Skip to main content

The ER Within Plasmodesmata

  • Chapter
  • First Online:
The Plant Endoplasmic Reticulum

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 4))

Abstract

The endoplasmic reticulum (ER) is an essential component of plasmodesmata, the membrane-lined poresthat interconnect plant cells. The desmotubule which traverses the centre of a plasmodesma is formedfrom, and continuous with, the cortical ER. Whilst the exact role of the ER is only now being characterised,it is recognised that the ER is intimately involved in the transfer of molecules to and through plasmodesmata,providing a number of pathways for movement between cells as well as being implicated in the mechanismsthat control transport. It is believed that molecules may be transported by passive flow within the desmotubulelumen, by diffusion along the inner desmotubule membranes or by specific attachment to the cytoplasmic faceof the desmotubule followed by facilitated transport through the cytoplasmic sleeve. The ER is also involvedin the formation of plasmodesmata either during cell division or when formed de novo across non-divisionwalls. This chapter focusses on the role of the ER in plasmodesmatal formation and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arisz WH (1969) Intercellular polar transport and the role of the plasmodesmata in coleoptiles and Vallisneria leaves. Acta Bot Neerl 18:14–38

    CAS  Google Scholar 

  2. Baluška F, Cvrckova F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    Article  PubMed  Google Scholar 

  3. Baluška F, Hlavacka A, Volkmann D, Menzel D (2004) Getting connected: actin-based cell-to-cell channels in plants and animals. Trends Cell Biol 14:404–408

    Article  PubMed  CAS  Google Scholar 

  4. Baluška F, Samaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481–488

    Article  PubMed  Google Scholar 

  5. Beebe DU, Turgeon R (1991) Current perspectives on plasmodesmata: structure and function. Physiol Plant 83:194–199

    Article  CAS  Google Scholar 

  6. Behnke H-D (1991a) Distribution and evolution of forms and types of sieve-element plastids in the dicotyledons. Aliso 3:167–182

    Google Scholar 

  7. Behnke H-D (1991b) Non-dispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull 12:143–175

    Google Scholar 

  8. Blackman LM, Boevink P, Santa Cruz S, Palukaitis P, Oparka KJ (1998) The movement protein of Cucumber Mosaic Virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10:525–537

    PubMed  CAS  Google Scholar 

  9. Blackman LM, Harper JDI, Overall RL (1999) Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol 78:297–304

    Article  PubMed  CAS  Google Scholar 

  10. Blackman LM, Overall RL (1998) Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–741

    Article  CAS  Google Scholar 

  11. Blackman LM, Overall RL (2001) Stucture and function of plasmodesmata. Aust J Plant Physiol 28:709–727

    CAS  Google Scholar 

  12. Boevink P, Oparka KJ, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  13. Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4:1539–1548

    PubMed  CAS  Google Scholar 

  14. Botha CEJ, Cross RHN (2000) Towards reconciliation of structure with function in plasmodesmata—who is the gatekeeper? Micron 31:713–721

    Article  PubMed  CAS  Google Scholar 

  15. Botha CEJ, Hartley BJ, Cross RHM (1993) The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll–bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally fixed leaf blades. Ann Bot 72:255–261

    Article  Google Scholar 

  16. Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309

    Article  PubMed  CAS  Google Scholar 

  17. Cantrill LC, Overall RL, Goodwin PB (1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653–661

    Article  PubMed  CAS  Google Scholar 

  18. Carr DJ (1976) Historical perspectives on plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 291–295

    Chapter  Google Scholar 

  19. Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    PubMed  CAS  Google Scholar 

  20. Citovsky V, Zambryski P (1993) Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol 47:167–197

    Article  PubMed  CAS  Google Scholar 

  21. Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA (1997) Molecular characterization of a phloem-specific gene encoding the filament protein, Phloem Protein 1 (PP1), from Cucurbita maxima. Plant J 12:49–61

    Article  PubMed  CAS  Google Scholar 

  22. Cook ME, Graham LE, Botha CEJ, Lavin CA (1997) Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. Am J Bot 84:1169–1178

    Article  PubMed  CAS  Google Scholar 

  23. Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    Article  PubMed  CAS  Google Scholar 

