Skip to main content

Seeking the Role of NO in Breaking Seed Dormancy

  • Chapter
  • First Online:
Nitric Oxide in Plant Growth, Development and Stress Physiology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 5))

Abstract

In the course of evolution, higher plants developed a special reproductive organ, the seed, which ensures their spatio-temporal distribution and perpetuation of the species. The fate of the future plant is almost completely determined when the seed “decides” to germinate. A number of dormancy mechanisms serve to detect surrounding conditions and define the appropriate point in time for germination. To ensure survival of the future seedling, environmental conditions have to be detected, integrated, and translated through different signaling molecules at the seed level, even before germination starts. One of the ten smallest molecular species known, nitric oxide, is now recognized as an endogenous mediator of seed germination, external dormancy-breaking agent, and outer information carrier that provides the seeds with integral information on the factors most important for plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins SW, Simpson GM, Naylor JM (1984) The physiological basis of seed dormancy in Avena fatua. IV. Alternative respiration and nitrogenous compounds. Physiol Plant 60:234–238

    CAS  Google Scholar 

  • Adriansz TD, Rummey JM, Bennett IJ (2000) Solid phase extraction and subsequent identification by gas chromatography-mass spectrometry of a germination cue present in smoky water. Anal Lett 33:2793–2804

    CAS  Google Scholar 

  • Appenroth KJ, Augsten H, Mohr H (1992) Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. X. Role of nitrate in the phytochrome-mediated response. Plant Cell Environ 15:743–748

    CAS  Google Scholar 

  • Baldwin LT, Staszak-Kozinski L, Davidson R (1994) Up in smoke: I. Smoke-derived germination cues for postfire annual Nicotiana attenuata Torr ex Watson. J Chem Ecol 20:2345–2371

    CAS  Google Scholar 

  • Bartberger MD, Liu W, Ford E, Miranda KM, Switzer C, Fukuto JM, Farmer P, Wink DA, Houk K (2002) The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proc Natl Acad Sci USA 99:10958–10963

    PubMed  CAS  Google Scholar 

  • Batak I, Dević M, Giba Z, Grubišić D, Poff KL, Konjević R (2002) The effects of potassium nitrate and NO donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci Res 12:253–259

    CAS  Google Scholar 

  • Bell DT, King LA, Plummer JA (1999) Ecophysiological effects of light quality and nitrate on seed germination in species from Western Australia. Aust J Ecol 24:2–10

    Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    PubMed  CAS  Google Scholar 

  • Bennion BJ, Dagett V (2004) Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc Natl Acad Sci USA 101:6433–6438

    PubMed  CAS  Google Scholar 

  • Bethke P, Beligni V, Badger M, Jacobsen J, Jones R (2003) Nitric oxide as an endogenous regulator of seed physiology. Plant Biol 25–30 July, Honolulu, Hawai, USA, Abs. 25004

    Google Scholar 

  • Bethke P, Gubler F, Jacobsen JV, Jones R (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    PubMed  CAS  Google Scholar 

  • Bewley JD, Black M (1982) Physiology and biochemistry of seeds in relation to germination. II. Viability, dormancy and environmental control. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bortwick HA, Hendricks SB, Toole EH, Toole VK (1954) Action of light on lettuce-seed germination. Bot Gazette 115:205–225

    Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua NH (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77:73–81

    PubMed  CAS  Google Scholar 

  • Brown NAC, van Staden J (1997) Smoke as a germination cue: a review. Plant Growth Reg 22:115–124

    CAS  Google Scholar 

  • Bryan NS, Fernandez B, Bauer S, Garcia-Saura M, Milsom A, Rassaf T, Maloney R, Bharti A, Rodriguez J, Feelish M (2005) Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nature 1:290–297

    CAS  Google Scholar 

  • Cohn MA, Butera DL, Hughes LA (1983) Seed dormancy in red rice. III. Response to nitrite, nitrate and ammonium ions. Plant Physiol 73:381–384

