Skip to main content

The Microtubular Cytoskeleton in Pollen Tubes: Structure and Role in Organelle Trafficking

  • Chapter
  • First Online:
The Pollen Tube

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 3))

Abstract

Microtubules are a fundamental component of plant cells, in which they achieve many critical functions. In pollen tubes, however, their specific role remains unsolved and ambiguous. Microtubules are extremely abundant in the pollen tube and are undoubtedly important in critical processes like the transport of sperm cells. Recent advances have also shown a dynamic interaction with pollen tube organelles and a low speed translocation suggesting that microtubules are not strictly essential in the cytoplasmic streaming but rather in the regulation of such process. Here we focus on the organization of microtubules and on their putative role in the transport of pollen tube organelles. We will discuss the model of functional cooperation between microtubules and actin filaments and adapt it to the pollen tube system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderhag P, Hepler PK, Lazzaro MD (2000) Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214:141–157

    Article  Google Scholar 

  2. Astrom H (1992) Acetylated α-tubulin in the pollen tube microtubules. Cell Biol Int Rep 16:871–881

    CAS  Google Scholar 

  3. Astrom H, Sorri O, Raudaskoski M (1995) Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. Sex Plant Reprod 8:61–69

    Article  Google Scholar 

  4. Åström H, Virtanen L, Raudaskoski M (1991) Cold-stability in the pollen tube cytoskeleton. Protoplasma 160:99–107

    Article  Google Scholar 

  5. Bi G-Q, Morris RL, Liao G, Alderton JM, Scholey JM, Steinhardt RA (1997) Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Cell Biol 138:999–1008

    Article  CAS  PubMed  Google Scholar 

  6. Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    Article  CAS  PubMed  Google Scholar 

  7. Bo L, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    Google Scholar 

  8. Braun M, Sievers A (1994) Role of the microtubule cytoskeleton in gravisensing Chara rhizoids. Eur J Cell Biol 63:289–298

    CAS  PubMed  Google Scholar 

  9. Brown JR, Stafford P, Langford GM (2004) Short-range axonal/dendritic transport by myosin-V: A model for vesicle delivery to the synapse. J Neurobiol 58:175–188

    Article  CAS  PubMed  Google Scholar 

  10. Cai G, Bartalesi A, Del Casino C, Moscatelli A, Tiezzi A, Cresti M (1993) The kinesin-immunoreactive homologue from Nicotiana tabacum pollen tube: biochemical properties and subcellular localization. Planta 191:496–506

    Article  CAS  Google Scholar 

  11. Cai G, Moscatelli A, Del Casino C, Chevrier V, Mazzi M, Tiezzi A, Cresti M (1996) The anti-centrosome mAb 6C6 reacts with a plasma membrane-associated polypeptide of 77-kDa from the Nicotiana tabacum pollen tubes. Protoplasma 190:68–78

    Article  CAS  Google Scholar 

  12. Cai G, Romagnoli S, Cresti M (2001) Microtubule motor proteins and the organization of the pollen tube cytoplasm. Sex Plant Reprod 14:27–34

    Article  CAS  Google Scholar 

  13. Cai G, Romagnoli S, Moscatelli A, Ovidi E, Gambellini G, Tiezzi A, Cresti M (2000) Identification and characterization of a novel microtubule-based motor associated with membranous organelles in tobacco pollen tubes. Plant Cell 12:1719–1736

    Article  CAS  PubMed  Google Scholar 

  14. Cai G, Ovidi E, Romagnoli S, Vantard M, Cresti M, Tiezzi A (2005) Identification and characterization of plasma membrane proteins that bind to microtubules in pollen tubes and generative cells of tobacco. Plant Cell Physiol 46:563–578

    Article  CAS  Google Scholar 

  15. Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571

    Article  CAS  PubMed  Google Scholar 

  16. Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nature Cell Biol 5:967–971

    CAS  Google Scholar 

  17. Cheng Z, Snustad DP, Carter JV (2001) Temporal and spatial expression patterns of TUB9, a β-tubulin gene of Arabidopsis thaliana. Plant Mol Biol 47:389–398

