Skip to main content

Plant Prevacuolar Compartments and Endocytosis

  • Chapter
  • First Online:
Plant Endocytosis

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 1))

Abstract

Prevacuolar compartments (PVCs) are membrane-bound organelles mediating protein traffic from both Golgi and plasma membrane to vacuoles in eukaryotic cells. Recent studies demonstrate that PVCs in plant cells are multivesicular bodies (MVBs) that merge secretory and endocytic pathways leading to the lytic vacuole, a compartment thought to be equivalent to the mammalian lysosome or the yeast vacuole. In this review, we discuss recent studies on the identity, molecular components and functional roles of plant PVCs and examine whether the plant PVC can also be claimed to be equivalent to the endosome/MVB of mammalian and yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed SU, Bar-Peled M, Raikhel NV (1997) Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol 114:325–336

    Article  PubMed  Google Scholar 

  2. Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH2-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 149:1335–1344

    Article  PubMed  Google Scholar 

  3. Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165:123–133

    Article  PubMed  Google Scholar 

  4. Baldwin TC, Handford MG, Yuseff MI, Orellana A, Dupree P (2001) Identification and characterization of GONST1, a golgi-localized GDP-mannose transporter in Arabidopsis. Plant Cell 13:2283–2295

    Article  PubMed  Google Scholar 

  5. Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  Google Scholar 

  6. Baluška F, Šamaj J, Hlavacka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  7. Bassham DC, Gal S, Conceicao AS, Raikhel NV (1995) An Arabidopsis syntaxin homolog isolated by functional complementation of a yeast pep12 mutant. Proc Natl Acad Sci USA 92:7262–7266

    PubMed  Google Scholar 

  8. Bethke PC, Jones RL (2000) Vacuoles and prevacuolar compartments. Curr Opin Plant Biol 3:469–475

    Article  PubMed  Google Scholar 

  9. Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309

    Article  PubMed  Google Scholar 

  10. Bright NA, Lindsay MR, Stewart A, Luzio JP (2001) The relationship between lumenal and limiting membranes in swollen late endocytic compartments formed after wortmannin treatment or sucrose accumulation. Traffic 2:631–642

    Article  PubMed  Google Scholar 

  11. Burda P, Padilla SM, Sarkar S, Emr SD (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 115:3889–3900

    Article  PubMed  Google Scholar 

  12. Cao X, Rogers SW, Butler J, Beevers L, Rogers JC (2000) Structural requirements for ligand binding by a plant vacuolar sorting receptor. Plant Cell 12:493–506

    Article  PubMed  Google Scholar 

  13. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  Google Scholar 

  14. Conceição AS, Marty-Mazars D, Bassham DC, Sanderfoot AA, Marty F, Raikhel NV (1997) The syntaxin homolog AtPEP 12p resides on a late post-Golgi compartment in plants. Plant Cell 9:571–582

    Article  PubMed  Google Scholar 

  15. Cooper AA, Stevens TH (1996) Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133:529–541

    PubMed  Google Scholar 

  16. Cozier GE, Carlton J, McGregor AH, Gleeson PA, Teasdale RD, Mellor H, Cullen PJ (2002) The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J Biol Chem 277:48730–48736

    Article  PubMed  Google Scholar 

  17. Dacks JB, Davis LA, Sjogren AM, Andersson JO, Roger AJ, Doolittle WF (2003) Evidence for Golgi bodies in proposed “Golgi-lacking” lineages. Proc R Soc Lond B Biol Sci 270 Suppl 2:S168–171

    Google Scholar 

  18. daSilva LL, Taylor JP, Hadlington JL, Hanton SL, Snowden CJ, Fox SJ, Foresti O, Brandizzi F, Denecke J (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17:132–148

    Article  PubMed  Google Scholar 

  19. Diaz E, Pfeffer SR (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93:433–443

    Article  PubMed  Google Scholar 

  20. Doray B, Ghosh P, Griffith J, Geuze HJ, Kornfeld S (2002) Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297:1700–1703

    Article  PubMed  Google Scholar 

  21. Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86

    Article  PubMed  Google Scholar 

  22. Galway ME, Rennie PJ, Fowke LC (1993) Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high-pressure frozen=freeze-substituted protoplasts of white spruce (Picea glauca). J Cell Sci 106 (Pt 3):847–858

