Skip to main content

Enzymatic Sources of Nitric Oxide during Seed Germination

  • Chapter
  • First Online:
Nitric Oxide in Plant Growth, Development and Stress Physiology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 5))

Abstract

NO is an inorganic free radical gaseous molecule that has been shown to play an unprecedented range of roles in biological systems. Taking into account these numerous functions and the reports indicating that NO can regulate processes related to plant growth and development, endogenous sources of NO need to be clarified as well as the effect of the variations of NO levels upon the plant life cycle. We consider here the main endogenous sources of cellular NO in plant tissues, and the contribution of enzymatic sources upon seed germination. Non-enzymatic generation of NO from NO2 under conditions of low pH could be of considerable importance since significant amounts of NO2 can be found in plant tissues. However, at least under the reported experimental conditions, enzymatic activity seems to be more relevant to total NO generation, allowing a strict control of NO steady state concentration. The complexity of the overall scenario presented here shows the need for further studies into NO production and consumption pathways in germinating seeds exposed to fluctuating environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  PubMed  CAS  Google Scholar 

  • Batak I, Dević M, Giba Z, Grubišić D, Poff K, Konjević R (2002) The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci Res 12:253–259

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed  CAS  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol 11:66–75

    Article  PubMed  CAS  Google Scholar 

  • Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16

    Article  CAS  Google Scholar 

  • Brown NAC, Van Staden J (1997) Smoke as a germination cue: a review. Plant Growth Regul 22:115–124

    Article  CAS  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  PubMed  CAS  Google Scholar 

  • Caro A, Puntarulo S (1998) Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiol Plant 104:357–364

    Article  CAS  Google Scholar 

  • Caro A, Puntarulo S (1999) Nitric oxide generation by soybean embryonic axes. Possible effect on mitochondrial function. Free Radic Res 31:205–212

    Article  Google Scholar 

  • Colliver BB, Stephenson T (2000) Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 18:219–232

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (1995) Soil microbial processes involved in production and consumption of atmospheric trace gases. Adv Microb Ecol 14:207–250

    CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gomez M, del Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    Article  PubMed  CAS  Google Scholar 

  • Cueto M, Hernández-Perea O, Martín R, Ventura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodule of Lupinus albus. FEBS Lett 398:159–164

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosyst 48:37–50

    Article  CAS  Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    Article  PubMed  CAS  Google Scholar 

  • De Lange JH, Boucher C (1990) Autoecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as seed germination cue. S Afr J Bot 56:585–588

    Google Scholar 

  • del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  CAS  Google Scholar 

  • Elstner EF, Oßwald W (1991) Air pollution: involvement of oxygen radicals (a mini review) Free Radic Res Commun 12–13:795–807

    PubMed  Google Scholar 

  • Ferrari TE, Varner JE (1970) Control of nitrate reductase activity in barley aleurone layers. Proc Natl Acad Sci USA 65:729–736

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  PubMed  CAS  Google Scholar 

  • Giba Z, Grubišić D, Todorović S, Sajc L, Stojakocić D, Konjević R (1998) Effect of nitric oxide-releasing compounds on phytochrome-controlled germiation of Empress tree seeds. Plant Growth Regul 26:175–181

    Article  CAS  Google Scholar 

  • Giba Z, Grubišić D, Konjević R (1999) How the seeds sense environmental changes? The role of nitrogenous compounds. Arch Biol Sci 51:121–129

    Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Gouvêa CMCP, Souza JF, Magalhães ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    Article  Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Grubišić D, Giba Z, Konjević R (1992) The effect of organic nitrates in phytochrome-controlled germination of Paulownia tomentosa seeds. Photochem Photobiol 56:629–632

    Article  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  PubMed  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  PubMed  CAS  Google Scholar 

  • Hari P, Raivonen M, Vesala T, Munger J, Pilegaard K, Kulmala M (2003) Atmospheric science: ultraviolet light and leaf emission of NO x . Nature 422:134

    Article  PubMed  CAS  Google Scholar 

  • Harper JE (1981) Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol 68:1488–1493

    Article  PubMed  CAS  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens R, Cook C, Ahn SM, Yang Z, Chen L, Guo FQ, Fiorani F, Jackson R, Crawford N, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Kershbaum HH, Engel E, Hermann A (1997) Biochemical characterization and histochemical localization of nitric oxide synthase in the nervous system of the snail, Helix pomatia. J Neurochem 69:2516–2528