  24. Cronshaw J, Sabnis DD (1990) Phloem proteins. In: Behnke H-D, Sjolund RD (eds) Sieve elements: comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 257–283

    Chapter  Google Scholar 

  25. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723

    Article  PubMed  CAS  Google Scholar 

  26. Dannenhoffer JM, Schulz A, Skaggs MI, Bostwick DE, Thompson GA (1997) Expression of the phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta 201:405–414

    Article  CAS  Google Scholar 

  27. DeWitt ND, Sussman MR (1995) Immunocytological localization of an epitope-tagged plasma-membrane proton pump (H+-ATPase) in phloem companion cells. Plant Cell 7:2053–2067

    PubMed  CAS  Google Scholar 

  28. Ding B (1997) Cell-to-cell transport of macromolecules through plasmodesmata: a novel signalling pathway in plants. Trends Cell Biol 7:5–9

    Article  PubMed  CAS  Google Scholar 

  29. Ding B (1999) Tissue preparation and substructure of plasmodesmata. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in communication. Springer, Berlin Heidelberg New York, pp 37–49

    Google Scholar 

  30. Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992a) Secondary plasmodesmata are specific sites of localization of the Tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    PubMed  CAS  Google Scholar 

  31. Ding B, Haudenshield JS, Willmitzer L, Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J 4:179–189

    Article  PubMed  CAS  Google Scholar 

  32. Ding B, Itaya A, Woo Y-M (1999) Plasmodesmata and cell-to-cell communication in plants. Int Rev Cytol 190:251–316

    Article  CAS  Google Scholar 

  33. Ding B, Lucas WJ (1996) Secondary plasmodesmata: biogenesis, special functions and evolution. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific, Oxford, pp 489–506

    Google Scholar 

  34. Ding B, Turgeon R, Parthasarathy MV (1991) Plasmodesmatal substructure in cryofixed developing tobacco leaf tissue. In: Bonnemain JL, Delrot S, Dainty J, Lucas WJ (eds) Recent advances in phloem transport and assimilate partitioning. Ouest Editions, Nantes, pp 317–323

    Google Scholar 

  35. Ding B, Turgeon R, Parthasarathy MV (1992b) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Article  Google Scholar 

  36. Ding B (1998) Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38:279–310

    Article  PubMed  CAS  Google Scholar 

  37. Ding B, Itaya A, Qi Y (2003) Symplasmic protein and RNA traffic: regulatory points and regulatory factors. Curr Opin Plant Biol 6:596–602

    Article  PubMed  CAS  Google Scholar 

  38. Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120:3247–3255

    CAS  Google Scholar 

  39. Ehlers K, Knoblauch M, van Bel AJE (2000) Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214:80–92

    Article  Google Scholar 

  40. Ehlers K, Kollmann R (1996) Formation of branched plasmodesmata in regenerating Solanum nigrum protoplasts. Planta 199:126–138

    CAS  Google Scholar 

  41. Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30

    Article  PubMed  CAS  Google Scholar 

  42. Ehlers K, van Bel AJE (1999) The physiological and developmental consequences of plasmodesmal connectivity. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in communication. Springer, Berlin Heidelberg New York, pp 243–260

    Google Scholar 

  43. Ehlers K, Wang Y, Günther S, van Bel AJE (2004) Programming of plasmodesmal deployment and development. Plasmodesmata 2004, fifth international conference, Pacific Grove, CA, p 26

    Google Scholar 

  44. Eleftheriou EP (1990) Monocotyledons. In: Behnke H-D, Sjolund RD (eds) Sieve elements: comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 139–159

    Chapter  Google Scholar 

  45. Eleftheriou EP, Hall JL (1983) The extrafloral nectaries of cotton. I. Fine structure of the secretory papillae. J Exp Bot 34:103–119

    Article  Google Scholar 

  46. Erwee MG, Goodwin PB (1983) Characterisation of the Egeria densa Planch. leaf symplast. Inhibition of the intercellular movement of fluorescent probes by group II ions. Planta 158:320–328

    Article  CAS  Google Scholar 

  47. Erwee MG, Goodwin PB (1984) Characterization of the Egeria densa leaf symplast: response to plasmolysis, deplasmolysis and to aromatic amino acids. Protoplasma 122:162–168

