Skip to main content

Induction of Specialized Compartments from the ER

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 4))

Abstract

The endoplasmic reticulum (ER) differentiates to generate various types of compartments, each of whichhas its own function. The ER-derived compartments are classified into two types according to their contents.The first type is found in maturing seeds and accumulates seed storage proteins. The second type of compartmentaccumulates a hydrolytic enzyme. Here we focus on two typical ER-derived compartments: precursor-accumulating(PAC) vesicles as a storage protein type, and ER bodies as a hydrolytic enzyme type. PAC vesiclesmediate the mass transport of storage protein precursors directly from the ER to protein storage vacuolesin maturing seeds. A vacuolar sorting receptor of storage protein is localized in the membrane ofthe PAC vesicles. The vesicles provide a clue to the molecular mechanism of vacuolar sorting of storageproteins. In contrast, ER bodies accumulate a large amount of β-glucosidase with an ER retentionsignal. They are distributed in the epidermal cells of seedlings and roots. Wounding and chewing by insectsinduce many ER bodies in rosette leaves, which have no ER bodies under normal conditions. The ER bodiesmight therefore play a role in a defense strategy of plants. Most of the ER-derived compartmentsare induced in specific tissues in response to internal and external signals. Hence, the induction of ER-derivedcompartments is controlled in a sophisticated way by the conditions under which plants grow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1998) Essential cell biology: an introduction to the molecular biology of the cell. Garland, New York

    Google Scholar 

  2. Behnke H-D, Eschlbeck G (1978) Dilated cisternae in Capparales: an attempt towards the characterization of a specific endoplasmic reticulum. Protoplasma 97:351–363

    Article  Google Scholar 

  3. Bones AM, Evjen K, Iversen T-H (1989) Characterization and distribution of dilated cisternae of the endoplasmic reticulum in intact plants, protoplasts, and calli of Brassicaceae. Isr J Bot 38:177–192

    Google Scholar 

  4. Bonnett HTJ, Newcomb EH (1965) Polyribosomes and cisternal accumulations in root cells of radish. J Cell Biol 27:423–432

    Article  PubMed  Google Scholar 

  5. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  PubMed  CAS  Google Scholar 

  6. Chrispeels MJ, Herman EM (2000) Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol 123:1227–1233

    Article  PubMed  CAS  Google Scholar 

  7. Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to bacterial pathogen. Plant Cell 6:751–759

    PubMed  CAS  Google Scholar 

  8. Gunning BES (1998) The mystery organelles in Arabidopsis expressing GFP. Trends Plant Sci 3:417

    Article  Google Scholar 

  9. Hara-Nishimura I, Matsushima R (2003) A wound-inducible organelle derived from endoplasmic reticulum: a plant strategy against environmental stresses? Curr Opin Plant Biol 6:583–588

    Article  PubMed  CAS  Google Scholar 

  10. Hara-Nishimura I, Inoue K, Nishimura M (1991) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 294:89–93

    Article  PubMed  CAS  Google Scholar 

  11. Hara-Nishimura I, Takeuchi Y, Nishimura M (1993a) Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell 5:1651–1659

    PubMed  CAS  Google Scholar 

  12. Hara-Nishimura I, Takeuchi Y, Inoue K, Nishimura M (1993b) Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J 4:793–800

    Article  Google Scholar 

  13. Hara-Nishimura I, Shimada T, Hiraiwa N, Nishimura M (1995) Vacuolar processing enzyme responsible for maturation of seed proteins. J Plant Physiol 145:632–640

    Article  CAS  Google Scholar 

  14. Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    PubMed  CAS  Google Scholar 

  15. Hara-Nishimura I, Matsushima R, Shimada T, Nishimura M (2004) Diversity and functions of ER-derived compartments in plants: are these compartments specific to plant cells? Plant Physiol 136:3435–3439

    Article  PubMed  CAS  Google Scholar 

  16. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi M, Toriyama K, Kondo M, Hara-Nishimura I, Nishimura M (1999) Accumulation of a fusion protein containing 2S albumin induces novel vesicles in vegetative cells of Arabidopsis. Plant Cell Physiol 40:263–272