    Article  CAS  PubMed  Google Scholar 

  18. Del Casino C, Li Y, Moscatelli A, Scali M, Tiezzi A, Cresti M (1993) Distribution of microtubules during the growth of tobacco pollen tubes. Biol Cell 79:125–132

    Article  Google Scholar 

  19. Del Duca S, Bregoli AM, Bergamini C, Serafini-Fracassini D (1997) Transglutaminase-catalyzed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sex Plant Reprod 10:89–95

    Article  Google Scholar 

  20. Derksen J, Pierson ES, Traas JA (1985) Microtubules in vegetative and generative cells of pollen tubes. Eur J Cell Biol 38:142–148

    Google Scholar 

  21. Dhonukshe P, Laxalt AM, Goedhart J, Gadella TWJ, Munnik T (2003) Phospholipase D Activation Correlates with Microtubule Reorganization in Living Plant Cells. Plant Cell 15:2666–2679

    Article  Google Scholar 

  22. Drykova D, Cenklova V, Sulimenko V, Volc J, Draber P, Binarova P (2003) Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. Plant Cell 15:465–480

    Article  CAS  PubMed  Google Scholar 

  23. Evrard JL, Nguyen I, Bergdoll M, Mutterer J, Steinmetz A, Lambert AM (2002) A novel pollen-specific alpha-tubulin in sunflower: structure and characterization. Plant Mol Biol 49:611–620

    Article  CAS  PubMed  Google Scholar 

  24. Foissner I (2004) Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells. Protoplasma 224:145–157

    Article  CAS  PubMed  Google Scholar 

  25. Foissner I, Grolig F, Obermeyer G (2002) Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid. Protoplasma 220:1–15

    Article  CAS  PubMed  Google Scholar 

  26. Geitmann A, Li Y-Q, Cresti M (1995) The role of cytoskeleton and dictyosome activity in the pulsatory growth of Nicotiana tabacum and Petunia hybrida pollen tubes. Bot Acta 109:102–109

    Google Scholar 

  27. Goddard RH, Wick SM, Silflow CD, Snustad P (1994) Microtubule components of the plant cell cytoskeleton. Plant Physiol 104:1–6

    CAS  PubMed  Google Scholar 

  28. Gong CX, Wegiel J, Lidsky T, Zuck L, Avila J, Wisniewski HM, Grundke-Iqbal I, Iqbal K (2000) Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Res 853:299–309

    Article  CAS  PubMed  Google Scholar 

  29. Goode BL, Drubin DG, Barnes G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71

    Article  CAS  PubMed  Google Scholar 

  30. He Y, Wetzstein HY, Palevitz BA (1995) The effect of a triazole fungicide, propiconazole, on pollen germination, the growth and cytoskeletal distribution in Tradescantia virginiana. Sex Plant Reprod 8:210–216

    Article  Google Scholar 

  31. Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtscheidl I (1990) Cortical endoplasmic reticulum in plants. J Cell Sci 96:355–373

    CAS  Google Scholar 

  32. Heslop-Harrison J, Heslop-Harrison Y (1988) Sites of origin of the peripheral microtubule system of the vegetative cell of the Angiosperm pollen tube. Ann Bot 62:455–461

    Google Scholar 

  33. Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A (1988) Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J Cell Sci 91:49–60

    Google Scholar 

  34. Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59

    Article  CAS  PubMed  Google Scholar 

  35. Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    Article  CAS  PubMed  Google Scholar 

  36. Hussey PJ, Lloyd CW, Gull K (1988) Differential and developmental expression of beta-tubulins in a higher plant. J Biol Chem 263:5474–5479

    CAS  PubMed  Google Scholar 

  37. Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41:920–931

    Article  CAS  Google Scholar 

  38. Joos U, van Aken J, Kristen U (1995) The anti-microtubule drug carbetamide stops Nicotiana sylvestris pollen tube growth in the style. Protoplasma 187:182–191

    Article  CAS  Google Scholar 

  39. Joos U, van Aken J, Kristen U (1994) Microtubules are involved in maintaining the cellular polarity in pollen tubes of Nicotiana sylvestris. Protoplasma 179:5–15

    Article  Google Scholar 

  40. Justus CD, Anderhag P, Goins JL, Lazzaro MD (2004) Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips. Planta 219:103–109