    Article  CAS  Google Scholar 

  48. Erwee MG, Goodwin PB (1985) Symplastic domains in extrastelar tissues of Egeria densa Planch. Planta 163:9–19

    Article  CAS  Google Scholar 

  49. Esau K (1969) The phloem. Encyclopedia of plant anatomy. Bornträger, Berlin

    Google Scholar 

  50. Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka KJ (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523

    Article  PubMed  CAS  Google Scholar 

  51. Evert RF (1990) Dicotyledons. In: Behnke H-D, Sjolund RD (eds) Sieve elements: comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 103–137

    Chapter  Google Scholar 

  52. Fisher DB (1990) Measurement of phloem transport rates by an indicator-dilution technique. Plant Physiol 94:455–462

    Article  PubMed  CAS  Google Scholar 

  53. Fisher DB (1999) The estimated pore diameter for plasmodesmal channels in the Abutilon nectary trichome should be about 4 nm, rather than 3 nm. Planta 208:299–300

    Article  CAS  Google Scholar 

  54. Fisher DB (2000) Long-distance transport. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 730–784

    Google Scholar 

  55. Franceschi VR, Ding B, Lucas WJ (1994) Mechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plants. Planta 192:347–358

    Article  Google Scholar 

  56. Ghoshroy S, Lartey R, Sheng J, Citovsky V (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 48:27–50

    Article  PubMed  CAS  Google Scholar 

  57. Gilbertson RL, Lucas WJ (1996) How do viruses traffic on the vascular highway? Trends Plant Sci 1:260–268

    Article  Google Scholar 

  58. Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Valentine TA, Chapman S, Oparka KJ (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14:1207–1222

    Article  PubMed  CAS  Google Scholar 

  59. Gillespie T, Oparka KJ (2005) Plasmodesmata—gateways for intercellular communication in plants. In: Fleming A (ed) Intercellular communication in plants. Annual Plant Reviews, vol 16. Blackwells, Oxford

    Google Scholar 

  60. Glockmann C, Kollmann R (1996) Structure and development of cell connections in phloem cells of Metasequoia glyptostroboides needles. I. Ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma 193:191–203

    Article  Google Scholar 

  61. Goodwin PB (1983) Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157:124–130

    Article  CAS  Google Scholar 

  62. Gorshkova EN, Erokhina TN, Stroganova TA, Yelina NE, Zamyatnin AA, Kalinina NO, Schiemann J, Solovyev AG, Morozov SY (2003) Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 84:985–994

    Article  PubMed  CAS  Google Scholar 

  63. Grabski S, Defeijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5:25–38

    PubMed  CAS  Google Scholar 

  64. Gunning BES, Hughes JE (1976) Quantitative assessment of symplastic transport of pre-nectar into the trichomes of Abutilon nectaries. Aust J Plant Physiol 3:619–637

    Article  Google Scholar 

  65. Gunning BES, Overall RL (1983) Plasmodesmata and cell-to-cell transport in plants. Bioscience 33:260–265

    Article  CAS  Google Scholar 

  66. Gunning BES, Robards AW (1976) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  67. Hashimoto T, Inze D (2003) Cell biology: how unique is the plant cell? Curr Opin Plant Biol 6:517–519

    Article  Google Scholar 

  68. Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181

    Article  PubMed  CAS  Google Scholar 

  69. Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14:S303–S325

    PubMed  CAS  Google Scholar 

  70. Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164

    Article  PubMed  CAS  Google Scholar 

  71. Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the Tobacco Mosaic Virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    PubMed  CAS  Google Scholar 

  72. Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111:121–133

    Article  Google Scholar 

  73. Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  PubMed  CAS  Google Scholar 

  74. Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    Article  PubMed  CAS  Google Scholar 

  75. Iqbal M (1995) Ultrastructural differentiation of sieve elements. In: Iqbal M (ed) The cambial derivatives. Bornträger, Berlin, pp 241–270

    Google Scholar 

  76. Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205:12–22

    Article  PubMed  CAS  Google Scholar 

  77. Ishiwatari Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195:456–463

    Article  PubMed  CAS  Google Scholar 

  78. Itaya A, Woo Y-M, Masuta C, Bao Y, Nelson R, Ding B (1998) Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol 118:373–385

