Skip to main content

Sterol Endocytosis and Trafficking in Plant Cells

  • Chapter
  • First Online:
  • 220 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 1))

Abstract

Structural sterols are integral components of biological membranes. They regulate membrane permeability and fluidity, and they influence the activity of membrane proteins. In Arabidopsis, their composition is critical for normal plant development. The endocytosis and recycling of plasma membrane sterols display similar pathways as some polarly distributed proteins, and thus sterol-dependent trafficking can be an integral part of the polarity establishment in plants. Here, we summarise recent data about sterol endocytosis and sterol trafficking within endocytic pathways in different aspects of cell development in plants.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnqvist L, Dutta PC, Jonsson L, Sitbon F (2003) Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol 131:1792–1799

    Article  PubMed  Google Scholar 

  2. Bach TJ, Benveniste P (1997) Cloning of cDNAs or genes encoding enzymes of sterol biosynthesis from plants and other eukaryotes: heterologous expression and commentation analysis of mutations for functional characterization. Prog Lipid Res 36:197–226

    Article  PubMed  Google Scholar 

  3. Bacia K, Schwille P, Kurzchalia T (2005) Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci USA 102:3272–3277

    Article  PubMed  Google Scholar 

  4. Bagnat M, Simons K (2002) Cell surface polarization during yeast mating. Proc Natl Acad Sci USA 99:14183–14188

    PubMed  Google Scholar 

  5. Baluška F, Hlavačka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  Google Scholar 

  6. Benveniste P (1986) Sterol biosynthesis. Ann Rev Plant Physiol 37:275–307

    Google Scholar 

  7. Benveniste P (2002) Sterol metabolism. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD, DOI 10.1199=tab.0004, p 31

    Google Scholar 

  8. Benveniste P (2005) Prenyllipids and their derivatives: sterols, prenylquinones, carotenoids and terpenoids. In: Murphy DJ (ed) Plant lipids: biology, utilization and manipulation. Blackwell/CRC, Oxford, 353–387

    Google Scholar 

  9. Bessoule J-J, Moreau P (2004) Phospholipid synthesis and dynamics in plant cells. In: Daum G (ed) Lipid metabolism and membranebiogenesis. Top Curr Genet, vol 6. Springer, Berlin Heidelberg New York, p 89–124

    Google Scholar 

  10. Betz WJ, Mao F, Bewick GS (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci 12:363–375

    PubMed  Google Scholar 

  11. Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371

    Article  PubMed  Google Scholar 

  12. Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P (2002) Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol 129:486–499

    Article  PubMed  Google Scholar 

  13. Borner GHH, Lilley K, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–577

    Article  PubMed  Google Scholar 

  14. Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, MacAskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  Google Scholar 

  15. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–2058

    Article  PubMed  Google Scholar 

  16. Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147:1223–1236

    Article  PubMed  Google Scholar 

  17. Chen R, Masson PH (2005) Auxin transport and recycling of PIN proteins in plants (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14:1995–2000

    Article  PubMed  Google Scholar 

  19. Diener AC, Li H, Zhou WX, Whoriskey WJ, Nes WD (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12:853–870

    Article  PubMed  Google Scholar 

  20. Dinter A, Berger EG (1998) Golgi-disturbing agents. Histochem Cell Biol 109:571–590

    Article  PubMed  Google Scholar 

  21. Farge E, Ojcius DM, Subtil A, Dautry-Varsat A (1999) Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am J Physiol 276:C725–C733

    PubMed  Google Scholar 

  22. Fivaz M, Vilbois F, Thurnheer S, Pasquali C, Abrami L, Bickel PE, Parton RG, van der Goot FG (2002) Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J 21:3989–4000

    Article  PubMed  Google Scholar 

  23. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  PubMed  Google Scholar 

  24. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  Google Scholar 

  25. Gebbie LK, Burn JE, Hocart CH, Williamson RE (2005) Genes encoding ADP ribosylation factors in Arabidopsis thaliana L. Heyn.; genome analysis and antisense suppression. J Exp Bot 56:1079–1091

    Article  PubMed  Google Scholar 

  26. Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  Google Scholar 

  27. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  Google Scholar 

  28. Gimlp G, Burger K, Fahrenholz F (1997) Cholesterol as modulator of receptor function. Biochemistry 36:10959–10974

    Article  PubMed  Google Scholar 

  29. Gomès E, Jakobsen MK, Axelsen KB, Geisler M, Palmgren MG (2000) Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12:2441–2453

