Skip to main content

Tip Growth and Endocytosis in Fungi

  • Chapter
  • First Online:
Plant Endocytosis

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 1))

Abstract

Recent advances in molecular cell biology have provided new insights into different cellular processes that all turn out to contribute to polarized cell growth in a variety of model systems used to analyse growth, differentiation and development. Polarized cell growth, although a general feature of the living cell, can be found in a pronounced fashion during pollen tube outgrowth and root hair development in plants, during neurite outgrowth, and during filamentous hyphal growth. Filamentous fungi represent excellent model systems to analyse polarized cell growth owing to their genetic tractability and the ease of generating and keeping mutant strains. Contributing to this is the fact that already a number of fungal genomes have been sequenced, which allows the rapid analysis and comparison of gene function. This has led to the finding that polarized cell growth can be influenced by perturbations in different cellular pathways. Control of polarity establishment and the maintenance of polarized cell growth are exerted by a number of conserved GTP-binding proteins of the Ras/Rho subfamily and their specific regulators that organize the actin cytoskeleton. Hyphal tip growth requires coordination of vesicle transport using actin and microtubule cytoskeletons. Recent evidence has shown that hyphal growth not only depends on polarized secretion but also requires endocytosis, suggesting that the recycling of the membrane and sorting of vesicles is required for fast elongation of hyphal tubes. Key players on the molecular level that direct tip growth and endocytosis in the fungal hyphae based on differential regulation of the actin cytoskeleton are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamo JE, Moskow JJ, Gladfelter AS, Viterbo D, Lew DJ, Brennwald PJ (2001) Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J Cell Biol 155:581–592

    Article  PubMed  Google Scholar 

  2. Atkinson HA, Daniels A, Read ND (2002) Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 37:233–244

    Article  PubMed  Google Scholar 

  3. Ayscough KR (2004) Endocytosis: actin in the driving seat. Curr Biol 14:R124–R126

    Article  PubMed  Google Scholar 

  4. Bao Y, Kost B, Chua NH (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    Article  PubMed  Google Scholar 

  5. Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  Google Scholar 

  6. Bartnicki-Garcia S, Bartnicki DD, Gierz G, Lopez-Franco R, Bracker CE (1995) Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp Mycol 19:153–159

    Article  PubMed  Google Scholar 

  7. Bauer Y, Knechtle P, Wendland J, Helfer H, Philippsen P (2004) A Ras-like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol Biol Cell 15:4622–4632

    Article  PubMed  Google Scholar 

  8. Belde PJ, Vossen JH, Borst-Pauwels GW, Theuvenet AP (1993) Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae. FEBS Lett 323:113–118

    Article  PubMed  Google Scholar 

  9. Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    Article  PubMed  Google Scholar 

  10. Bickle M, Delley PA, Schmidt A, Hall MN (1998) Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17:2235–2245

    Article  PubMed  Google Scholar 

  11. Bidlingmaier S, Snyder M (2004) Regulation of polarized growth initiation and termination cycles by the polarisome and Cdc42 regulators. J Cell Biol 164:207–218

    Article  PubMed  Google Scholar 

  12. Calvert CM, Sanders D (1995) Inositol trisphosphate-dependent and -independent Ca2+ mobilization pathways at the vacuolar membrane of Candida albicans. J Biol Chem 270:7272–7280

    Article  PubMed  Google Scholar 

  13. Casamayor A, Snyder M (2002) Bud-site selection and cell polarity in budding yeast. Curr Opin Microbiol 5:179–186

    Article  PubMed  Google Scholar 

  14. Chang FS, Stefan CJ, Blumer KJ (2003) A WASp homolog powers actin polymerization-dependent motility of endosomes in vivo. Curr Biol 13:455–463

    Article  PubMed  Google Scholar 

  15. Chant J, Herskowitz I (1991) Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65:1203–1212

    Article  PubMed  Google Scholar 

  16. Chant J, Corrado K, Pringle JR, Herskowitz I (1991) Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell 65:1213–1224

    Google Scholar 

  17. Cole L, Orlovich DA, Ashford AE (1998) Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100

    Article  PubMed  Google Scholar 

  18. Collinge AJ, Trinci AP (1974) Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa. Arch Microbiol 99:353–368

    Article  PubMed  Google Scholar 

  19. Cornelius G, Gebauer G, Techel D (1989) Inositol trisphosphate induces calcium release from Neurospora crassa vacuoles. Biochem Biophys Res Commun 162:852–856