    Article  PubMed  CAS  Google Scholar 

  79. Jeffree CE, Yeoman MM (1983) Development of intercellular connections between opposing cells in a graft union. New Phytol 93:491–509

    Article  Google Scholar 

  80. Jones MGK (1976) The origin and development of plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 81–105

    Chapter  Google Scholar 

  81. Jørgensen KE, Møller JV (1979) Use of flexible polymers as probes of glomerular pore size. Am J Physiol 236(2):F103–F111

    PubMed  Google Scholar 

  82. Kempers R, van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L have a molecular exclusion limit of at least 10 kDa. Planta 201:195–201

    Article  CAS  Google Scholar 

  83. Kollmann R, Glockmann C (1985) Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124:224–235

    Article  Google Scholar 

  84. Kollmann R, Glockmann C (1991) Studies on graft unions. III. On the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165:71–85

    Article  Google Scholar 

  85. Kollmann R, Glockmann C (1999) Multimorphology and nomenclature of plasmodesmata in higher plants. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York, pp 149–172

    Google Scholar 

  86. Kollmann R, Yang S, Glockmann C (1985) Studies of graft unions II. Continuous and half plasmodesmata in different regions of the graft interface. Protoplasma 126:19–29

    Article  Google Scholar 

  87. Kragler F, Lucas WJ, Monzer J (1998) Plasmodesmata: dynamics, domains and patterning. Ann Bot 81:1–10

    Article  Google Scholar 

  88. Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298–1300

    Article  PubMed  Google Scholar 

  89. Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    PubMed  CAS  Google Scholar 

  90. Lazarowitz SG, Beachy RN (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11:535–548

    PubMed  CAS  Google Scholar 

  91. Lazzaro MD, Thomson WW (1996) The vacuolar–tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip. Protoplasma 193:181–190

    Article  Google Scholar 

  92. Le Maire M, Aggerbeck LP, Monteilhet C, Andersen JP, Moller JV (1986) The use of high-performance liquid chromatography for the determination of size and molecular weight of proteins: a caution and a list of membrane proteins suitable as standards. Anal Biochem 154:525–535

    Article  PubMed  Google Scholar 

  93. Lee JY, Yoo BC, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299:392–396

    Article  PubMed  CAS  Google Scholar 

  94. Lopez-Saez JF, Gimenez-Martin G, Risueno MC (1966) Fine structure of the plasmodesm. Protoplasma 61:81–84

    Article  Google Scholar 

  95. Lucas W (1999) Plasmodesmata and the cell-to-cell transport of proteins and nucleoprotein complexes. J Exp Bot 50:979–987

    CAS  Google Scholar 

  96. Lucas WJ, Ding B, van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476

    Article  Google Scholar 

  97. Lucas WJ, Gilbertson RL (1994) Plasmodesmata in relation to viral movement within leaf tissue. Annual Review Of Phytopathology 32:387–411

    Article  CAS  Google Scholar 

  98. Lucas WJ, Wolf S (1993) Plasmodesmata: the intercellular organelles of green plants. Trends Cell Biol 3:308–315

    Article  PubMed  CAS  Google Scholar 

  99. Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    Article  PubMed  CAS  Google Scholar 

  100. Madore MA, Oross JW, Lucas WJ (1986) Symplasmic transport in Ipomea tricolor source leaves. Plant Physiol 82:432–442

    Article  PubMed  CAS  Google Scholar 

  101. Martens HJ, Schulz A, Roberts AG, Oparka KJ (2001) ER-targeted GFP, expressed under the SUC2 promoter, stays in companion cells of source and transport phloem. Plasmodesmata 2001, fourth international conference, Cape Town, South Africa, pp 26–27

    Google Scholar 

  102. Martindale VE, Salisbury JL (1990) Phosphorylation of algal centrin is rapidly responsive to changes in the external milieu. J Cell Sci 96:395–402

    PubMed  CAS  Google Scholar 

  103. Mas P, Beachy RN (1999) Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J Cell Biol 147:945–958

    Article  PubMed  CAS  Google Scholar 

  104. McLean BG, Hempel FD, Zambryski P (1997) Plant intercellular communication via plasmodesmata. Plant Cell 9:1043–1054