    Article  PubMed  Google Scholar 

  30. Grabski S, de Feijter A, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5:25–38

    Article  PubMed  Google Scholar 

  31. Graham TR (2004) Flippases and vesicle-mediated protein transport. Trends Cell Biol 14:670–677

    Article  PubMed  Google Scholar 

  32. Grandmougin-Ferjani A, Schuler-Muller I, Hartmann MA (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol 113:163–174

    PubMed  Google Scholar 

  33. Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12:329–334

    Article  PubMed  Google Scholar 

  34. Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  Google Scholar 

  35. Hao M, Mukherjee S, Maxfield F (2001) Cholesterol modulation induces large-scale domain segregation in living cell membranes. Proc Natl Acad Sci USA 98:13072–13077

    Article  PubMed  Google Scholar 

  36. Hartmann M-A (2004) Sterol metabolism and functions in higher plants. In: Daum G (ed) Lipid metabolism and membrane biogenesis. Top Curr Genet, vol 6. Springer, Berlin Heidelberg New York, p 183–211

    Google Scholar 

  37. He J-X, Fujioka S, Li T-C, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang J-C (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131:1258–1269

    Article  PubMed  Google Scholar 

  38. Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H (2002) Multiple functions of sterols in yeast endocytosis. Mol Biol Cell 13:2664–2680

    Article  PubMed  Google Scholar 

  39. Heino S, Somerharju P, Ehnholm C, Olkkonen E, Ikonen E (2000) Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci USA 97:8375–8380

    Article  PubMed  Google Scholar 

  40. Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtscheidl IK (1990) Cortical endoplasmic reticulum in plant cells. J Cell Sci 96:355–373

    Google Scholar 

  41. Hobbs DH, Hume JH, Rolph CE, Cooke DT (1996) Changes in lipid composition during floral development of Brassica campestris. Phytochemistry 42:335–339

    Article  Google Scholar 

  42. Homann U, Thiel G (2002) The number of K+ channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area. Proc Natl Acad Sci USA 99:10215–10220

    Article  PubMed  Google Scholar 

  43. Hurst AC, Meckel T, Tayefeh S, Thiel G, Homann U (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. Plant J 37:391–397

    Article  PubMed  Google Scholar 

  44. Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev 14:1485–1497

    PubMed  Google Scholar 

  45. Kinsky SC, Luse SA, Zopf D, van Deenen LLM, Haxby J (1967) Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: electron microscopic observations. Biochim Biophys Acta 135:844–861

    PubMed  Google Scholar 

  46. Kinsky SC (1970) Antibiotic interaction with model membranes. Ann Rev Pharmacol 10:119–142

    Article  PubMed  Google Scholar 

  47. Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174

    PubMed  Google Scholar 

  48. Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    Article  PubMed  Google Scholar 

  49. Lees ND, Bard M (2004) Sterol biochemistry and regulation in the yeast Saccharomyces serevisiae. In: Daum G (ed) Lipid metabolism and membrane biogenesis. Top Curr Genet, vol 6. Springer, Berlin Heidelberg New York, p 213–240

    Google Scholar 

  50. Lemmon SK, Traub LM (2000) Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol 12:457–466

    Article  PubMed  Google Scholar 

  51. Li Y, Prinz WA (2004) ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. J Biol Chem 279:45226–45234

    Article  PubMed  Google Scholar 

  52. Lichtscheidl IK, Url WG (1990) Organization and dynamics of cortical endoplasmic reticulum in inner epidermal cells of onion bulb scales. Protoplasma 157:203–215

    Article  Google Scholar 

  53. Marsan MP, Muller I, Milon A (1996) Ability of clionasterol and poriferasterol (24-epimers of sitosterol and stigmasterol) to regulate membrane lipid dynamics. Chem Phys Lipids 84:117–121

    Article  Google Scholar 

  54. Marsan MP, Bellet-Amalric E, Muller I, Zaccai G, Milon A (1998) Plant sterols: a neutron diffraction study of sitosterol and stigmasterol in soybean phosphatidylcholine membranes. Biophys Chem 75:45–55

    Article  Google Scholar 

  55. Mayor S, Maxfield F (1995) Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol Biol Cell 6:929–944

    PubMed  Google Scholar 

  56. Mayor S, Sabharanjak S, Maxfield FR (1998) Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J 17:4626–4638

    Article  PubMed  Google Scholar 

  57. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton K (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  PubMed  Google Scholar 

  58. Meckel T, Hurst AC, Thiel G, Homann U (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K+-channel KAT1. Plant J 39:182–193

    Article  PubMed  Google Scholar 

  59. Mérigout P, Képés F, Perret AM, Satiat-Jeunemaitre B, Moreau P (2002) Effects of brefeldin A and nordihydroguaiaretic acid on endomembrane dynamics and lipid synthesis in plant cells. FEBS Lett 518:88–92