    Google Scholar 

  23. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  Google Scholar 

  24. Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212

    Article  PubMed  Google Scholar 

  25. Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  Google Scholar 

  26. Griffiths G, Matteoni R, Back R, Hoflack B (1990) Characterization of the cation-independent mannose 6-phosphate receptor-enriched prelysosomal compartment in NRK cells. J Cell Sci 95 (Pt 3):441–461

    Google Scholar 

  27. Gullapalli A, Garrett TA, Paing MM, Griffin CT, Yang Y, Trejo J (2004) A role for sorting nexin 2 in epidermal growth factor receptor down-regulation: evidence for distinct functions of sorting nexin 1 and 2 in protein trafficking. Mol Biol Cell 15:2143–2155

    Article  PubMed  Google Scholar 

  28. Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI (2000) Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11:4105–4116

    PubMed  Google Scholar 

  29. Happel N, Honing S, Neuhaus JM, Paris N, Robinson DG, Holstein SE (2004) Arabidopsis mu A-adaptin interacts with the tyrosine motif of the vacuolar sorting receptor VSR-PS1. Plant J 37:678–693

    Article  PubMed  Google Scholar 

  30. Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    Article  PubMed  Google Scholar 

  31. Hettema EH, Lewis MJ, Black MW, Pelham HR (2003) Retromer and the sorting nexins Snx4=41=42 mediate distinct retrieval pathways from yeast endosomes. EMBO J 22:548–557

    Article  PubMed  Google Scholar 

  32. Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH (2004) Structure of a lipid droplet protein; the PAT family member TIP47. Structure (Camb) 12:1199–1207

    Article  PubMed  Google Scholar 

  33. Hillmer S, Depta H, Robinson DG (1986) Confirmation of endocytosis in higher plant protoplast using lectin-gold conjugates. Eur J Cell Biol 42:142–149

    Google Scholar 

  34. Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152:41–50

    Article  PubMed  Google Scholar 

  35. Hinz G, Hillmer S, Bäumer M, Hohl I (1999) Vacuolar storage proteins and the putative sorting receptor BP-80 exit the Golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell 11:1509–1524

    Article  PubMed  Google Scholar 

  36. Hohl I, Robinson DG, Chrispeels MC, Hinz G (1996) Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci 109:2539–2550

    PubMed  Google Scholar 

  37. Horazdovsky BF, Davies BA, Seaman MN, McLaughlin SA, Yoon S, Emr SD (1997) A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 8:1529–1541

    PubMed  Google Scholar 

  38. Humair D, Hernández Felipe D, Neuhaus JM, Paris N (2001) Demonstration in yeast of the function of BP-80, a putative plant vacuolar sorting receptor. Plant Cell 13:781–792

    Article  PubMed  Google Scholar 

  39. Inaba T, Nagano Y, Nagasaki T, Sasaki Y (2002) Distinct localization of two closely related Ypt3=Rab11 proteins on the trafficking pathway in higher plants. J Biol Chem 277:9183–9188

    Article  PubMed  Google Scholar 

  40. Jiang L, Rogers JC (1998) Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol 143:1183–1199

    Article  PubMed  Google Scholar 

  41. Jiang L, Rogers JC (1999) Functional analysis of a Golgi-localized Kex2p-like protease in tobacco suspension culture cells. Plant J 18:23–32

    Article  PubMed  Google Scholar 

  42. Jiang L, Rogers JC (2003) Sorting of lytic enzymes in the plant Golgi apparatus. Annu Plant Rev 9:114–140

    Google Scholar 

  43. Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905

    Article  PubMed  Google Scholar 

  44. Kim DH, Eu YJ, Yoo CM, Kim YW, Pih KT, Jin JB, Kim SJ, Stenmark H, Hwang I (2001) Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13:287–301

    Article  PubMed  Google Scholar 

  45. Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91:3403–3407

    PubMed  Google Scholar 

  46. Kirsch T, Saalbach G, Raikhel NV, Beevers L (1996) Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants. Plant Physiol 111:469–474

    Article  PubMed  Google Scholar 

  47. Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J (1998) A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392:193–197