    Article  PubMed  CAS  Google Scholar 

  105. Mezitt LA, Lucas WJ (1996) Plasmodesmata cell-to-cell transport of proteins and nucleic acids. Plant Mol Biol 32:251–273

    Article  PubMed  CAS  Google Scholar 

  106. Mlotshwa S, Voinnet O, Mette MF, Matzke M, Vaucheret H, Ding SW, Pruss G, Vance VB (2002) RNA silencing and the mobile silencing signal. Plant Cell 14:S289–S301

    Article  PubMed  CAS  Google Scholar 

  107. Monzer J (1990) Secondary formation of plasmodesmata in cultured cells: structural and functional aspects. In: Robards AW, Lucas WJ, Pitts JD, Jongsma HJ, Spray DC (eds) Parallels in cell-to-cell junctions in plants and animals. NATO ASI series H, vol 46. Springer, Berlin Heidelberg New York, pp 185–197

    Chapter  Google Scholar 

  108. Monzer J (1991) Ultrastructure of secondary plasmodesmata formation in regenerating Solanum nigrum protoplast cultures. Protoplasma 165:86–95

    Article  Google Scholar 

  109. Nelson RS, van Bel AJE (1998) The mystery of virus trafficking into, through and out of vascular tissue. Prog Bot 59:476–533

    Article  Google Scholar 

  110. Olesen P (1979) The neck constriction in plasmodesmata. Planta 144:349–358

    Article  Google Scholar 

  111. Olesen P, Robards AW (1990) The neck region of plasmodesmata: general architecture and functional aspects. In: Robards AW, Lucas WJ, Pitts JD, Jongsma HJ, Spray DC (eds) Parallels in cell-to-cell junctions in plants and animals. Springer, Berlin Heidelberg New York, pp 145–170

    Chapter  Google Scholar 

  112. Oparka KJ, Prior DAM, Santa Cruz S, Padgett HS, Beachy RN (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J 12:781–789

    Article  PubMed  CAS  Google Scholar 

  113. Oparka KJ, Prior DAM, Wright KM (1995) Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana. J Exp Bot 46:187–197

    Article  CAS  Google Scholar 

  114. Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts IM, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel BL (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Article  PubMed  CAS  Google Scholar 

  115. Oparka KJ, Turgeon R (1999) Sieve elements and companion cells: traffic control centers of the phloem. Plant Cell 11:739–750

    PubMed  CAS  Google Scholar 

  116. Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  PubMed  CAS  Google Scholar 

  117. Overall RL (1999) Substructure of plasmodesmata. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in communication. Springer, Berlin Heidelberg New York, pp 129–148

    Google Scholar 

  118. Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  119. Overall RL, Gunning BES (1982) Intercellular communication in Azolla roots. II. Electrical coupling. Protoplasma 111:151–160

    Article  Google Scholar 

  120. Overall RL, Wolfe J, Gunning BES (1982) Intercellular communication in Azolla roots. I. Ultrastructure of plasmodesmata. Protoplasma 111:134–150

    Article  Google Scholar 

  121. Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow. Planta 164:473–479

    Article  Google Scholar 

  122. Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    Article  CAS  Google Scholar 

  123. Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    Article  PubMed  CAS  Google Scholar 

  124. Raven JA (1991) Long-term functioning of enucleate sieve elements: possible mechanisms of damage avoidance and damage repair. Plant Cell Environ 14:139–146

    Article  Google Scholar 

  125. Robards AW (1976) Plasmodesmata in higher plants. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, p 15–57

    Chapter  Google Scholar 

  126. Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41:369–419

    Article  Google Scholar 

  127. Roberts AG (2005) Plasmodesmal structure and development. In: Oparka KJ (ed) Plasmodesmata. Blackwells, Oxford

    Google Scholar 

  128. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  129. Roberts IM, Boevink P, Roberts AG, Sauer N, Reichel C, Oparka KJ (2001) Dynamic changes in the frequency and architecture of plasmodesmata during the sink–source transition in tobacco leaves. Protoplasma 218:31–44

