Skip to main content

The Architecture and Properties of the Pollen Tube Cell Wall

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 3))

Abstract

The pollen tube wall differs in both structure and function from walls of vegetative plant cells. Cellulose represents only a small portion of the cell wall polymers, so an organized microfibrillar system has not been identified yet. The initial wall, formed by secretion at the growing tip, is mostly composed of methyl esterified pectins. During cell wall maturation, concomitant with its translocation from apex to shank, these are demethylated by pectin methylesterase to yield carboxyl groups which have the potential to bind calcium ions, adding mechanical strength to the gel. Callose synthase activity is established close to the growing tip, and builds a callose layer beneath the fibrous pectic layer. The mature wall also contains proteins, arabinogalactan proteins and pollen extensin-like proteins. The mature wall is a cylinder that resists turgor expansion, but is stronger at the base than the tip due to the presence of the callose layer and the gelation of pectin polymers in the shank. Permeability of the wall is essential, to allow passage of both ions and sporophytic proteins that determine compatibility in many species. Influx of calcium ions affects the tip cytoplasm, especially the cytoskeleton, and oscillatory changes in these fluxes are involved in the “pulsatile” mode of growth. This process deposits extra wall material during the “slow” growth phase, which generates rings of increased density in the walls that can be readily seen with appropriate antibodies.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson JR, Barnes WS, Bedinger P (2002) 2,6-Dichlorbenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. J Plant Physiol 159:61–67

    Article  CAS  Google Scholar 

  2. Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  CAS  PubMed  Google Scholar 

  3. Bedinger P, Hohorst DL, Stratford S, Barnes WS, Sagert JG, Cotter R, Golubiewski A, Anderson JR, McCormick S (2001) Extensin chimeras in the pollen extracellular matrix: possible role in cell–cell communication. In: Geitmann A, Cresti M, Heath IB (eds) Cell biology of plant and fungal tip growth. IOS Press, Amsterdam, p 171–186

    Google Scholar 

  4. Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8

    Article  Google Scholar 

  5. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  CAS  PubMed  Google Scholar 

  6. Burgess J (1970) Cell shape and mitotic spindle formation in the generative cell of Endymion non-scriptus. Planta 95:72–85

    Article  Google Scholar 

  7. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  8. Cheung AY, Wu HM (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208:87–98

    Article  CAS  Google Scholar 

  9. Cosgrove DJ (1997) Creeping walls, softening fruit, and penetrating pollen tubes: The growing roles of expansins. Proc Natl Acad Sci USA 94:5504–5505

    Article  CAS  PubMed  Google Scholar 

  10. Cresti M, Lancelle SA, Hepler PK (1987) Structure of the generative cell wall complex after freeze substitution in pollen tubes of Nicotiana and Impatiens. J Cell Sci 88:373–378

    Google Scholar 

  11. de Graaf BHJ, Knuiman BA, van der Weerden GM, Feron R, Derksen J, Mariani C (2004) The PELPIII glycoproteins in Solanaceae: stylar expression and transfer into pollen tube walls. Sex Plant Reprod 16:245–252

    Article  Google Scholar 

  12. Derksen J, Li Y-Q, Knuiman B, Geurts H (1999a) The wall of Pinus sylvestris L. pollen tubes. Protoplasma 208:26–36

    Google Scholar 

  13. Derksen J, van Wezel R, Knuiman B, Ylstra B, van Tunen AJ (1999b) Pollen tubes of flavaonol-deficient Petunia show striking alterations in wall structure leading to tube disruption. Planta 207:575–581

    Google Scholar 

  14. Derksen J, Van Amstel ANM, Rutten ALM, Knuiman AB, Li YQ, Pierson ES (1999) Pollen tubes: cellular organziation and control of growth. In: Clément C, Pacini E, Audran J-C (eds) Anther and pollen. Springer, Berlin Heidelberg New York Tokyo, p 119–133