    Article  PubMed  CAS  Google Scholar 

  18. Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa NK, Nishimura M, Hara-Nishimura I (2001) A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol 42:894–899

    Article  PubMed  CAS  Google Scholar 

  19. Hiraiwa N, Takeuchi Y, Nishimura M, Hara-Nishimura I (1993) A vacuolar processing enzyme in maturing and germinating seeds: its distribution and associated changes during development. Plant Cell Physiol 34:1197–1204

    CAS  Google Scholar 

  20. Hiraiwa N, Nishimura M, Hara-Nishimura I (1997) Expression and activation of the vacuolar processing enzyme in Saccharomyces cerevisiae. Plant J 12:819–829

    Article  PubMed  CAS  Google Scholar 

  21. Hiraiwa N, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides. FEBS Lett 447:213–216

    Article  PubMed  CAS  Google Scholar 

  22. Inoue K, Motozaki A, Takeuchi Y, Nishimura M, Hara-Nishimura I (1995) Molecular characterization of proteins in protein-body membrane that disappear most rapidly during transformation of protein bodies into vacuoles. Plant J 7:235–243

    Article  PubMed  CAS  Google Scholar 

  23. Iversen T-H (1970) The morphology, occurrence, and distribution of dilated cisternae of the endoplasmic reticulum in tissues of plants of the Cruciferae. Protoplasma 71:467–477

    Article  Google Scholar 

  24. Kohler RH (1998) GFP for in vivo imaging of subcellular structures in plant cells. Trends Plant Sci 3:317–320

    Article  Google Scholar 

  25. Kuroyanagi M, Nishimura M, Hara-Nishimura I (2002) Activation of Arabidopsis vacuolar processing enzyme by self-catalytic removal of an auto-inhibitory domain of the C-terminal propeptide. Plant Cell Physiol 43:143–151

    Article  PubMed  CAS  Google Scholar 

  26. Larkins BA, Hurkman WJ (1978) Synthesis and deposition of protein bodies of maize endosperm. Plant Physiol 62:256–263

    Article  PubMed  CAS  Google Scholar 

  27. Li X, Wu Y, Zhang D-Z, Gillikin JW, Boston RS, Franceschi VR, Okita TW (1993) Rice prolamine protein body biogenesis: a BiP-mediated process. Science 262:1054–1056

    Article  PubMed  CAS  Google Scholar 

  28. Maeshima M, Hara-Nishimura I, Takeuchi Y, Nishimura M (1994) Accumulation of vacuolar H+-pyrophosphatase and H+-ATPase during reformation of the central vacuole in germinating pumpkin seeds. Plant Physiol 106:61–69

    PubMed  CAS  Google Scholar 

  29. Mitsuhashi N, Hayashi Y, Koumoto Y, Shimada T, Fukasawa-Akada T, Nishimura M, Hara-Nishimura I (2001) A novel membrane protein that is transported to protein storage vacuoles via precursor-accumulating vesicles. Plant Cell 13:2361–2372

    PubMed  CAS  Google Scholar 

  30. Matsushima R, Hayashi Y, Kondo M, Shimada T, Nishimura M, Hara-Nishimura I (2002) An endoplasmic reticulum-derived structure that is induced under stress conditions in Arabidopsis. Plant Physiol 130:1807–1814

    Article  PubMed  CAS  Google Scholar 

  31. Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I (2003a) A novel ER-derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER retention signal in Arabidopsis. Plant J 33:493–502

    Article  PubMed  CAS  Google Scholar 

  32. Matsushima R, Hayashi Y, Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2003b) The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant Cell Physiol 44:661–666

    Article  PubMed  CAS  Google Scholar 

  33. Matsushima R, Fukao Y, Nishimura M, Hara-Nishimura I (2004) NAI1 gene that encodes a basic–helix–loop–helix-type putative transcription factor that regulates the formation of a novel ER-derived structure, the ER body. Plant Cell 16:1536–1549