    Google Scholar 

  20. Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227

    Article  PubMed  Google Scholar 

  21. Dijksterhuis J (2003) Confocal microscopy of Spitzenkörper dynamics during growth and differentiation of rust fungi. Protoplasma 222:53–59

    Article  PubMed  Google Scholar 

  22. Dong CH, Kost B, Xia G, Chua NH (2001) Molecular identification and characterization of the Arabidopsis AtADF1, AtADFS and AtADF6 genes. Plant Mol Biol 45:517–527

    Article  PubMed  Google Scholar 

  23. Dong Y, Pruyne D, Bretscher A (2003) Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J Cell Biol 161:1081–1092

    Article  PubMed  Google Scholar 

  24. Duncan MC, Cope MJ, Goode BL, Wendland B, Drubin DG (2001) Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2=3 complex. Nat Cell Biol 3:687–690

    Article  PubMed  Google Scholar 

  25. Engqvist-Goldstein AE, Drubin DG (2003) Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287–332

    Article  PubMed  Google Scholar 

  26. Evangelista M, Klebl BM, Tong AH, Webb BA, Leeuw T, Leberer E, Whiteway M, Thomas DY, Boone C (2000) A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2=3 complex. J Cell Biol 148:353–362

    Article  PubMed  Google Scholar 

  27. Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A (2002) Formins direct Arp2=3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4:260–269

    Article  PubMed  Google Scholar 

  28. Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116:2603–2611

    Article  PubMed  Google Scholar 

  29. Felle HH, Hepler PK (1997) The cytosolic Ca2+concentration gradient of Sinapis alba root hairs as revealed by Ca2+-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol 114:39–45

    PubMed  Google Scholar 

  30. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    Article  PubMed  Google Scholar 

  31. Girbardt M (1957) Der Spitzenkörper von Polystictus versicolor. Planta 50:47–59

    Article  Google Scholar 

  32. Gao XD, Caviston JP, Tcheperegine SE, Bi E (2004) Pxl1p, a paxillin-like protein in Saccharomyces cerevisiae, may coordinate Cdc42p and Rho1p functions during polarized growth. Mol Biol Cell 15:3977–3985

    Article  PubMed  Google Scholar 

  33. Gierz G, Bartnicki-Garcia S (2001) A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J Theor Biol 208:151–164

    Article  PubMed  Google Scholar 

  34. Goode BL, Rodal AA, Barnes G, Drubin DG (2001) Activation of the Arp2=3 complex by the actin filament binding protein Abp1p. J Cell Biol 153:627–634

    Article  PubMed  Google Scholar 

  35. Grove SN, Bracker CE (1970) Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J Bacteriol 104:989–1009

    PubMed  Google Scholar 

  36. Gulli MP, Jaquenoud M, Shimada Y, Niederhauser G, Wiget P, Peter M (2000) Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol Cell 6:1155–1167

    Article  PubMed  Google Scholar 

  37. Harris SD, Hofmann AF, Tedford HW, Lee MP (1999) Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus Aspergillus nidulans. Genetics 151:1015–1025

    Google Scholar 

  38. Holdeway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion-gradients and fluxes. New Phytol 159:539–563

    Article  Google Scholar 

  39. Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    Article  PubMed  Google Scholar 

  40. Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–530

    Article  PubMed  Google Scholar 

  41. Irazoqui JE, Gladfelter AS, Lew DJ (2003) Scaffold-mediated symmetry breaking by Cdc42p. Nat Cell Biol 5:1062–1070

    Article  PubMed  Google Scholar 

  42. Kohno T, Shimmen T (1987) Ca2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141:177–179

    Article  Google Scholar 

  43. Johnson DI (1999) Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63:54–105

    PubMed  Google Scholar 

  44. Jonsdottir GA, Li R (2004) Dynamics of yeast myosin I: evidence for a possible role in scission of endocytic vesicles. Curr Biol 14:1604–1609

    Article  PubMed  Google Scholar 

  45. Justus CD, Anderhag P, Goins JL, Lazzaro MD (2004) Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips. Planta 219:103–109

    Article  PubMed  Google Scholar 

  46. Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487

    Article  PubMed  Google Scholar 

  47. Kozminski KG, Beven L, Angerman E, Tong AH, Boone C, Park HO (2003) Interaction between a Ras and a Rho GTPase couples selection of a growth site to the development of cell polarity in yeast. Mol Biol Cell 14:4958–4970

