scholar 

  • Fricker MD, Gilroy S, Read ND, Trewavas AJ (1991) Visualisation and measurement of the calcium message in guard cells. In: Schuch W, Jenkins G (eds) Molecular biology of plant development. Cambridge University Press, Cambridge, pp 177–190

    Google Scholar 

  • Frohnmeyer H, Grabov A, Blatt MR (1998) A role for the vacuole in auxin-mediated control of cytosolic pH by Vicia mesophyll and guard cells. Plant J 13:109–116

    CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    PubMed  CAS  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, MichauxFerriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    PubMed  CAS  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346:769–771

    PubMed  CAS  Google Scholar 

  • Grabov A, Blatt MR (1997) Parallel control of the inward-rectifier K+ channel by cytosolic-free Ca2+ and pH in Vicia guard cells. Planta 201:84–95

    CAS  Google Scholar 

  • Grabov A, Blatt MR (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA 95:4778–4783

    PubMed  CAS  Google Scholar 

  • Grabov A, Blatt MR (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol 119:277–287

    PubMed  CAS  Google Scholar 

  • Grabov A, Leung J, Giraudat J, Blatt MR (1997) Alteration of anion channel kinetics in wild-type and abi1–1 transgenic Nicotiana benthamiana guard cells by abscisic acid. Plant J 12:203–213

    PubMed  CAS  Google Scholar 

  • Gradmann D, Blatt MR, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membr Biol 136:327–332

    PubMed  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Blatt MR (2001) Extracellular Ba2+ and voltage interact to gate Ca2+ channels at the plasma membrane of stomatal guard cells. FEBS Lett 491:99–103

    PubMed  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    PubMed  CAS  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892

    PubMed  CAS  Google Scholar 

  • Hentzen AE, Smart LB, Wimmers LE, Fang HH, Schroeder JI, Bennett AB (1996) Two plasma-membrane H+-ATPase genes expressed in guard-cells of Vicia faba are also expressed throughout the plant. Plant Cell Physiol 37:650–659

    PubMed  CAS  Google Scholar 

  • Hertel B, Horvath F, Wodala B, Hurst A, Moroni A, Thiel G (2005) KAT1 inactivates at sub-millimolar concentrations of external potassium. J Exp Bot 56:3103–3110

    PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Nudelman R, Stamler JS (2001) S-Nitrosylation: spectrum and specificity. Nat Cell Biol 3:E46-E49

    PubMed  CAS  Google Scholar 

  • Hetherington AM (2001) Guard cell signaling. Cell 107:711–714

    PubMed  CAS  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A-A, Simonneau T, Thibaud J-P, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Nat Acad Sci USA 100:5549–5554

    PubMed  CAS  Google Scholar 

  • Hu XY, Neill SJ, Tang ZC, Cai WM (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    PubMed  CAS  Google Scholar 

  • Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 34:47–55

    PubMed  CAS  Google Scholar 

  • Irving HR, Gehring CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci USA 89:1790–1794

    PubMed  CAS  Google Scholar 

  • Johansson I, Wulfetange K, Poree F, Michard E, Gajdanowicz P, Lacombe B, Sentenac H, Thibaud JB, Mueller-Roeber B, Blatt MR, Dreyer I (2006) External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J 46:269–281

    PubMed  CAS  Google Scholar 

  • Khurana SMP, Pandey SK, Sarkar D, Chanemougasoundharam A (2005) Apoptosis in plant disease response: a close encounter of the pathogen kind. Curr Sci 88:740–752

    CAS  Google Scholar 

  • Kieber JJ, Ecker JR (1993) Ethylene gas – its not just for ripening any more. Trends Genet 9:356–362

    PubMed  CAS  Google Scholar 

  • Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    PubMed  CAS  Google Scholar 

  • Köhler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32:185–194

    PubMed  Google Scholar 

  • Kohler B, Hills A, Blatt MR (2003) Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol 131:385–388

    PubMed  CAS  Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, Delong A, Schroeder JI (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849–2861

    PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    PubMed  CAS  Google Scholar 

  • Lai TS, Hausladen A, Slaughter TF, Eu JP, Stamler JS, Greenberg CS (2001) Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry 40:4904–4910

    PubMed  CAS  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95:15837–15842

    PubMed  CAS  Google Scholar 

  • Lee HJ, Tucker EB, Crain RC, Lee Y (1993) Stomatal opening is induced in epidermal peels of Commelina communis L. by GTP analogs or pertussis toxin. Plant Physiol 102:95–100