    PubMed  CAS  Google Scholar 

  • Cohn MA, Castle L (1984) Dormancy in red rice. IV. Response of unimbibed and imbibing seeds to nitrogen dioxide. Physiol Plant 60:552–556

    CAS  Google Scholar 

  • Cohn MA (1989) Factors influencing the efficacy of dormancy-breaking chemicals. In: Taylorson RB (ed) Recent advances in the development and germination of seeds. Plenum, New York, pp 261–267

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases. (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Persp 102:460–462

    CAS  Google Scholar 

  • Corpas F, Barosso J, Del Rio A (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    PubMed  CAS  Google Scholar 

  • Cueto M, Hernandez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    PubMed  CAS  Google Scholar 

  • Davidson CA, Kaminski PM, Migdan W, Wollin MS (1996) Nitrogen dioxide causes pulmonary arterial relaxation via thiol nitrosation and NO formation. Am J Physiol 270:H1038-H1043

    PubMed  CAS  Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    PubMed  CAS  Google Scholar 

  • Dedoner A, Rethy R, De Petter H, Fredericq H, De Greef J (1988) Preliminary screening experiments on the effects of light and GA3 in the germination of different seed species. In: De Greef J (ed) Photoreceptors and plant development. University Press, Antwerp, pp 431–435

    Google Scholar 

  • Delledeonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:1–7

    Google Scholar 

  • Doherty LC, Cohn MA (2000) Seed dormancy in red rice (Oryza sativa). XI. Commercial liquid smoke elicits germination. Seed Sci Res 10:415–421

    Google Scholar 

  • Dubinov A, Lazarenko E, Selemir V (2000) Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 20:180–183

    Google Scholar 

  • Estabroock EM, Yoder JI (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7

    Google Scholar 

  • Flemmatti G, Ghisalberti E, Dixon K, Trengove R (2004) A compound from smoke that promotes seed germination. Science 305:977–977

    Google Scholar 

  • Friebe A, Malkewitz J, Schultz G, Koesling D (1996) Positive effects of pollution. Nature 382:120–120

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1988) Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium–derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed) Vasodilatation: vascular smooth muscle, peptides, autonomic nerves and endothelium. Raven, New York, pp 401–414

    Google Scholar 

  • Giba Z, Grubišić D, Konjević R (1992) Sodium nitroprusside – stimulated germination of common chick weed (Stellaria media L.) seeds. Arch Biol Sci 44:17P–18P

    Google Scholar 

  • Giba Z, Grubišić D, Konjević R (1994) The effect of electron acceptors on the phytochrome-controlled germination of Paulownia tomentosa seeds. Physiol Plant 91:290–294

    CAS  Google Scholar 

  • Giba Z, Grubišić D, Konjević R (1995) The effect of nitric oxide-releasing compounds on the germination of Paulownia tomentosa seeds. European symposium on photomorphogenesis in plants, 9–13 July 1995, Sitges, Barcelona, Spain, p 23

    Google Scholar 

  • Giba Z, Grubišić D, Sajc L, Stojaković Ð, Konjević R (1997) Effect of some nitric oxide donors and methylene blue on light-induced germination of Paulownia tomentosa seeds. Arch Biol Sci 49:15P–16P

    Google Scholar 

  • Giba Z, Grubišić D, Todorović S, Sajc L, Stojaković Ð, Konjević R (1998) Effect of nitric oxide – releasing compounds on phytochrome – controlled germination of Empress tree seeds. Plant Growth Reg 26:175–181

    CAS  Google Scholar 

  • Giba Z, Grubišić D, Konjević R (1999) How the seeds sense environmental changes? The role of nitrogenous compounds. Arch Biol Sci 51:121–129

    Google Scholar 

  • Giba Z, Grubišić D, Konjević R (2003) Nitrogen oxides as environmental sensors for seeds. Seed Sci Res 13:187–196

    Google Scholar 

  • Giba Z, Grubišić D, Konjević R (2005) Nitric oxide and seed germination. In: Magalhaes JR, Singh RP, Passos LP (ed) Nitric oxide signaling in higher plants. Studium, Houston, pp 239–275