    Article  PubMed  CAS  Google Scholar 

  130. Robinson-Beers K, Evert RF (1991) Fine structure of plasmodesmata in mature leaves of sugarcane. Planta 184:307–318

    Google Scholar 

  131. Ruan YL, Xu SM, White R, Furbank RT (2004) Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol 136:4104–4113

    Article  PubMed  CAS  Google Scholar 

  132. Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    Article  PubMed  CAS  Google Scholar 

  133. Ryabov EV, Oparka KJ, Santa Cruz S, Robinson DJ, Taliansky ME (1998) Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242:303–313

    Article  PubMed  CAS  Google Scholar 

  134. Sakuth T, Schobert C, Pecsvaradi A, Eichholz Z, Komor E, Orlich G (1993) Specific proteins in the sieve-tube exudate of Ricinus communis L. seedlings: separation, characterization and in vivo labelling. Planta 191:207–213

    Article  CAS  Google Scholar 

  135. Santa Cruz S (1999) Perspective: phloem transport of viruses and macromolecules: what goes in must come out. Trends Microbiol 7:237–241

    Article  Google Scholar 

  136. Schobert C, Baker L, Szederkényi J, Großmann P, Komor E, Hayashi H, Chino M, Lucas WJ (1998) Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta 206:245–252

    Article  CAS  Google Scholar 

  137. Schulz A (1999) Physiological control of plasmodesmal gating. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata. Structure, function, role in cell communication. Springer, Berlin Heidelberg New York, pp 173–204

    Google Scholar 

  138. Schulz A (2005) Role of plasmodesmata in solute loading and unloading. In: Oparka KJ (ed) Plasmodesmata. Blackwells, Oxford

    Google Scholar 

  139. Schumacher W (1936) Untersuchungen über die wanderung des fluoresceins in den haaren von Cucurbita pepo. Jahr Wiss Bot 82:507–533

    CAS  Google Scholar 

  140. Sjolund RD, Shih CY (1983) Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum. J Ultrastruct Res 82:111–121

    Article  PubMed  CAS  Google Scholar 

  141. Stadler R, Brandner J, Schulz A, Gahrtz M, Sauer N (1995) Phloem loading by the PmSUC2 sucrose carrier from Plantago Major occurs into companion cells. Plant Cell 7:1545–1554

    PubMed  CAS  Google Scholar 

  142. Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331

    Article  PubMed  CAS  Google Scholar 

  143. Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  PubMed  CAS  Google Scholar 

  144. Staehelin LA, Hepler PK (1996) Cytokinesis in higher plants. Cell 84:821–824

    Article  PubMed  CAS  Google Scholar 

  145. Terry BR, Matthews EK, Haseloff J (1995) Molecular characterization of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem Biophys Res Commun 217:21–27

    Article  PubMed  CAS  Google Scholar 

  146. Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145–157

    Article  CAS  Google Scholar 

  147. Thompson GA, Schulz A (1999) Macromolecular trafficking in the phloem. Trends Plant Sci 4:354–360

    Article  PubMed  Google Scholar 

  148. Thorsch J, Esau K (1981a) Changes in the endoplasmic reticulum during differentiation of a sieve element in Gossypium hirsutum. J Ultrastruct Res 74:183–194

    Article  PubMed  CAS  Google Scholar 

  149. Thorsch J, Esau K (1981b) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastruct Res 74:195–204

    Article  PubMed  CAS  Google Scholar 

  150. Tian GW, Mohanty A, Chary SN, Li S, Paap B, Drakakaki G, Kopec CD, Li J, Ehrhardt D, Jackson D, Rhee SY, Raikhel NV, Citovsky V (2004) High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta. Plant Physiol 135:25–38

    Article  PubMed  CAS  Google Scholar 

  151. Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    Article  PubMed  CAS  Google Scholar 

  152. Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160:363–371

    Article  PubMed  CAS  Google Scholar 

  153. Tucker EB (1982) Translocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probes. Protoplasma 113:193–201

    Article  CAS  Google Scholar 

  154. Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    Article  CAS  Google Scholar 

  155. Tucker EB, Spanswick RM (1985) Translocation in the staminal hairs of Setcreasea purpurea. II. Kinetics of intercellular transport. Protoplasma 128:167–172