    PubMed  CAS  Google Scholar 

  • Lee YS, Choi YB, Suh S, Lee J, Assmann SM, Joe CO, Kelleher JF, Crain RC (1996) Abscisic acid-induced phosphoinositide turnover in guard-cell protoplasts of Vicia faba. Plant Physiol 110:987–996

    PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EAC (1994) Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch-clamp study. J Membr Biol 137:99–107

    PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EAC, Brearley CA (2000) Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc Natl Acad Sci USA 97:8687–8692

    PubMed  CAS  Google Scholar 

  • Li JX, Lee YRJ, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116:785–795

    PubMed  CAS  Google Scholar 

  • Li JX, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    PubMed  CAS  Google Scholar 

  • Li WH, Schultz C, Llopis J, Tsien RY (1997) Membrane-permeant esters of inositol polyphosphates, chemical syntheses and biological applications. Tetrahedron 53:12017–12040

    CAS  Google Scholar 

  • Linder B, Raschke K (1992) A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett 313:27–30

    PubMed  CAS  Google Scholar 

  • Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG, Stamler JS (2004) Essential roles of S-nitrosothiols in vascular horneostasis and endotoxic shock. Cell 116:617–628

    PubMed  CAS  Google Scholar 

  • Liu LM, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    PubMed  CAS  Google Scholar 

  • Lohse G, Hedrich R (1992) Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells. Planta 188:206–214

    CAS  Google Scholar 

  • Lukyanenko V, Gyorke I, Wiesner TF, Gyorke S (2001) Potentiation of Ca2+ release by cADP-ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circ Res 89:614–622

    PubMed  CAS  Google Scholar 

  • MacRobbie EAC (1995) ABA-induced ion efflux in stomatal guard-cells - multiple actions of ABA inside and outside the cell. Plant J 7:565–576

    CAS  Google Scholar 

  • MacRobbie EAC (1999) Vesicle trafficking: a role in trans-tonoplast ion movements? J Exp Bot 50:925–934

    CAS  Google Scholar 

  • Mannick JB, Schonhoff CM (2004) NO means no and yes: regulation of cell signaling by protein nitrosylation. Free Radic Res 38:1–7

    PubMed  CAS  Google Scholar 

  • Marshall HE, Merchant K, Stamler JS (2000) Nitrosation and oxidation in the regulation of gene expression. Faseb J 14:1889–1900

    PubMed  CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343:186–188

    CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1992) Visualizing changes in cytosolic-free Ca2+ during the response of stomatal guard cells to abscisic acid. Plant Cell 4:1113–1122

    PubMed  CAS  Google Scholar 

  • Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, FinazziAgro A (1997) S-Nitrosylation regulates apoptosis. Nature 388:432–433

    PubMed  CAS  Google Scholar 

  • Miedema H, Assmann SM (1996) A membrane-delimited effect of internal pH on the K+ outward rectifier of Vicia faba guard cells. J Membr Biol 154:227–237

    PubMed  CAS  Google Scholar 

  • Moreno K, de Miera EVS, Nadal MS, Amarillo Y, Rudy B (2001) Modulation of Kv3 potassium channels expressed in CHO cells by a nitric oxide-activated phosphatase. J Physiol 530:345–358

    PubMed  CAS  Google Scholar 

  • Mori IC, Muto S (1997) Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol 113:833–839

    PubMed  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) ArabidopsisOST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    PubMed  CAS  Google Scholar 

  • Nakamura RL, Mckendree WL, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    PubMed  CAS  Google Scholar 

  • Ng CKY, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596–599

    PubMed  CAS  Google Scholar 

  • Parmar PN, Brearley CA (1995) Metabolism of 3-phosphorylated and 4-phosphorylated phosphatidylinositols in stomatal guard cells of Commelina communis l. Plant J 8:425–433

    CAS  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    PubMed  CAS  Google Scholar 

  • Pei ZM, Ward JM, Harper JF, Schroeder JI (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15:6564–6574

    PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    PubMed  CAS  Google Scholar 

  • Perazzolli M, Romero-Puertas MC, Delledonne M (2006) Modulation of nitric oxide bioactivity by plant haemoglobins. J Exp Bot 57:479–488

    PubMed  CAS  Google Scholar 

  • Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward K+ channel activity in Arabidopsisinvolves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215–3221

    PubMed  CAS  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2002) Nitric oxide blocks fast, slow, and persistent Na+ channels in C-type DRG neurons by S-nitrosylation. J Neurophysiol 87:761–775

    PubMed  CAS  Google Scholar 

  • Roelfsema MRG, Levchenko V, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578–588