    Google Scholar 

  • Goel A, Kumar G, Payne GF, Dube SK (1997) Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat Biotechnol 15:174–177

    PubMed  CAS  Google Scholar 

  • Goudey JS, Saini HS, Spencer MS (1998) Role of nitrate in regulating germination of Synapsis arvensis L (wild mustard). Plant Cell Environ 11:9–12

    Google Scholar 

  • Granik VG, Grigorev NB (2002) Exogenous donors of nitric oxide (a chemical aspect). Russian Chem Bull 51:1375–1422

    CAS  Google Scholar 

  • Grubišić D, Konjević R (1990) Light and nitrate interaction in phytochrome-controlled germination of Paulownia tomentosa seeds. Planta 181:239–243

    Google Scholar 

  • Grubišić D, Giba Z, Konjević R (1991) Organic nitrates stimulated germination of common chick weed (Stellaria media L) seeds. Arch Biol Sci 43:7P–8P

    Google Scholar 

  • Grubišić D, Giba Z, Konjević R (1992) The effect of organic nitrates in phytochrome-controlled germination of Paulownia tomentosa seeds. Photochem Photobiol 56:629–632

    Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    PubMed  CAS  Google Scholar 

  • Haas CJ, Scheuerlein R (1991) Nitrate effect on phytochrome-mediated germination in fern spores: Investigation on the mechanism of nitrate action. J Plant Physiol 138:350–357

    CAS  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: Where are we now? Free Radic Biol Med 33:774–797

    PubMed  CAS  Google Scholar 

  • Hendricks SB, Taylorson RB (1974) Promotion of seed germination by nitrate, nitrite, hydroxylamine and ammonium salts. Plant Physiol 54:304–309

    PubMed  CAS  Google Scholar 

  • Henning L, Stoddart WM, Dieterle M, Whitelam GC, Schäfer E (2002) Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol 128:194–200

    Google Scholar 

  • Hayhurst AN, McLean AG (1974) Mechanism for producing NO from nitrogen in flames. Nature 251:303–305

    CAS  Google Scholar 

  • Hilhorst HWM, Karssen CM (1989) Nitrate reductase independent stimulation of seed germination of Sysimbrium officinale L. (hedge mustard). Ann Bot 63:131–137

    CAS  Google Scholar 

  • Hilton JR (1985) The influence of light and potassium nitrate on the dormancy and germination of Avena fatua L. seed stored buried and under natural conditions. J Exp Bot 36:974–979

    Google Scholar 

  • Hippler R, Pfau S, Schmidt M, Shoenbach KH (2001) Low temperature plasma physics. Wiley, Berlin

    Google Scholar 

  • Hou YC, Janczuk A, Wang PG (1999) Current trends in the development of nitric oxide donors. Curr Pharm Des 5:417–447

    PubMed  CAS  Google Scholar 

  • Hsiao AI, Quick WA (1996) The roles of inorganic nitrogen salts in maintaining phytocrome- and gibberellin A3-mediated germination control in skotodormant lettuce seeds. J Plant Growth Reg 15:159–165

    CAS  Google Scholar 

  • Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide – tolerant alternative oxidase in Arabidopsis thaliana suspension cells. Planta 215:914–923

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhury G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    PubMed  CAS  Google Scholar 

  • Ignarro LJ (2002) After 130 years the molecular mechanism of action of nitroglycerin is revealed. Proc Natl Acad Sci USA 99:7816–7817

    PubMed  CAS  Google Scholar 

  • Jovanović V, Giba Z, Ðoković D, Milosavljević S, Grubišić D, Konjević R (2005) Gibberellic acid nitrite stimulates germination of two species of light-requiring seeds via the nitric oxide pathway. Ann NY Acad Sci 48:476–481

    Google Scholar 

  • Jäger AK, Strydom A, van Staden J (1996) The effect of ethylene, octanoic acid, and plant-derived smoke extracts on the germination of light-sensitive lettuce seeds. Plant Growth Reg 19:197–210