    Article  PubMed  Google Scholar 

  48. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126

    Article  PubMed  Google Scholar 

  49. Lee GJ, Sohn EJ, Lee MH, Hwang I (2004) The Arabidopsis rab5 homologs rha1 and ara7 localize to the prevacuolar compartment. Plant Cell Physiol 45:1211–1220

    Article  Google Scholar 

  50. Lemmon SK, Traub LM (2000) Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol 12:457–466

    Article  PubMed  Google Scholar 

  51. Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR (2000) Specific retrieval of the exocytic SNARE snc1p from early yeast endosomes. Mol Biol Cell 11:23–38

    PubMed  Google Scholar 

  52. Li YB, Rogers SW, Tse YC, Lo SW, Sun SS, Jauh GY, Jiang L (2002) BP-80 and Homologs are Concentrated on Post-Golgi, Probable Lytic Prevacuolar Compartments. Plant Cell Physiol 43:726–742

    Article  Google Scholar 

  53. Luzio JP, Rous BA, Bright NA, Pryor PR, Mullock BM, Piper RC (2000) Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci 113 (Pt 9):1515–1524

    Google Scholar 

  54. Mallard F, Antony C, Tenza D, Salamero J, Goud B, Johannes L (1998) Direct pathway from early=recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J Cell Biol 143:973–990

    Article  PubMed  Google Scholar 

  55. Mallet WG, Maxfield FR (1999) Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J Cell Biol 146:345–359

    Article  PubMed  Google Scholar 

  56. Marcote MJ, Carbonell J (2000) Transient expression of a pea MAP kinase gene induced by gibberellic acid and 6-benzyladenine in unpollinated pea ovaries. Plant Mol Biol 44:177–186

    Article  PubMed  Google Scholar 

  57. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  PubMed  Google Scholar 

  58. Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J, Saftig P, von Figura K, Schu P (2000) mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 19:2193–2203

    Article  PubMed  Google Scholar 

  59. Mitsuhashi N, Shimada T, Mano S, Nishimura M, Hara-Nishimura I (2000) Characterization of organelles in the vacuolar-sorting pathway by visualization with GFP in tobacco BY-2 cells. Plant Cell Physiol 41:993–1001

    Article  Google Scholar 

  60. Mo B, Tse YC, Jiang L (2003) Organelle identification and proteomics in plant cells. Trends Biotech 21:331–332

    Article  Google Scholar 

  61. Neuhaus JM, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  PubMed  Google Scholar 

  62. Nilsson T, Slusarewica P, Hoe MH, Warren G (1993) Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett 330:1–4

    Article  PubMed  Google Scholar 

  63. Nothwehr SF, Hindes AE (1997) The yeast VPS5=GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J Cell Sci 110 (Pt 9):1063–1072

    Google Scholar 

  64. Nothwehr SF, Bruinsma P, Strawn LA (1999) Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar=endosomal compartment. Mol Biol Cell 10:875–890

    PubMed  Google Scholar 

  65. Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115:29–39

    Article  PubMed  Google Scholar 

  66. Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572

    Article  PubMed  Google Scholar 

  67. Parton RG, Schrotz P, Bucci C, Gruenberg J (1992) Plasticity of early endosomes. J Cell Sci 103 (Pt 2):335–348

    Google Scholar 

  68. Pelham HR (2000) SNAREs and the secretory pathway–-lessons from yeast. Exp Cell Res 247:1–8

    Article  Google Scholar 

  69. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499

    Article  PubMed  Google Scholar 

  70. Pfeffer SR (2001) Membrane transport: retromer to the rescue. Curr Biol 11:R109–R111

    Article  PubMed  Google Scholar 

  71. Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS (2001) Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 152:809–824

    Article  PubMed  Google Scholar 

  72. Record RD, Griffing LR (1988) Convergence of the endocytic and lysosomal pathways in soybean protoplasts. Planta 176:425–432

    Article  Google Scholar 

  73. Reddy JV, Seaman MN (2001) Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol Biol Cell 12:3242–3256

    PubMed  Google Scholar 

  74. Reggiori F, Black MW, Pelham HRB (2000) Polar transmembrane domains target proteins to the interior of the yeast vacuole. Mol Biol Cell 11:3737–3749

    PubMed  Google Scholar 

  75. Reggiori F, Pelham HR (2001) Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J 20:5176–5186

    Article  PubMed  Google Scholar 

  76. Ritzenthaler C, Nebenfuhr A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin LA, Robinson DG (2002) Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14:237–261

