Skip to main content

Small GTPases and Spatiotemporal Regulation of Pollen Tube Growth

  • Chapter
  • First Online:
The Pollen Tube

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 3))

Abstract

During in vivo growth, pollen tubes make a long journey toward the ovule, responding to long- and short-distance guidance cues and elongating through different female tissues. Thus, pollen tube growth and guidance require complicated inter- and intracellular signaling, integration of multiple signals, and spatiotemporal coordination of the downstream responses necessary for targeted exocytosis. ROP, a plant-unique family of Rho small G proteins, is known to function as a versatile molecular switch in a variety of processes such as cell morphogenesis, stress and defense responses, hormonal responses, and directional growth of pollen tubes and root hairs. Current evidence suggests that ROP GTPase controls pollen tube growth temporally and spatially, coordinating multiple downstream signaling pathways. This chapter will review up-to-date findings about ROP GTPase signaling in pollen tubes and will discuss how ROP regulates pollen tube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwood EG, Smertenko AP, Hussey PJ (2001) Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett 499:97–100

    Article  CAS  PubMed  Google Scholar 

  2. Arthur KM, Vejlupkova Z, Meeley RB, Fowler JE (2003) Maize ROP2 GTPase provides a competitive advantage to the male gametophyte. Genetics 165:2137–2151

    CAS  PubMed  Google Scholar 

  3. Berken A, Thomas C, Wittinghofer A (2005) A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436:1176–1180

    Article  CAS  PubMed  Google Scholar 

  4. Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, Macara IG, Madhani H, Fink GR, Ravichandran KS (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4:574–582

    CAS  PubMed  Google Scholar 

  5. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  6. Camacho L, Malhó R (2003) Endo–exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54:83–92

    Article  CAS  PubMed  Google Scholar 

  7. Chen CY, Cheung AY, Wu HM (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15:237–249

    Article  CAS  PubMed  Google Scholar 

  8. Cheung AY, Chen CY, Tao LZ, Andreyeva T, Twell D, Wu HM (2003) Regulation of pollen tube growth by Rac-like GTPases. J Exp Bot 54:73–81

    Article  CAS  PubMed  Google Scholar 

  9. Cheung AY, Wu HM (2004) Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16:257–269

    Article  CAS  PubMed  Google Scholar 

  10. Christensen TM, Vejlupkova Z, Sharma YK, Arthur KM, Spatafora JW, Albright CA, Meeley RB, Duvick JP, Quatrano RS, Fowler JE (2003) Conserved subgroups and developmental regulation in the monocot rop gene family. Plant Physiol 133:1791–1808

    Article  CAS  PubMed  Google Scholar 

  11. Cole RA, Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018

    Article  CAS  PubMed  Google Scholar 

  12. Erickson JW, Cerione RA (2004) Structural elements, mechanism, and evolutionary convergence of Rho protein–guanine nucleotide exchange factor complexes. Biochemistry 43:837–842

    Article  CAS  PubMed  Google Scholar 

  13. Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V (2003) The exocyst complex in plants. Cell Biol Int 27:199–201

    Article  CAS  PubMed  Google Scholar 

  14. Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116:2603–2611

    Article  CAS  PubMed  Google Scholar 

  15. Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032

    Article  CAS  PubMed  Google Scholar 

  16. Geitmann A, Steer M (2006) The architecture and properties of the pollen tube cell wall (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 12:2349–2363

    Article  Google Scholar 

  18. Giner D, Neco P, Frances M del M, Lopez I, Viniegra S, Gutierrez LM (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118:2871–2880

    Article  CAS  PubMed  Google Scholar 

  19. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138

    Article  CAS  PubMed  Google Scholar 

  20. Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROPGTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101

    Article  CAS  PubMed  Google Scholar 

  21. Gu Y, Wang Z, Yang Z (2004) Rop/Rac GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    Article  CAS  PubMed  Google Scholar 

  22. Guermonprez H, Nogué F, Bonhomme S (2006) Screening and analysis of pollen tube mutations (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Guo W, Tamanoi F, Novick P (2001) Spatial regulation of the exocyst complex by Rho1 GTPase. Nat Cell Biol 3:353–360

    Article  CAS  PubMed  Google Scholar 

  24. Hepler PK, Lovy-Wheeler A, McKenna ST, Kunkel JG (2006) Ions in pollen tube growth (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  25. Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010

    Article  CAS  PubMed  Google Scholar 

  26. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  27. Hwang JU, Lee Y, Ying G, Yang Z (2005) Oscillatory ROPGTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399

    Article  CAS  PubMed  Google Scholar 

  28. Johnson M, Lord E (2006) Extracellular guidance cues and intracellular signaling pathways that direct pollen tube growth (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  29. Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    Article  CAS  PubMed  Google Scholar 

  30. Kaothien P, Ok SH, Shuai B, Wengier D, Cotter R, Kelley D, Kiriakopolos S, Muschietti J, McCormick S (2005) Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant J 42:492–503