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105:385–390

    Article  CAS  Google Scholar 

  • Klepper LA (1978) Nitric oxide (NO) evolution from herbicide-treated soybean plants. Plant Physiol 61:S65

    Google Scholar 

  • Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–542

    Article  CAS  Google Scholar 

  • Klepper LA (1987) Nitric oxide emissions from soybean leaves during in vivo nitrate reductase assays. Plant Physiol 85:96–99

    Article  PubMed  CAS  Google Scholar 

  • Klepper LA (1990) Comparison between NO x evolution mechanism of wild-type and nr1 mutant soybean leaves. Plant Physiol 93:26–32

    Article  PubMed  CAS  Google Scholar 

  • Klepper L (1991) NO x evolution by soybean leaves treated with salicylic acid and selected derivatives. Pestic Biochem Physiol 39:43–48

    Article  CAS  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: The versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18:155–159

    Article  CAS  Google Scholar 

  • Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214

    Article  PubMed  CAS  Google Scholar 

  • Manahan SE (1994) Gaseous inorganic air pollutants. In: Environmental chemistry, 6th edn. Lewis, Boca Raton, FL, 11:338–345

    Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Magalhães JR, Salgado I (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820

    Article  PubMed  CAS  Google Scholar 

  • Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quillere I, Leydecker MT, Kaiser WM, Morot-Gaudry JF (2002) Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta 215:708–715

    Article  PubMed  CAS  Google Scholar 

  • Ninnemann H, Maier J (1996) Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol 64:393–398

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Hayamizu T, Yanagisawa Y (1986) Reduction of NO2 to NO by rush and other plants. Environ Sci Technol 20:413–416

    Article  CAS  Google Scholar 

  • Paul JW, Beauchamp EG, Zhang X (1993) Nitrous and nitric oxide emission during nitrification and denitrification from manure-amended soil in the laboratory. Can J Soil Sci 73:539–553

    CAS  Google Scholar 

  • Planchet E, Gupta KJ, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Feng H, Wang Y, Zhang M, Cheng J, Wang X, An L (2006) Nitric oxide functions as a signal in ultraviolet-B induced inhibition of pea stems elongation. Plant Sci 170:994–1000

    Article  CAS  Google Scholar 

  • Ribeiro EA, Cunha FQ, Tamashiro WMSC, Martins IS (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 445:283–286

    Article  PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Saran M, Michel C, Bors W (1990) Reaction of NO with O2 . Implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun 10:221–226

    Article  PubMed  CAS  Google Scholar 

  • Simontacchi M, Sadovsky L, Puntarulo S (2003) Profile of antioxidant content upon developing of Sorghum bicolor seeds. Plant Sci 164:709–715

    Article  CAS  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Article  CAS  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Stevens RJ, Laughlin RJ, Malone JP (1998) Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem 30:1119–1126

    Article  CAS  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    Article  PubMed  CAS  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane – bound enzyme from tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  Google Scholar 

  • Stoimenova M, Libourel IGL, Ratcliff RG, Kaiser WM (2003) The role of nitrate reduction in the anoxic metabolism of roots. II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity. Plant Soil 253:155–167

    Article  CAS  Google Scholar 

  • Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230

    Article  PubMed  CAS  Google Scholar 

  • Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155

    Article  PubMed  CAS  Google Scholar 

  • Thanos CA, Georghiou K (1988) Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp creticus (L.) Heywood and C. salvifolius L. Plant Cell Environ 11:841–849

    Article  Google Scholar 

  • Toole EH, Toole VK, Bortwick HA, Hendricks SB (1955) Photocontrol of Lepidium seed germination. Plant Physiol 30:15–21

    Article  PubMed  CAS  Google Scholar 

  • Tornton FC, Valente RJ (1996) Soil emissions of nitric oxide and nitrous oxide from no-till corn. Soil Sci Soc Am J 60:1127–1133

    Article  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implication for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the University of Buenos Aires (B017, B012), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT 11187), and CONICET (PIP 5706). S.P. and M.S. are career investigators and SJ is a fellow from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Puntarulo .

Editor information

Lorenzo Lamattina Joseph C. Polacco

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simontacchi, M., Jasid, S., Puntarulo, S. (2006). Enzymatic Sources of Nitric Oxide during Seed Germination. In: Lamattina, L., Polacco, J.C. (eds) Nitric Oxide in Plant Growth, Development and Stress Physiology. Plant Cell Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_085

Download citation

Publish with us

Policies and ethics