    Google Scholar 

  15. Derksen J, Knuiman B, Hoedemaekers K, Guyon A, Bonhomme S, Pierson ES (2002) Growth and cellular organization of Arabidopsis pollen tubes in vitro. Sex Plant Reprod 15:133–139

    Article  Google Scholar 

  16. Doblin MS, De Melis L, Newbigin E, Bacic A, Read SM (2001) Pollen tubes of Nicotiana alata express two genes from different beta-glucan synthase families. Plant Physiol 125:22040–22052

    Article  Google Scholar 

  17. Fang SK, Sun MX (2005) Probing lectin binding sites on isolated viable generative and sperm cells of tobacco. Plant Sci 168:1259–1265

    Article  CAS  Google Scholar 

  18. Ferguson C, Bacic A, Anderson M, Read S (1999) Subcellular distribution of arabinogalactan proteins in pollen grains and tubes as revealed with monoclonal antibody raised against stylar arabinogalactan proteins. Protoplasma 206:105–117

    Article  CAS  Google Scholar 

  19. Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460

    Article  CAS  Google Scholar 

  20. Freshour GB, Reiter CP, WD A, Darvill P, Hahn AG (2003) Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis. Plant Physiol 131:1602–1612

    Article  CAS  PubMed  Google Scholar 

  21. Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  22. Geitmann A (1999) The rheological properties of the pollen tube cell wall. In: Cresti M, Cai G, Moscatelli A (eds) Fertilization in higher plants: Molecular and cytological aspects. Springer Verlag, p 283–302

    Google Scholar 

  23. Geitmann A, Parre E (2004) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex Plant Reprod 17:9–16

    Article  Google Scholar 

  24. Geitmann A, Li YQ, Cresti M (1995) Ultrastructural immunolocalization of periodic pectin depositions in the cell wall of Nicotiana tabacum pollen tubes. Protoplasma 187:168–171

    Article  Google Scholar 

  25. Geitmann A, Hudák J, Vennigerholz F, Walles B (1995) Immunogold localization of pectin and callose in pollen grains and pollen tubes of Brugmansia suaveolens – implications for the self-incompatibility reaction. J Plant Physiol 147:225–234

    CAS  Google Scholar 

  26. Green PB (1969) Cell morphogenesis. Ann Rev Plant Physiol 20:365–394

    Article  Google Scholar 

  27. He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189–1196

    Article  CAS  PubMed  Google Scholar 

  28. Herrero M, Dickinson HG (1981) Pollen tube development in Petunia hybrida following compatible and incompatibile intraspecific matings. J Cell Sci 47:365–383

    CAS  PubMed  Google Scholar 

  29. Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107:1–78

    Article  Google Scholar 

  30. Heslop-Harrison Y (1977) The pollen-stigma interaction: pollen tube penetration in Crocus. Ann Bot 41:913–922

    Google Scholar 

  31. Hiscock SJ, Dewey FM, Coleman JOD, Dickinson HG (1994) An active cutinase from the pollen of Brassica napus closely resembles fungal cutinases. Planta 193:377–384

    Article  CAS  Google Scholar 

  32. Hoggart RM, Clarke AE (1984) Porosity of Gladioulus stigmatic papillae and pollen tube walls. Ann Bot 53:271–277

    Google Scholar 

  33. Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010

    Article  CAS  PubMed  Google Scholar 

  34. Honys D, Twell D (2003) Comparative analysis of the arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  CAS  PubMed  Google Scholar 

  35. Jackson JF, Jones G, Linskens HF (1982) Phytic acid in pollen. Phytochemistry 21:1255–1258

    Article  CAS  Google Scholar 

  36. Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67:488–492

    Article  CAS  PubMed  Google Scholar 

  37. Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7:153–164

    CAS  Google Scholar 

  38. Jauh GY, Lord EM (1996) Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination. Planta 199:251–261

    Article  CAS  Google Scholar 

  39. Jiang L, Yang S-L, Xie L-F, Puah CS, Zhang X-Q, Yang W-C, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed  Google Scholar 