    Article  CAS  PubMed  Google Scholar 

  41. Kim E, Bobkova E, Miller CJ, Orlova A, Hegyi G, Egelman EH, Muhlrad A, Reisler E (1998) Intrastrand cross-linked actin between Gln-41 and Cys-374. III. Inhibition of motion and force generation with myosin. Biochemistry 37:17801–17809

    Article  CAS  PubMed  Google Scholar 

  42. King SM (2002) Dyneins motor on in plants. Traffic 3:930–931

    Article  CAS  PubMed  Google Scholar 

  43. Knebel W, Quader H, Schnepf E (1990) Mobile and immobile endoplasmic reticulum in onion bulb epidermis cells: short- and long-term observations with a confocal laser scanning microscope. Eur J Cell Biol 52:328–340

    CAS  PubMed  Google Scholar 

  44. Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed α-tubulin genes. Plant Cell 4:539–547

    Article  CAS  PubMed  Google Scholar 

  45. Krishnakumar S, Oppenheimer DG (1999) Extragenic suppressors of the arabidopsis zwi-3mutation identify new genes that function in trichome branch formation and pollen tube growth. Development 126:3079–3088

    CAS  PubMed  Google Scholar 

  46. Laitiainen E, Nieminen KM, Vihinen H, Raudaskoski M (2002) Movement of generative cell and vegetative nucleus in tobacco pollen tubes is dependent on microtubule cytoskeleton but independent of the synthesis of callose plugs. Sex Plant Reprod 15:195–204

    Article  CAS  Google Scholar 

  47. Lambert J, Vancoillie G, Naeyaert JM (1999) Molecular motors and their role in pigmentation. Cell Mol Biol 45:905–918

    CAS  PubMed  Google Scholar 

  48. Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of cytoskeleton in freeze-substituded pollen tubes of Nicotiana tabacum. Protoplasma 140:141–150

    Article  Google Scholar 

  49. Lancelle SA, Hepler PK (1991) Association of actin with cortical microtubules revealed by immunogold localization in Nicotiana pollen tubes. Protoplasma 165:167–172

    Article  CAS  Google Scholar 

  50. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    Article  CAS  PubMed  Google Scholar 

  51. Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    Article  CAS  PubMed  Google Scholar 

  52. Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    Article  CAS  PubMed  Google Scholar 

  53. Liu B, Julie Lee YR (2001) Kinesin-related proteins in plant cytokinesis. J Plant Growth Regul 20:141–150

    Article  CAS  Google Scholar 

  54. Liu B, Palevitz BA (1996) Localization of a kinesin-like protein in the generative cells of tobacco. Protoplasma 195:78–89

    Article  CAS  Google Scholar 

  55. Liu GQ, Cai G, Del Casino C, Tiezzi A, Cresti M (1994) Kinesin-related polypeptide is associated with vesicles from Corylus avellana pollen. Cell Motil Cytoskeleton 29:155–166

    Article  CAS  Google Scholar 

  56. Mathur J, Hulskamp M (2002) Microtubules and microfilaments in cell morphogenesis in higher plants. Curr Biol 12:R669-R676

    Article  CAS  PubMed  Google Scholar 

  57. McKean PG, Vaughan S, Gull K (2001) The extended tubulin superfamily. J Cell Sci 114:2723–2733

    CAS  PubMed  Google Scholar 

  58. Moscatelli A, Cai G, Ciampolini F, Cresti M (1998) Dynein heavy chain-related polypeptides are associated with organelles in pollen tubes of Nicotiana tabacum. Sex Plant Reprod 11:31–40

    Article  CAS  Google Scholar 

  59. Moscatelli A, Del CC, Lozzi L, Cai G, Scali M, Tiezzi A, Cresti M (1995) High molecular weight polypeptides related to dynein heavy chains in Nicotiana tabacum pollen tubes. J Cell Sci 108(Pt 3):1117–1125

    Google Scholar 

  60. Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190

    Article  CAS  PubMed  Google Scholar 

  61. Palevitz BA, Liu B, Joshi C (1994) γ-tubulin in tobacco pollen tubes: association with generative cell and vegetative microtubules. Sex Plant Reprod 7:209–214