    Google Scholar 

  48. Lappalainen P, Drubin DG (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388:78–82

    Article  PubMed  Google Scholar 

  49. Lechler T, Shevchenko A, Li R (2000) Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148:363–373

    Article  PubMed  Google Scholar 

  50. Lin X, Momany M (2003) The Aspergillus nidulans swoC1 mutant shows defects in growth and development. Genetics 165:543–554

    Google Scholar 

  51. Madania A et al. (1999) The Saccharomyces cerevisiae homologue of human Wiskott–Aldrich syndrome protein Las17p interacts with the Arp2=3 complex. Mol Biol Cell 10:3521–3538

    PubMed  Google Scholar 

  52. Martin R, Walther A, Wendland J (2004) Deletion of the dynein heavy-chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. Eukaryot Cell 3:1574–1588

    Article  PubMed  Google Scholar 

  53. Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hulskamp M (2003) Arabidopsis CROOKED encodes for the smallest subunit of the ARP2=3 complex and controls cell shape by region specific fine F-actin formation. Development 130:3137–3146

    Article  PubMed  Google Scholar 

  54. Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12:575–625

    Article  PubMed  Google Scholar 

  55. Merrifield CJ, Qualmann B, Kessels MM, Almers W (2004) Neural Wiskott Aldrich syndrome protein (N-WASP) and the Arp2=3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83:13–18

    Article  PubMed  Google Scholar 

  56. Miller DD, de Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: Studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  Google Scholar 

  57. Momany M, Westfall PJ, Abramowsky G (1999) Aspergillus nidulans swo mutants show defects in polarity establishment, polarity maintenance and hyphal morphogenesis. Genetics 151:557–567

    Google Scholar 

  58. Muallem S, Kwiatkowska K, Xu X, Yin HL (1995) Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 128:589–598

    Article  PubMed  Google Scholar 

  59. Naqvi SN, Zahn R, Mitchell DA, Stevenson BJ, Munn AL (1998) The WASp homologue Las17p functions with the WIP homologue End5p=verprolin and is essential for endocytosis in yeast. Curr Biol 8:959–962

    Article  PubMed  Google Scholar 

  60. Oberholzer U, Marcil A, Leberer E, Thomas DY, Whiteway M (2002) Myosin I is required for hypha formation in Candida albicans. Eukaryot Cell 1:213–228

    Article  PubMed  Google Scholar 

  61. Park HO, Chant J, Herskowitz I (1993) BUD2 encodes a GTPase-activating protein for Bud1=Rsr1 necessary for proper bud-site selection in yeast. Nature 365:269–274

    Article  PubMed  Google Scholar 

  62. Park HO, Bi E, Pringle JR, Herskowitz I (1997) Two active states of the Ras-related Bud1=Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc Natl Acad Sci USA 94:4463–4468

    Article  PubMed  Google Scholar 

  63. Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173

    Article  PubMed  Google Scholar 

  64. Prill SK, Klinkert B, Timpel C, Gale CA, Schroppel K, Ernst JF (2005) PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 55:546–560

    Article  PubMed  Google Scholar 

  65. Pruyne D, Bretscher A (2000) Polarization of cell growth in yeast. J Cell Sci 113:571–585

    PubMed  Google Scholar 

  66. Read ND, Kalkman ER (2003) Does endocytosis occur in fungal hyphae? Fungal Genet Biol 39:199–203

    Article  PubMed  Google Scholar 

  67. Riezman H (1985) Endocytosis in yeast: several of the yeast secretory mutants are defective in endocytosis. Cell 40:1001–1009

    Article  PubMed  Google Scholar 

  68. Riquelme M, Reynaga-Pena CG, Gierz G, Bartnicki-Garcia S (1998) What determines growth direction in fungal hyphae? Fungal Genet Biol 24:101–109

    Article  PubMed  Google Scholar 

  69. Riquelme M, Gierz G, Bartnicki-Garcia S (2000) Dynein and dynactin deficiencies affect the formation and function of the Spitzenkörper and distort hyphal morphogenesis of Neurospora crassa. Microbiology 146:1743–1752

    PubMed  Google Scholar 

  70. Robinson NG, Guo L, Imai J, Toh EA, Matsui Y, Tamanoi F (1999) Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol Cell Biol 19:3580–3587