    Article  CAS  PubMed  Google Scholar 

  31. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  PubMed  Google Scholar 

  32. Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev 15:1808–1816

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11:1731–1742

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126:670–684

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Wu G, Ware D, Davis KR, Yang Z (1998) Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol 118:407–417

    Article  CAS  PubMed  Google Scholar 

  36. Li S, Blanchoin L, Yang Z, Lord EM (2003) The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol 132:2034–2044

    Article  CAS  PubMed  Google Scholar 

  37. Lin Y, Wang Y, Zhu J, Yang Z (1996) Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell 8:293–303

    Article  CAS  PubMed  Google Scholar 

  38. Lin Y, Yang Z (1997) Inhibition of pollen tube elongation by microinjected anti-Rop1Ps antibodies suggests a crucial role for Rho-type GTPases in the control of tip growth. Plant Cell 9:1647–1659

    Article  CAS  PubMed  Google Scholar 

  39. Ma L, Xu X, Cui S, Sun D (1999) The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell 11:1351–1364

    Article  CAS  PubMed  Google Scholar 

  40. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898

    Article  CAS  PubMed  Google Scholar 

  41. Malhó R (2006) The pollen tube: a model system for cell and molecular biology studies (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  42. Malhó R, Read ND, Trewavas AJ, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7:1173–1184

    Article  PubMed  Google Scholar 

  43. Malhó R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  PubMed  Google Scholar 

  44. Meller N, Merlot S, Guda C (2005) CZH proteins: a new family of Rho-GEFs. J Cell Sci 118:4937–4946

    Article  CAS  PubMed  Google Scholar 

  45. Messerli MA, Creton R, Jaffe LF, Robinson KR (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol 222:84–98

    Article  CAS  PubMed  Google Scholar 

  46. Messerli MA, Danuser G, Robinson KR (1999) Pulsatile influxes of H+, K+, and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 112:1497–1509

    CAS  PubMed  Google Scholar 

  47. Michelot A, Guerin C, Huang S, Ingouff M, Richard S, Rodiuc N, Staiger CJ, Blanchoin L (2005) The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell 17:2296–2313

    Article  CAS  PubMed  Google Scholar 

  48. Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. Embo J 20:2779–2788

    Article  CAS  PubMed  Google Scholar 

  49. Monteiro D, Liu Q, Lisboa S, Scherer GE, Quader H, Malhó R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot 416:1665–1674

    Article  Google Scholar 

  50. Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6:1815–1828

    Article  CAS  PubMed  Google Scholar 

  51. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 2005:744–756

    Article  Google Scholar 

  52. Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16:1589–1603

    Article  CAS  PubMed  Google Scholar 

  53. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHOGTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:67–80

    Article  CAS  Google Scholar 

  54. Roumanie O, Wu H, Molk JN, Rossi G, Bloom K, Brennwald P (2005) Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 170:583–594

    Article  CAS  PubMed  Google Scholar 

  55. Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 99:13307–13312

    Article  CAS  PubMed  Google Scholar 

  56. Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393–406

    Article  CAS  PubMed  Google Scholar 

  57. Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, Kumar R (2002) Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4:681–690

    Article  CAS  PubMed  Google Scholar 

  58. Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545

    CAS  PubMed  Google Scholar 

  59. Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPse gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  CAS  PubMed  Google Scholar 

  60. Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol 136:3892–3904

    Article  CAS  PubMed  Google Scholar 

  61. Wedlich-Soldner R, Altschuler S, Wu L, Li R (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299:1231–1235

    Article  CAS  PubMed  Google Scholar 

  62. Wedlich-Soldner R, Li R (2003) Spontaneous cell polarization: undermining determinism. Nat Cell Biol 5:267–270

    Article  CAS  PubMed  Google Scholar 

  63. Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HR (2002) A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4:509–513

    Article  CAS  PubMed  Google Scholar 

  64. Winge P, Brembu T, Kristensen R, Bones AM (2000) Genetic structure and evolution of Rac-GTPases in Arabidopsis thaliana. Genetics 156:1959–1971

    CAS  PubMed  Google Scholar 

  65. Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–2856

    Article  CAS  PubMed  Google Scholar 

  66. Yang Z, Watson JC (1993) Molecular cloning and characterization of rho, a ras-related small GTP-binding protein from the garden pea. Proc Natl Acad Sci USA 90:8732–8736

    Article  CAS  PubMed  Google Scholar 

  67. Yokota E, Shimmen T (2006) The actin cytoskeleton in pollen tubes; actin and actin binding proteins (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  68. Źárský V, Potocký M, Balušuka F, Cvrcková F (2006) Lipid metabolism, compartmentalization, and signaling in the regulation of pollen tube growth (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  69. Zheng ZL, Yang Z (2000) The Rop GTPase switch turns on polar growth in pollen. Plant Mol Biol 44:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbiao Yang .

Editor information

Rui Malhó

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hwang, JU., Yang, Z. Small GTPases and Spatiotemporal Regulation of Pollen Tube Growth. In: Malhó, R. (eds) The Pollen Tube. Plant Cell Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_045

Download citation

Publish with us

Policies and ethics