    Google Scholar 

  • Kage S, Kudo K, Ikeda N (2000) Determination of nitrate in blood by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr B 742:363–368

    CAS  Google Scholar 

  • Karssen CM, Hilhorst HWM (1992) The ecology of regeneration in plant communities. In: Fenner M (ed) Seeds. CAB, Wallingford, UK, pp 327–348

    Google Scholar 

  • Keeley JE, Fotheringham CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276:1248–1250

    CAS  Google Scholar 

  • Keeley JE, Fotheringham CJ (1998) Mechanism of smoke-induced seed germination in a post-fire chaparral annual. J Ecol 86:27–36

    CAS  Google Scholar 

  • Khan AA (ed) (1977) The physiology and biochemistry of seed dormancy and germination. North Holland, Amsterdam

    Google Scholar 

  • Kozlov AV, Staniek K, Nohl H (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett 454:127–130

    PubMed  CAS  Google Scholar 

  • Lehmann E (1909) Zur Keimungphysiologie und -biologie von Ranunculus sclereatus L. und einigen anderen Samen. Berichte der Deutschen Botanischen Gesellschaft 27:476–494

    Google Scholar 

  • Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Reg 18:155–159

    CAS  Google Scholar 

  • Light ME, van Staden J (2003) The nitric oxide specific scavenger carboxy-PTIO does not inhibit smoke stimulated germination of Grand Rapids lettuce seeds. South Afr J Bot 69:217–220

    CAS  Google Scholar 

  • Ludidi N, Gehring C (2003) Identification of novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    PubMed  CAS  Google Scholar 

  • Mazzaella MA, Arana MV, Staneloni RJ, Perelman S, Batiller MJR, Muschietti J, Cerdian PD, Chen K, Sanchez RA, Zhu T, Chory J, Casal J (2005) Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light. Plant Cell 17:2507–2516

    Google Scholar 

  • Millar AH, Day DA (1996) Nitric oxide inhibits the cytochrome oxidase but not alternative oxidase of plant mitochondria. FEBS Lett 398:155–158

    PubMed  CAS  Google Scholar 

  • Minorsky P (2002) Smoke-induced germination. Plant Physiol 128:1167–1168

    PubMed  CAS  Google Scholar 

  • Morikawa H, Fukunaga K, Takahashi M, Kawamura Y, Sakamoto A (2002) Formation of unidentified nitrogen (UN) in plants – UN from nitrates. Plant Cell Physiol 43:S128

    Google Scholar 

  • Mustilli AC, Bowler C (1997) Tuning into the signals controlling photoregulated gene expression in plants. EMBO J 16:5801–5806

    PubMed  CAS  Google Scholar 

  • Nikolaeva MG, Rasumova MV, Gladkova VN (1985) In: Danilova F (ed) Reference book of dormant seed germination. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Nielsen T, Pilegaard K, Egelov AH, Granby K, Hummelshoj P, Jensen NO, Skov H (1996) Atmospheric nitrogen compounds: occurrence, composition and deposition. Sci Tot Environ 189/190:459–465

    CAS  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada AS (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    PubMed  CAS  Google Scholar 

  • Polglase PJ, Attiwill PM, Adams MA (1986) Immobilization of soil nitrogen following wildfire in two eucalypt forests of south-eastern Australia. Acta Oecol/Oecol Plant 7:261–271

    CAS  Google Scholar 

  • Preston CA, Becker R, Baldwin IT (2004) Is NO news good news? Nitrogen oxides are not components of smoke that elicits germination in two smoke-stimulated species, Nicotiana attenuata and Emmenanthe penduliflora. Seed Sci Res 14:73–79

    CAS  Google Scholar 

  • Plummer JA, Rogers AD, Turner DW, Bell DT (2001) Light, nitrogenous compounds, smoke and GA3 break dormancy and enhance germination in the Australian everlasting daisy Shoenia filifolia subsp. subuilifolia. Seed Sci Tech 29:321–330