    Article  Google Scholar 

  156. Tucker JE, Mauzerall D, Tucker EB (1989) Symplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuole. Plant Physiol 90:1143–1147

    Article  PubMed  CAS  Google Scholar 

  157. Turner A, Wells B, Roberts K (1994) Plasmodesmata of maize root-tips: structure and composition. J Cell Sci 107:3351–3361

    PubMed  CAS  Google Scholar 

  158. Tyree MT (1970) The symplast concept. A general theory of symplastic transport according to the thermodynamics of irreversible processes. J Theor Biol 26:181–214

    Article  PubMed  CAS  Google Scholar 

  159. van Bel AJE (1996) Interaction between sieve element and companion cell and the consequences for photoassimilate distribution. Two structural hardware frames with associated physiological software packages in dicotyledons? J Exp Bot 47:1129–1140

    Article  PubMed  Google Scholar 

  160. van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  161. van Bel AJE, Kempers R (1997) The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Prog Bot 58:278–291

    Article  Google Scholar 

  162. van Bel AJE, Knoblauch M (2000) Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol 27:477–487

    Google Scholar 

  163. van der Schoot C, Rinne P (1999) The symplasmic organization of the shoot apical meristem. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata. Structure, function, role in cell communication. Springer, Berlin Heidelberg New York, pp 225–242

    Google Scholar 

  164. van der Schoot C, van Bel AJE (1989) Glass microelectrode measurements of sieve tube membrane potentials in internode discs and petiole strips of tomato (Solanum lycopersicum L.). Protoplasma 149:144–154

    Article  Google Scholar 

  165. Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187

    Article  PubMed  CAS  Google Scholar 

  166. Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L. and Cucurbita pepo L. Planta 199:425–432

    Article  Google Scholar 

  167. Volkmann D, Mori T, Tirlapur UK, König K, Fujiwara T, Kendrick-Jones J, Baluška F (2003) Unconventional myosins of the plant-specific class VIII: endocytosis, cytokinesis, plasmodesmata/pit-fields, and cell-to-cell coupling. Cell Biol Int 27:289–291

    Article  PubMed  CAS  Google Scholar 

  168. Waigmann E, Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91:1433–1437

    Article  PubMed  CAS  Google Scholar 

  169. Waigmann E, Turner A, Peart J, Roberts K, Zambryski P (1997) Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta 203:75–84

    PubMed  CAS  Google Scholar 

  170. Waigmann E, Zambryski P (1995) Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    PubMed  CAS  Google Scholar 

  171. Waigmann E, Zambryski P (2000) Trichome plasmodesmata: a model system for cell-to-cell movement. Adv Bot Res/Adv Plant Pathol 31:261–283

    Google Scholar 

  172. White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  173. Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  PubMed  CAS  Google Scholar 

  174. Wright KM, Roberts AG, Martens HJ, Sauer N, Oparka KJ (2003) Structural and functional vein maturation in developing tobacco leaves in relation to AtSUC2 promoter activity. Plant Physiol 131:1555–1565

    Article  PubMed  CAS  Google Scholar 

  175. Xoconostle-Cazares B, Yu X, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    Article  PubMed  CAS  Google Scholar 

  176. Yahalom A, Lando R, Katz A, Epel BL (1998) A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J Plant Physiol 153:354–362

    Article  CAS  Google Scholar 

  177. Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  PubMed  CAS  Google Scholar 

  178. Zambryski P, Crawford K (2000) Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu Rev Cell Dev Biol 16:393–421

    Article  PubMed  CAS  Google Scholar 

  179. Zamyatnin AA Jr, Solovyev AG, Sablina AA, Agranovsky AA, Katul L, Vetten HJ, Schiemann J, Hinkkanen AE, Lehto K, Morozov SYu (2002) Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J Gen Virol 83:651–662

    PubMed  Google Scholar 

  180. Zee S-Y (1969) Fine structure of the differentiating sieve elements of Vicia faba. Am J Bot 17:441–456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Wright .

Editor information

David G. Robinson

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, K.M., Oparka, K.J. (2006). The ER Within Plasmodesmata. In: Robinson, D.G. (eds) The Plant Endoplasmic Reticulum. Plant Cell Monographs, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_060

Download citation

Publish with us

Policies and ethics