    Article  PubMed  CAS  Google Scholar 

  34. Nagano AJ, Matsushima R, Hara-Nishimura I (2005) Activation of an ER-body-localized β-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana. Plant Cell Physiol 46:1140–1148

    Article  PubMed  CAS  Google Scholar 

  35. Ridge RW, Uozumi Y, Plazinski J, Hurley UA, Williamson RE (1999) Developmental transitions and dynamics of the cortical ER of Arabidopsis cells seen with green fluorescent protein. Plant Cell Physiol 40:1253–1261

    Article  PubMed  CAS  Google Scholar 

  36. Robinson DG, Hoh B, Hinz G, Jeong B-K (1995) One vacuole or two vacuoles: do protein storage vacuoles arise de novo during pea cotyledon development? J Plant Physiol 145:654–664

    Article  CAS  Google Scholar 

  37. Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206:466–475

    Article  PubMed  CAS  Google Scholar 

  38. Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (1997) A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol 38:1414–1420

    Article  PubMed  CAS  Google Scholar 

  39. Shimada T, Watanabe E, Tamura K, Hayashi Y, Nishimura M, Hara-Nishimura I (2002) A vacuolar sorting receptor PV72 on the membrane of vesicles that accumulate precursors of seed storage proteins (PAC vesicles). Plant Cell Physiol 43:1086–1095

    Article  PubMed  CAS  Google Scholar 

  40. Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2003a) Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:16095–16100

    Article  PubMed  CAS  Google Scholar 

  41. Shimada T, Yamada K, Kataoka M, Nakaune S, Koumoto Y, Kuroyanagi M, Tabata S, Kato T, Shinozaki K, Seki M, Kobayashi M, Kondo M, Nishimura M, Hara-Nishimura I (2003b) Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J Biol Chem 278:32292–32299

    Article  PubMed  CAS  Google Scholar 

  42. Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  PubMed  CAS  Google Scholar 

  43. Strzalka K, Hara-Nishimura I, Nishimura M (1995) Changes in physical properties of vacuolar membrane during transformation of protein bodies into vacuoles in germinating pumpkin seeds. Biochim Biophys Acta 1239:103–110

    Article  PubMed  Google Scholar 

  44. Takahashi H, Saito Y, Kitagawa T, Morita S, Masumura T, Tanaka K (2005) A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant Cell Physiol 46:245–249

    Article  PubMed  CAS  Google Scholar 

  45. Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 148:453–463

    Article  PubMed  CAS  Google Scholar 

  46. van der Wilden W, Herman EM, Chrispeels MJ (1980) Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci USA 77:428–432

    Article  PubMed  Google Scholar 

  47. Wallace SK, Eigenbrode SD (2002) Changes in the glucosinolate–myrosinase defense system in Brassica juncea cotyledons during seedling development. J Chem Ecol 28:243–256

    Article  PubMed  CAS  Google Scholar 

  48. Watanabe E, Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2002) Calcium-mediated association of a putative vacuolar sorting receptor PV72 with a propeptide of 2S albumin. J Biol Chem 277:8708–8715

    Article  PubMed  CAS  Google Scholar 

  49. Watanabe E, Shimada T, Tamura K, Matsushima R, Koumoto Y, Nishimura M, Hara-Nishimura I (2004) An ER-localized form of PV72, a seed-specific vacuolar sorting receptor, interferes the transport of an NPIR-containing proteinase in Arabidopsis leaves. Plant Cell Physiol 45:9–17

    Article  PubMed  CAS  Google Scholar 

  50. Xie D-X, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuko Hara-Nishimura .

Editor information

David G. Robinson

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hara-Nishimura, I., Shimada, T. (2006). Induction of Specialized Compartments from the ER. In: Robinson, D.G. (eds) The Plant Endoplasmic Reticulum. Plant Cell Monographs, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_067

Download citation

Publish with us

Policies and ethics