  40. Kim HU, Cotter R, Johnson S, Senda M, Dodds P, Kulikauskas R, Tang W, Ezcurra I, Herzmark P, McCormick S (2002) New pollen-specific receptor kinases identified in tomato, maize and Arabidopsis: the tomato kinases show overlapping but distinct localization patterns on pollen tubes. Plant Mol Biol 50:1–16

    Article  CAS  PubMed  Google Scholar 

  41. Kohorn BD (2001) WAKs; cell wall associated kinases. Curr Opin Cell Biol 13:529–533

    Article  CAS  PubMed  Google Scholar 

  42. Kotake T, Li Y-Q, Takahashi M, Sakurai N (2000) Characterization and function of wall-bound exo-beta-glucanases of Lilium longiflorum pollen tubes. Sex Plant Reprod 13:1–9

    Article  CAS  Google Scholar 

  43. Kroh M, Knuiman B (1982) Ultrastructure of cell wall and plugs of tobacco pollen tubes after chemical extraction of polysaccharides. Planta 154:241–250

    Article  CAS  Google Scholar 

  44. Lacoux J, Gutierrez L, Dantin F, Beaudoin B, Roger D, Lainé E (2003) Antisense transgenesis of tobacco with a flax pectin methylesterase affects pollen ornamentation. Protoplasma 222:205–209

    Article  CAS  PubMed  Google Scholar 

  45. Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167:215–230

    Article  Google Scholar 

  46. Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207

    Article  CAS  PubMed  Google Scholar 

  47. Lennon KA, Lord EM (2000) In vivo pollen tube cell of Arabidopsis thaliana. I. Tube cell cytoplasm and wall. Protoplasma 214:45–56

    Article  Google Scholar 

  48. Li H, Bacic A, Read SM (1999) Role of a callose synthase zymogen in regulating wall deposition in pollen tubes of Nicotiana alata Link et Otto. Planta 208:528–538

    Article  CAS  Google Scholar 

  49. Li Y-Q, Bruun L, Pierson ES, Cresti M (1992) Periodic deposition of arabinogalactan epitopes in the cell wall of pollen tubes of Nicotiana tabacum L. Planta 188:532–538

    Article  CAS  Google Scholar 

  50. Li Y-Q, Chen F, Linskens HF, Cresti M (1994) Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants. Sex Plant Reprod 7:145–152

    Google Scholar 

  51. Li Y-Q, Faleri C, Geitmann A, Zhang HQ, Cresti M (1995) Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L. Protoplasma 189:26–36

    Article  CAS  Google Scholar 

  52. Li Y-Q, Mareck A, Faleri C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214:734–740

    Article  CAS  PubMed  Google Scholar 

  53. Li Y-Q, Zhang HQ, Pierson ES, Huang FY, Linskens HF, Hepler PK, Cresti M (1996) Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes. Planta 200:41–49

    Article  CAS  Google Scholar 

  54. Lord EM (2003) Adhesion and guidance in compatible pollination. J Exp Bot 54:47–54

    Article  CAS  PubMed  Google Scholar 

  55. Lord EM, Walling LL, Jau GY (1996) Cell adhesion in plants and its role in pollination. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publishers, London, p 21–37

    Google Scholar 

  56. Majewska-Sawka A, Fernandez MC, M'rani-Alaoui M, Munster A, Rodriguez-Garcia MI (2002) Cell wall reformation by pollen tube protoplasts of olive (Olea europeae L.): Structural comparaison with the pollen tube wall. Sex Plant Reprod 15:21–29

    Article  Google Scholar 

  57. Malhó R, Castanho-Coelho P, Pierson E, Derksen J (2005) Endocytosis and membrane recycling in pollen tubes. In: Samaj J, Baluska F, Menzel D (eds) The Plant Endocytosis. Springer-Verlag, Germany. In press