    PubMed  Google Scholar 

  71. Sagot I, Klee SK, Pellman D (2002) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4:42–50

    PubMed  Google Scholar 

  72. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D (2002) An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4:626–631

    PubMed  Google Scholar 

  73. Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bogre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    Article  PubMed  Google Scholar 

  74. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signalling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  75. Šamaj J (2005) Methods and molecular tools to study endocytosis in plants—an overview (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  76. Šamaj J, Baluška F, Voigt B, Volkmann D, Menzel D (2005) Endocytosis and acto-myosin cytoskeleton (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  77. Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352–4364

    Article  PubMed  Google Scholar 

  78. Sharpless KE, Harris SD (2002) Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13:469–479

    Article  PubMed  Google Scholar 

  79. Shaw BD, Momany M (2002) Aspergillus nidulans polarity mutant swoA is complemented by protein O-mannosyltransferase pmtA. Fungal Genet Biol 37:263–270

    Article  PubMed  Google Scholar 

  80. Silverman-Gavrila LB, Lew RR (2001) Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa. Eur J Cell Biol 80:379–390

    Article  PubMed  Google Scholar 

  81. Silverman-Gavrila LB, Lew RR (2002) An IP3-activated Ca2+channel regulates fungal tip growth. J Cell Sci 115:5013–5025

    Article  PubMed  Google Scholar 

  82. Tokes-Fuzesi M, Bedwell DM, Repa I, Sipos K, Sumegi B, Rab A, Miseta A (2002) Hexose phosphorylation and the putative calcium channel component Mid1p are required for the hexose-induced transient elevation of cytosolic calcium response in Saccharomyces cerevisiae. Mol Microbiol 44:1299–1308

    Article  PubMed  Google Scholar 

  83. Torralba S, Heath IB (2001) Cytoskeletal and Ca2+regulation of hyphal tip growth and initiation. Curr Top Dev Biol 51:135–187

    PubMed  Google Scholar 

  84. Torralba S, Heath IB (2002) Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. Fungal Genet Biol 37:221–232

    Article  PubMed  Google Scholar 

  85. Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  Google Scholar 

  86. Vidali L, Hepler PK (2001) Actin and pollen tube growth. Protoplasma 215:64–76

    Article  PubMed  Google Scholar 

  87. Voigt B, Timmers A, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluska F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Article  PubMed  Google Scholar 

  88. Walther A, Wendland J (2004) Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. J Cell Sci 117:4947–4958

    Article  PubMed  Google Scholar 

  89. Walther A, Wendland J (2004) Polarized hyphal growth in Candida albicans requires the Wiskott–Aldrich syndrome protein homolog Wal1p. Eukaryot Cell 3:471–482

    Article  PubMed  Google Scholar 

  90. Wedlich-Soldner R, Altschuler S, Wu L, Li R (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299:1231–1235

    Article  PubMed  Google Scholar 

  91. Wedlich-Soldner R, Wai SC, Schmidt T, Li R (2004) Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J Cell Biol 166:889–900

    Article  PubMed  Google Scholar 

  92. Wendland J, Philippsen P (2000) Determination of cell polarity in germinated spores and hyphal tips of the filamentous ascomycete Ashbya gossypii requires a rhoGAP homolog. J Cell Sci 113 (Pt 9):1611–1621

    Google Scholar 

  93. Wendland J, Philippsen P (2001) Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157:601–610

    Google Scholar 

  94. Winter D, Lechler T, Li R (1999) Activation of the yeast Arp2=3 complex by Bee1p, a WASP-family protein. Curr Biol 9:501–504

    Article  PubMed  Google Scholar 

  95. Yamashita RA, May GS (1998) Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J Biol Chem 273:14644–14648

    Article  PubMed  Google Scholar 

  96. Yoshimura H, Tada T, Iida H (2004) Subcellular localization and oligomeric structure of the yeast putative stretch-activated Ca2+channel component Mid1. Exp Cell Res 293:185–195

    Article  PubMed  Google Scholar 

  97. Zorec R, Tester M (1992) Cytoplasmic calcium stimulates exocytosis in a plant secretory cell. Biophys J 63:864–867

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (We2634/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wendland .

Editor information

Jozef Šamaj František Baluška Diedrik Menzel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wendland, J., Walther, A. Tip Growth and Endocytosis in Fungi. In: Šamaj, J., Baluška, F., Menzel, D. (eds) Plant Endocytosis. Plant Cell Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_018

Download citation

Publish with us

Policies and ethics