    Article  PubMed  Google Scholar 

  60. Mongrand S, Morel J, Laroche J, Claverol S, Carde J-P, Hartmann M-A, Bonneu M, Simon-Plas F, Lessire R, Bessoule J-J (2004) Lipid rafts in higher plant cells. Purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  PubMed  Google Scholar 

  61. Möbius W, Ohno-Iwashita Y, van Donselaar EG, Oorschot VMJ, Shimada Y, Fujimoto T, Heijnen HFG, Geuze HJ, Slot JW (2002) Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem 50:43–55

    PubMed  Google Scholar 

  62. Möbius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HFG, Slot JW, Geuze HJ (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4:221–231

    Google Scholar 

  63. Moreau P, Bertho P, Juguelin H, Lessire R (1988a) Intracellular transport of very long chain fatty acids in etiolated leek seedlings. Plant Physiol Biochem 26:173–178

    Google Scholar 

  64. Moreau P, Juguelin H, Lessire R, Cassagne C (1988b) Plasma membrane biogenesis in higher plants: in vivo transfer of lipids to the plasma membrane. Phytochem 27:1631–1638

    Google Scholar 

  65. Moreau P, Cassagne C (1994) Phospholipid trafficking and membrane biogenesis. Biochim Biophys Acta 1197:257–290

    PubMed  Google Scholar 

  66. Moreau P, Hartmann MA, Perret AM, Sturbois-Balcerzak B, Cassagne C (1998a) Transport of sterols to the plasma membrane of leek seedlings. Plant Physiol 117:931–937

    Google Scholar 

  67. Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C (1998b) Lipid trafficking in plant cells. Prog Lipid Res 37:371–391

    Google Scholar 

  68. Mukherjee S, Zha X, Tabas I, Maxfield FR (1998) Dehydroergosterol as a fluorescent cholesterol analog. Biophys J 75:1915–1925

    PubMed  Google Scholar 

  69. Munn AL, Heese-Peck A, Stevenson BJ, Pichler J, Riezman H (1999) Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell 10:3943–3957

    PubMed  Google Scholar 

  70. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601–612

    Article  PubMed  Google Scholar 

  71. Nielsen E (2005) Rab GTPases in plant endocytosis (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  72. Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J (2001) Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153:529–542

    Article  PubMed  Google Scholar 

  73. Norberg P, Liljenberg C (1999) Lipids of plasma membranes prepared from oat root cells. Plant Physiol 96:1136–1141

    Google Scholar 

  74. Ovečka M, Lang I, Baluška B, Ismail A, Illeš P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma (in press)

    Google Scholar 

  75. Oxley D, Bacic A (1999) Structure of glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc Natl Acad Sci USA 96:14246–14251

    Article  PubMed  Google Scholar 

  76. Peng L, Kawagoe I, Hogan P, Delmer D (2002) Sitosterol-β-glucosidase as a primer for cellulose synthesis in plants. Science 295:147–150

    Article  PubMed  Google Scholar 

  77. Peskan T, Westermann M, Oelmuller R (2000) Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267:6989–6995

    Article  PubMed  Google Scholar 

  78. Pike LJ, Casey L (2002) Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry 41:10315–10322

    Article  PubMed  Google Scholar 

  79. Pomorski T, Lombardi R, Riezman H, Devaux PF, Van Meer G, Holthuis JC (2003) Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14:1240–1254

    Article  PubMed  Google Scholar 

  80. Pralle A, Keller P, Florin E, Simons K, Horber JK (2000) Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1008

    Article  PubMed  Google Scholar 

  81. Puri V, Watanabe R, Dominguez M, Sun X, Wheatley CL, Marks DL, Pagano RE (1999) Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol 1:386–388

    Article  PubMed  Google Scholar 

  82. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K (1999) Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Cell Biol 10:961–974

    Google Scholar 

  83. Šamaj J, Šamajová O, Peters M, Baluška F, Lichtscheidl I, Knox JP, Volkmann D (2000) Immunolocalization of LM2 arabinogalactan protein epitope associated with endomembranes of plant cells. Protoplasma 212:186–196

    Article  Google Scholar 

  84. Šamaj J, Ovečka M, Hlavačka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    Article  PubMed  Google Scholar 

  85. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004a) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Google Scholar 

  86. Šamaj J, Baluška F, Menzel D (2004b) New signalling molecules regulating root hair tip growth. Trends Plant Sci 9:217–220

    Google Scholar 

  87. Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–437

    Article  PubMed  Google Scholar 

  88. Šamaj J (2005) Methods and molecular tools to study endocytosis in plants–-an overview (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  89. Schaeffer A, Bronner R, Benveniste P, Schaller H (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by sterol methyltransferase 2;1. Plant J 25:605–615