    Article  Google Scholar 

  62. Pierson ES, Derksen J, Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41:14–18

    Google Scholar 

  63. Raudaskoski M, Åström H, Perttila K, Virtanen I, Louhelainen J (1987) Role of microtubule cytoskeleton in pollen tubes: an immunochemical and ultrastructural approach. Biol Cell 61:177–188

    Google Scholar 

  64. Reddy ASN, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    Article  CAS  PubMed  Google Scholar 

  65. Romagnoli S, Cai G, Cresti M (2003) In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. Plant Cell 15:251–269

    Article  CAS  PubMed  Google Scholar 

  66. Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    CAS  PubMed  Google Scholar 

  67. Scali M, Vignani R, Moscatelli A, Jellbauer S, Cresti M (2003) Molecular evidence for a cytoplasmic dynein heavy chain from Nicotiana tabacum L. Cell Biol Int 27:261–262

    CAS  Google Scholar 

  68. Schmit AC (2002) Acentrosomal microtubule nucleation in higher plants. Int Rev Cytol 220:257–289

    Article  CAS  PubMed  Google Scholar 

  69. Sedbrook JC (2004) MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Biol 7:632–640

    Article  CAS  PubMed  Google Scholar 

  70. Sieberer BJ, Timmers ACJ, Lhuissier FGP, Emons AM (2002) Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs. Plant Physiol 130:977–988

    Article  CAS  PubMed  Google Scholar 

  71. Snustad DP, Haas NA, Kopczak SD, Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. Plant Cell 4:549–556

    Article  CAS  PubMed  Google Scholar 

  72. Sorri O, Åström H, Raudaskoski M (1996) Actin and tubulin expression and isotype pattern during tobacco pollen tube growth. Sex Plant Reprod 9:255–263

    Article  CAS  Google Scholar 

  73. Szymanski DB, Marks MD, Wick SM (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11:2331–2348

    Article  CAS  PubMed  Google Scholar 

  74. Terasaka O, Niitsu T (1994) Kinesin localized in the pollen tube tips of Pinus densiflora. Jpn J Palynol 40:1–6

    Google Scholar 

  75. Tiezzi A, Moscatelli A, Cai G, Bartalesi A, Cresti M (1992) An immunoreactive homolog of mammalian kinesin in Nicotiana tabacum pollen tubes. Cell Motil Cytoskeleton 21:132–137

    Article  CAS  Google Scholar 

  76. Tiezzi A, Moscatelli A, Milanesi C, Ciampolini F, Cresti M (1987) Taxol-induced structures derived from cytoskeletal elements of the Nicotiana pollen tube. J Cell Sci 88:657–661

    Google Scholar 

  77. Tiwari SC, Polito VS (1990) The initiation and organization of microtubules in germinating pear (Pyrus communis L.) pollen. Eur J Cell Biol 53:384–389

    CAS  PubMed  Google Scholar 

  78. Van Gestel K, Kohler RH, Verbelen JP (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667

    Article  PubMed  Google Scholar 

  79. Wada M, Suetsugu N (2004) Plant organelle positioning. Curr Opin Plant Biol 7:626–631

    Article  CAS  PubMed  Google Scholar 

  80. Wang W, Vignani R, Scali M, Sensi E, Cresti M (2004) Post-translational modifications of α-tubulin in Zea mays L. are highly tissue specific. Planta 218:460–465

    Article  CAS  PubMed  Google Scholar 

  81. Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    Article  CAS  PubMed  Google Scholar 

  82. Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    Article  CAS  PubMed  Google Scholar 

  83. Yoshikawa M, Yang G, Kawaguchi K, Komatsu S (2003) Expression analyses of beta-tubulin isotype genes in rice. Plant Cell Physiol 44:1202–1207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Bo Liu (University of California at Davis, USA) for carefully reading the manuscript and provide important suggestions and criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Cai .

Editor information

Rui Malhó

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Cai, G., Cresti, M. The Microtubular Cytoskeleton in Pollen Tubes: Structure and Role in Organelle Trafficking. In: Malhó, R. (eds) The Pollen Tube. Plant Cell Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_048

Download citation

Publish with us

Policies and ethics