    Article  PubMed  Google Scholar 

  77. Roberts CJ, Nothwehr SF, Stevens TH (1992) Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J Cell Biol 119:63–83

    Article  Google Scholar 

  78. Robinson DG, Hinz G, Holstein SEH (1998) The molecular characterization of transport vesicles. Plant Mol Biol 38:49–76

    Article  PubMed  Google Scholar 

  79. Robinson DG, Rogers JC, Hinz G (2000) Post-Golgi, prevacuolar compartments. Annu Plant Rev 5:270–298

    Google Scholar 

  80. Sachse M, Urbe S, Oorschot V, Strous GJ, Klumperman J (2002) Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell 13:1313–1328

    Article  PubMed  Google Scholar 

  81. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  82. Sanderfoot AA, Ahmed SU, Marty-Mazars D, Rapoport I, Kirchhausen T, Marty F, Raikhel NV (1998) A putative vacuolar cargo receptor partially colocalize with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc Natl Acad Sci USA 95:9920–9925

    Article  PubMed  Google Scholar 

  83. Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558–1569

    Article  PubMed  Google Scholar 

  84. Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol 15:68–75

    Article  PubMed  Google Scholar 

  85. Seaman MN, Williams HP (2002) Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol Biol Cell 13:2826–2840

    Article  PubMed  Google Scholar 

  86. Seaman MN, McCaffery JM, Emr SD (1998) A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142:665–681

    Article  PubMed  Google Scholar 

  87. Seaman MN, Marcusson EG, Cereghino JL, Emr SD (1997) Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 137:79–92

    Article  PubMed  Google Scholar 

  88. Segui-Simarro JM, Staehelin LA (2005) Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta (in press)

    Google Scholar 

  89. Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (1997) A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol 38:1414–1420

    Google Scholar 

  90. Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H, Kim YW, Lee YJ, Hillmer S, Sohn U, Jiang L, Hwang I (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–1070

    Article  PubMed  Google Scholar 

  91. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  PubMed  Google Scholar 

  92. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  PubMed  Google Scholar 

  93. Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  PubMed  Google Scholar 

  94. Uemura T, Yoshimura SH, Takeyasu K, Sato MH (2002) Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein. Genes Cells 7:743–753

    Article  PubMed  Google Scholar 

  95. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  PubMed  Google Scholar 

  96. Van Dam EM, Ten Broeke T, Jansen K, Spijkers P, Stoorvogel W (2002) Endocytosed transferrin receptors recycle via distinct dynamin and phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem 277:48876–48883

    Article  PubMed  Google Scholar 

  97. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22:267–272

    Article  PubMed  Google Scholar 

  98. Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  Google Scholar 

  99. Yeung BG, Phan HL, Payne GS (1999) Adaptor complex-independent clathrin function in yeast. Mol Biol Cell 10:3643–3659

    PubMed  Google Scholar 

  100. Wee EG, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialytransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768

    Article  PubMed  Google Scholar 

  101. Zheng H, von Mollard GF, Kovaleva V, Stevens TH, Raikhel NV (1999) The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 10:2251–2264

    PubMed  Google Scholar 

  102. Zhong Q, Lazar CS, Tronchere H, Sato T, Meerloo T, Yeo M, Songyang Z, Emr SD, Gill GN (2002) Endosomal localization and function of sorting nexin 1. Proc Natl Acad Sci USA 99:6767–6772

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our own research reported here was partially supported by grants from the Research Grants Council of Hong Kong (project CUHK4156=01M, CUHK4260= 02M and CUHK4307=03M), Area of Excellence, Germany=Hong Kong and France=Hong Kong Joint Research Scheme to L. Jiang, and by the State of Baden-Württemberg (Landesschwerpunktprogramm) to D.G. Robinson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Jiang .

Editor information

Jozef Šamaj František Baluška Diedrik Menzel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Lam, S.K., Tse, Y.C., Jiang, L., Oliviusson, P., Heinzerling, O., Robinson, D.G. Plant Prevacuolar Compartments and Endocytosis. In: Šamaj, J., Baluška, F., Menzel, D. (eds) Plant Endocytosis. Plant Cell Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_004

Download citation

Publish with us

Policies and ethics