    Article  PubMed  Google Scholar 

  90. Schaller H, Gondet L, Maillot-Vernier P, Benveniste P (1994) Sterol overproduction is the biochemical basis of resistance to a triazole in calli from a tobacco mutant. Planta 194:295–305

    Article  Google Scholar 

  91. Schaller H (2004) New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42:465–476

    Article  PubMed  Google Scholar 

  92. Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jürgens G (2000) Fackel is a sterol C-14reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14:1471–1484

    PubMed  Google Scholar 

  93. Schrick K, Fujioka S, Takatsuto S, Stierhof Y-D, Stransky H, Yoshida S, Jürgens G (2004) A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J 38:227–243

    Article  PubMed  Google Scholar 

  94. Schuler I, Duportail G, Glasser N, Benveniste P, Hartmann MA (1990) Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study. Biochim Biophys Acta 1028:82–88

    PubMed  Google Scholar 

  95. Schuler I, Milon A, Nakatami Y, Ourisson G, Albrecht AM, Benveniste P, Hartmann MA (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc Natl Acad Sci USA 88:6926–6930

    PubMed  Google Scholar 

  96. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  Google Scholar 

  97. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  Google Scholar 

  98. Sitbon F, Jonsson L (2001) Sterol composition and growth of transgenic tobacco plants expressing type 1 and type 2 sterol methyltransferases. Planta 212:568–572

    Article  PubMed  Google Scholar 

  99. Sonnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901–914

    Article  PubMed  Google Scholar 

  100. Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14:1017–1031

    Article  PubMed  Google Scholar 

  101. Sperling P, Warnecke D, Heinz E (2004) Plant sphingolipids. In: Daum G (ed) Lipid metabolism and membrane biogenesis. Top Curr Genet, vol 6. Springer, Berlin Heidelberg New York, p 337–381

    Google Scholar 

  102. Subtil A, Gaidarov I, Kobylarz K, Lamson MA, Keen JH, McGraw TE (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 96:6775–6780

    Article  PubMed  Google Scholar 

  103. Takos AM, Dry IB, Soole KL (1997) Detection of glycosylphosphatidylinositol-anchored proteins on the surface of the Nicotiana tabacum protoplasts. FEBS Lett 405:1–4

    Article  PubMed  Google Scholar 

  104. Thompson GA, Okuyama H (2000) Lipid-linked proteins of plants. Prog Lipid Res 39:19–39

    Article  PubMed  Google Scholar 

  105. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 17:4730–4741

    Article  Google Scholar 

  106. Ueda T, Nakano A (2002) Vesicular traffic: an integral part of plant life. Curr Opin Plant Biol 5:513–517

    Article  PubMed  Google Scholar 

  107. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  PubMed  Google Scholar 

  108. Van Meer G, Sprong H (2004) Membrane lipids and vesicular traffic. Curr Opin Cell Biol 16:373–378

    Article  PubMed  Google Scholar 

  109. Verkleij AJ, de Kruijff B, Gerritsen WF, Demel RA, van Deenen LLM, Ververgaert PHJ (1973) Freeze-etch electron microscopy of erythrocytes, Acholeplasma laidlawii cells and liposomal membranes after the action of filipin and amphotericin B. Biochim Biophys Acta 291:577–581

    PubMed  Google Scholar 

  110. Vernoud V, Horton AC, Yang ZB, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  PubMed  Google Scholar 

  111. Voigt B, Timmers A, Šamaj J, Hlavačka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Article  PubMed  Google Scholar 

  112. Wachtler V, Rajagopalan S, Balasubramanian MK (2003) Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe. J Cell Sci 116:867–874

    Article  PubMed  Google Scholar 

  113. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require sterol methyltransferase 1 function. Plant Cell 15:612–625

    Article  PubMed  Google Scholar 

  114. Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid=sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    Article  PubMed  Google Scholar 

  115. Yu Q, Hlavačka A, Matoh T, Volkmann D, Menzel D, Goldbach HE, Baluška F (2002) Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiol 130:415–421

    Article  PubMed  Google Scholar 

  116. Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol 175:2853–2858

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission, Research Project of Human Potential Programme TIPNET (HPRN-CT-2002--00265), and by grant No. 2/5085/25 from the Grant Agency VEGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Ovečka .

Editor information

Jozef Šamaj František Baluška Diedrik Menzel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Ovečka, M., Lichtscheidl, I.K. Sterol Endocytosis and Trafficking in Plant Cells. In: Šamaj, J., Baluška, F., Menzel, D. (eds) Plant Endocytosis. Plant Cell Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_008

Download citation

Publish with us

Policies and ethics