    PubMed  CAS  Google Scholar 

  • Roelfsema MRG, Prins HBA (1997) Ion channels in guard cells of Arabidopsis thaliana (L.) Heynh. Planta 202:18–27

    PubMed  CAS  Google Scholar 

  • Romano LA, Jacob T, Gilroy S, Assmann SM (2000) Increases in cytosolic Ca2+ are not required for abscisic acid-inhibition of inward K+ currents in guard cells of Vicia faba L. Planta 211:209–217

    PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401-S417

    PubMed  CAS  Google Scholar 

  • Schroeder JI (1988) K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J Gen Physiol 92:667–683

    PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Ann Rev Plant Physiol Mol Biol 52:627–658

    CAS  Google Scholar 

  • Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89:5025–5029

    PubMed  CAS  Google Scholar 

  • Schulzlessdorf B, Hedrich R (1995) Protons and calcium modulate SV-type channels in the vacuolar lysosomal compartment – channel interaction with calmodulin inhibitors. Planta 197:655–671

    CAS  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Plant Hormones 72:339–398

    CAS  Google Scholar 

  • Sokolovski S, Blatt MR (2004) Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol 136:4275–4284

    PubMed  CAS  Google Scholar 

  • Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR (2005) Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J 43:520–529

    PubMed  CAS  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: The prototypic redox-based signaling mechanism. Cell 106:675–683

    PubMed  CAS  Google Scholar 

  • Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81:209–237

    PubMed  CAS  Google Scholar 

  • Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696

    PubMed  CAS  Google Scholar 

  • Sun JH, Xu L, Eu JP, Stamler JS, Meissner G (2003) Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms – an allosteric function for O-2 in S-nitrosylation of the channel. J Biol Chem 278:8184–8189

    PubMed  CAS  Google Scholar 

  • Thiel G, MacRobbie EAC, Blatt MR (1992) Membrane transport in stomatal guard cells: the importance of voltage control. J Membr Biol 126:1–18

    PubMed  CAS  Google Scholar 

  • Thomine S, Zimmermann S, Guern J, Barbierbrygoo H (1995) ATP-dependent regulation of an anion channel at the plasma membrane of protoplasts from epidermal cells of Arabidopsis hypocotyls. Plant Cell 7:2091–2100

    PubMed  CAS  Google Scholar 

  • Tikhonova LI, Pottosin II, Dietz KJ, Schonknecht G (1997) Fast-activating cation channel in barley mesophyll vacuoles: inhibition by calcium. Plant J 11:1059–1070

    CAS  Google Scholar 

  • Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    PubMed  CAS  Google Scholar 

  • Villalba JM, Lutzelschwab M, Serrano R (1991) Immunocytolocalization of plasma membrane H+-ATPase in maize coleoptiles and enclosed leaves. Planta 185:458–461

    CAS  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsisguard cells. Science 292:2070–2072

    PubMed  CAS  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard-cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    PubMed  CAS  Google Scholar 

  • White PJ, Biskup B, Elzenga JTM, Homann U, Thiel G, Wissing F, Maathuis FJM (1999) Advanced patch-clamp techniques and single-channel analysis. J Exp Bot 50:1037–1054

    CAS  Google Scholar 

  • Wille A, Lucas W (1984) Ultrastructural and histochemical studies on guard cells. Planta 160:129–142

    Google Scholar 

  • Willmer C, Fricker MD (1996) Stomata. Chapman and Hall, London, pp 1–375

    Google Scholar 

  • Willmott N, Sethi JK, Walseth TF, Lee HC, White AM, Galione A (1996) Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem 271:3699–3705

    PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–182

    CAS  Google Scholar 

  • Yuan XJ, Tod ML, Rubin LJ, Blaustein MP (1996) NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels. Proc Natl Acad Sci USA 93:10489–10494

    PubMed  CAS  Google Scholar 

  • Zhang MX, An LZ, Feng HY, Chen T, Chen K, Liu YH, Tang HG, Chang JF, Wang XL (2003) The cascade mechanisms of nitric oxide as a second messenger of ultraviolet B in inhibiting mesocotyl elongations. Photochem Photobiol 77:219–225

    PubMed  CAS  Google Scholar 

  • Zufall F, Shepherd GM, Barnstable CJ (1997) Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Curr Opin Neurobiol 7:404–412

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Blatt .

Editor information

Lorenzo Lamattina Joseph C. Polacco

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sokolovski, S.G., Blatt, M.R. (2006). Nitric Oxide and Plant Ion Channel Control. In: Lamattina, L., Polacco, J.C. (eds) Nitric Oxide in Plant Growth, Development and Stress Physiology. Plant Cell Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_089

Download citation

Publish with us

Policies and ethics