    Google Scholar 

  • Pons TL (1989) Breaking of seed dormancy by nitrate gap detection mechanism. Ann Bot 63:139–143

    CAS  Google Scholar 

  • Quartacci MF, Glišić O, Stevanović B, Navari-Izzo F (2002) Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration. J Exp Bot 53:2159–2166

    PubMed  CAS  Google Scholar 

  • Roberts EH (1973) Oxidative processes and the control of seed germination. In: Heydecker W (ed) Seed ecology. Butterworths, London, pp 189–218

    Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    PubMed  CAS  Google Scholar 

  • Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223:1154–1164

    PubMed  CAS  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ulrich W, Rockel P (2001) A plasma-membrane bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    PubMed  Google Scholar 

  • Schwachtje J, Baldwin IT (2004) Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Sci Res 14:51–60

    CAS  Google Scholar 

  • Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:8129–8133

    PubMed  CAS  Google Scholar 

  • Thanos CA, Rundel PW (1995) Fire-followers in chaparral: nitrogenous compounds trigger seed germination. J Ecol 83:207–216

    Google Scholar 

  • Todorović S, Giba Z, Živković S, Grubišić D, Konjević R (2005) Stimulation of empress tree germination by liquid smoke. Plant Growth Reg 47:141–148

    Google Scholar 

  • Thomas TH, van Staden J (1995) Dormancy break of celery (Apium graveolens L.) seeds by plant-derived smoke extract. Plant Growth Reg 17:195–198

    CAS  Google Scholar 

  • Toole EH, Toole VK, Bortwick HA, Hendricks SB (1955) Photocontrol of Lepidium seed germination. Plant Physiol 30:15–21

    PubMed  CAS  Google Scholar 

  • Torreilles J (2001) Nitric oxide: one of the more conserved and widespread signaling molecules. Frontiers Biosci 6:1161–1172

    Google Scholar 

  • Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Phys 118:1517–1523

    CAS  Google Scholar 

  • Van Staden J, Drewes FE, Brown NAC (1995) Some chromatographic characteristics of germination stimulants in plant-derived smoke extracts. Plant Growth Reg 17:241–249

    Google Scholar 

  • Van Staden J, Brown NAC, Jäger A, Johnson TA (2000) Smoke as a germination cue. Plant Species Biol 15:167–178

    Google Scholar 

  • Volin J, Denes F, Young R, Park SM (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40:1706–1718

    CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    PubMed  Google Scholar 

  • Yamasaki H (2005) Nitric oxide research in plant biology: its past and future. In: Magalhaes JR, Singh RP, Passos LP (ed) Nitric oxide signaling in higher plants. Studium, Houston, pp 1–23

    Google Scholar 

  • Zhang H, Shen WH, Zhang W, Xu L (2005) A rapid response of β-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination. Planta 220:708–716

    PubMed  CAS  Google Scholar 

  • Zhiqiang C, Zhang J, Stamler JS (2002) Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA 99:8306–8311

    Google Scholar 

  • Živković S, Puač N, Giba Z, Grubišić D, Petrović ZL (2004) The stimulatory effect of non-equilibrium (low temperature) air plasma pretreatment on light-induced germination of Paulownia tomentosa seeds. Seed Sci Tech 32:693–701

    Google Scholar 

  • Živković S, Giba Z, Grubišić D, Konjević R (2005) The counteracting effect of potassium cyanide in sodium azide-inhibited germination of Paulownia tomentosa Steud. seeds. Arch Biol Sci 57:29–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragoljub Grubišić .

Editor information

Lorenzo Lamattina Joseph C. Polacco

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giba, Z., Grubišić, D., Konjević, R. (2006). Seeking the Role of NO in Breaking Seed Dormancy. In: Lamattina, L., Polacco, J.C. (eds) Nitric Oxide in Plant Growth, Development and Stress Physiology. Plant Cell Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_086

Download citation

Publish with us

Policies and ethics