    Google Scholar 

  58. Malhó R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  PubMed  Google Scholar 

  59. McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, p 109–129

    Google Scholar 

  60. Meikle PJ, Bonig I, Hoogenraad NJ, Clarke AE, Stone BA (1991) The location of (1–3)-beta-glucans in the walls of pollen tubes of Nicotiana alata using a (1–3)-beta-glucan-specific monoclonal antibody. Planta 185:1–8

    Article  CAS  Google Scholar 

  61. Mogami N, Nakamura S, Nakamura N (1999) Immunolocalization of the cell wall components in Pinus densiflora pollen. Protoplasma 206:1–10

    Article  CAS  Google Scholar 

  62. Mollet J-C, Kim S, Jauh G-Y, Lord EM (2002) Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside. Protoplasma 219:89–98

    Article  CAS  PubMed  Google Scholar 

  63. Muschietti J, Eyal Y, McCormick S (1998) Pollen tube localization implies a role in pollen-pistil interaction for the tomato receptor-like protein kinases LePRK1 and LePRK2. Plant Cell 10:319–330

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura N, Sado M, Arai Y (1980) Sucrose metabolism during growth of Camellia japonica pollen. Phytochem 19:205–209

    Article  CAS  Google Scholar 

  65. Noguchi T, Ueda K (1990) Structure of pollen grains of Tradescantia reflexa with special reference to the generative cell and the ER around it. Cell Struct Funct 15:379–384

    Article  CAS  PubMed  Google Scholar 

  66. Nothnagel E (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    Article  CAS  PubMed  Google Scholar 

  67. O'Kelley JC, Carr PH (1954) An electron micrographic study of the cell walls of elongating cotton fibers, root hairs, and pollen tubes. Am J Bot 41:261

    Article  Google Scholar 

  68. O'Driscoll D, Hann C, Read SM, Steer MW (1993) Endocytotic uptake of fluorescent dextrans by pollen tubes grown in vitro. Protoplasma 175:126–130

    Article  Google Scholar 

  69. Parre E, Geitmann A (2005a) More than a leak sealant – the physical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Google Scholar 

  70. Parre E, Geitmann A (2005b) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Google Scholar 

  71. Picton JM, Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci 49:261–272

    CAS  PubMed  Google Scholar 

  72. Picton JM, Steer JM (1983) Evidence for the role of Ca2+ions in tip extension in pollen tubes. Protoplasma 115:11–17

    Article  CAS  Google Scholar 

  73. Picton JM, Steer MW (1985) The effects of ruthenium red, lanthanum, fluorescein isothiocyanate and trifluoperazine on vesicle transport, vesicle fusion and tip extension in pollen tubes. Planta 163:20–26

    Article  CAS  Google Scholar 

  74. Pierson ES, Li YQ, Zhang HQ, Willemse MTM, Linskens HF, Cresti M (1995) Pulsatory growth of pollen tubes: investigation of a possible relationship with the periodic distribution of cell wall components. Acta Bot Neerl 44:121–128

    Google Scholar 

  75. Rae AL, Harris PJ, Bacic A, Clarke AE (1985) Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes. Planta 166:128–133

    Article  CAS  Google Scholar 

  76. Raghavan V (1997) Molecular Embryology of Flowering Plants. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  77. Reiss H-D, Herth W, Schnepf E (1985) Plasma-membrane rosettes are present in the lily pollen tube. Naturwissenschaften 72:276

    Article  CAS  PubMed  Google Scholar 

  78. Richmond T (2000) Higher plant cellulose synthases. Genome Biology 1:3001.3001–3001.3006

    Article  Google Scholar 

  79. Roy S, Jauh GY, Hepler PK, Lord EM (1998) Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta 204:450–458

    Article  CAS  PubMed  Google Scholar 

  80. Roy SJ, Holdaway-Clarke TL, Hackett GR, Kunkel JG, Lord EM, Helpler PK (1999) Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J 19:379–386

    Article  CAS  PubMed  Google Scholar 

  81. Rubinstein AL, Marquez J, Suarez-Cervera M, Bedinger PA (1995) Extensin-like glycoproteins in the maize pollen tube wall. Plant Cell 7:2211–2225

    Article  CAS  PubMed  Google Scholar 

  82. Sassen MMA (1964) Fine structure of Petunia pollen grain and pollen tube. Acta Bot Neerl 13:174–181

    Google Scholar 

  83. Schlüpmann H, Bacic A, Read SM (1993) A novel callose synthase from pollen tubes of Nicotiana. Planta 191:470–481

    Article  Google Scholar 

  84. Schlüpmann H, Bacic A, Read SM (1994) Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiol 105:659–670

    PubMed  Google Scholar 

  85. Shivanna KR, Johri BM (1985) The angiosperm pollen. Wiley Eastern Limited, New Delhi

    Google Scholar 

  86. Sommer-Knudsen J, Clarke AE, Bacic A (1997) Proline- and hydroxyproline-rich gene products in the sexual tissues of flowers. Sex Plant Reprod 10:253–260

    Article  CAS  Google Scholar 

  87. Southworth D, Kwiatkowski S (1996) Arabinogalactan proteins at the cell surface of Brassica sperm and Lilium sperm and generative cells. Sex Plant Reprod 9:269–272

    Article  CAS  Google Scholar 

  88. Southworth D, Salvatici P, Cresti M (1994) Freeze fracture of membranes at the interface between vegetative and generative cells in Amaryllis pollen. Int J Plant Sci 155:538–544

    Article  Google Scholar 

  89. Steer MW, Picton JM (1984) Control of cell wall formation in pollen tubes: the interaction of dictyosome activity with the rate of tip extension. In: Dugger WM, Bartnicki-Garcia S (eds) Structure, Function, and Biosynthesis in Plant Cell Walls. American Society of Plant Physiologists, Maryland, p 483–494

    Google Scholar 

  90. Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  91. Stratford S, Barnes WS, Hohorst DL, Sagert JG, Cotter R, Golubiewski A, Showalter AM, McCormick S, Bedinger P (2001) A leucine-rich repeat region is conserved in pollen extensin-like (Pex) proteins in monocots and dicots. Plant Mol Biol 46:43–56

    Article  CAS  PubMed  Google Scholar 

  92. Takeda H, Yoshikawa T, Liu XZ, Nagawa N, Li Y-Q, Sakurai N (2004) Molecular cloning of two exo-β-glucanases and their in vivo substrates in the cell walls of lily pollen tubes. Plant Cell Physiol 45:436–444

    Article  CAS  Google Scholar 

  93. Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Ann Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  CAS  Google Scholar 

  94. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    Article  CAS  PubMed  Google Scholar 

  95. Tiwari SC (1994) An intermediate-voltage electron-microscopic study of freeze-substituted generative cell in pear (Pyrus communis L) features with relevance to cell–cell communication between the 2 cells of a germinating pollen. Sex Plant Reprod 7:177–186

    Article  Google Scholar 

  96. Turner A, Bacic A, Harris PJ, Read SM (1998) Membrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto. Planta 205:380–388

    CAS  Google Scholar 

  97. VanAelst AC, VanWent JL (1992) Ultrastructural immuno-localization of pectins and glycoproteins in Arabidopsis thaliana pollen grains. Protoplasma 168:14–19

    Article  CAS  Google Scholar 

  98. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504

    Article  CAS  Google Scholar 

  99. Wu H, De Graaf BH, Mariani C, Cheung AY (2001) Hydroxyproline-rich glycoproteins in plant reproductive tissues: structure, functions and regulation. Cell Mol Life Sci 58:1418–1429

    Article  CAS  PubMed  Google Scholar 

  100. Xu HP, Tsao TH (1997) Detection and immunolocalisation of glycoproteins of the plasma membrane of maize sperm cells. Protoplasma 198:125–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Rui Malhó

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Geitmann, A., Steer, M. The Architecture and Properties of the Pollen Tube Cell Wall. In: Malhó, R. (eds) The Pollen Tube. Plant Cell Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_049

Download citation

Publish with us

Policies and ethics