Carbohydrate-spiro-heterocycles pp 1-25 | Cite as
Anomeric Spiro-Annulated Glycopyranosides: An Overview of Synthetic Methodologies and Biological Applications
- 179 Downloads
Abstract
Organic chemistry developed a series of synthetic strategies toward spiro-annulated carbohydrates as potential pharmaceutical drugs or developed new organic synthetic methodologies. The present chapter gives a general overview of the spiro-annulation of carbohydrates at the anomeric position. The main synthetic strategies can be summarized in five paths. Intramolecular cyclizations can be performed through two short tethers with their reactive ends generating the spirocycle or through a single tether reacting at the anomeric position for cyclization. The three other strategies rely on intermolecular reactions with a portion of the spirocycle only in the external substrate or also on the carbohydrate. Radical-mediated cyclization and cycloaddition reactions are the main strategies toward spiro-annulated carbohydrates. A special attention is paid to discussion of the stereocontrol of the anomeric configuration and also to yields in industrial syntheses or biological activities of the molecules. A specific attention is devoted to tofogliflozin and glycogen phosphorylase inhibitors both used as antihyperglycemic drugs and drug candidates, respectively.
Keywords
1,3-Dipolar cycloaddition Cycloaddition Glycogen phosphorylase Hydrogen atom transfer (HAT) Medicinal chemistry Radical cyclization Ring-closing metathesis SGLT2 Spiroketal Spiro-lactam Type 2 diabetesNotes
Acknowledgments
The authors thank the Université Claude Bernard Lyon 1 and the CNRS for financial support. MP is grateful to the Ministère de l’Enseignement supérieur et de la Recherche for a PhD stipend.
References
- 1.Vidal S (ed) (2019) Protecting groups: strategies and applications in carbohydrate chemistry. Wiley-VCH, WeinheimGoogle Scholar
- 2.Demchenko AV (ed) (2008) Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. Wiley-VCH, WeinheimGoogle Scholar
- 3.Zulueta MML, Hung S-C (eds) (2016) Glycochemical synthesis: strategies and applications. Wiley-VCH, WeinheimGoogle Scholar
- 4.Chen G-R, Fei Zhong B, Huang X-T, Xie Y-Y, Xu J-L, Gola J, Steng M, Praly J-P (2001). Eur J Org Chem:2939–2946Google Scholar
- 5.Lambu MR, Hussain A, Sharma DK, Yousuf SK, Singh B, Tripathi AK, Mukherjee D (2014). RSC Adv 4:11023–11028CrossRefGoogle Scholar
- 6.John Pal AP, Gupta P, Suman Reddy Y, Vankar YD (2010). Eur J Org Chem:6957–6966Google Scholar
- 7.Haudrechy A, Sinaÿ P (1992). Carbohydr Res 216:375–379CrossRefGoogle Scholar
- 8.Yamanoi T, Oda Y, Muraishi H, Matsuda S (2008). Molecules 13:1840CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Dondoni A, Marra A (2009). Tetrahedron Lett 50:3593–3596CrossRefGoogle Scholar
- 10.Lin H-C, Chen Y-B, Lin Z-P, Wong FF, Lin C-H, Lin S-K (2010). Tetrahedron 66:5229–5234CrossRefGoogle Scholar
- 11.Chen Y-B, Liu S-H, Hsieh M-T, Chang C-S, Lin C-H, Chen C-Y, Chen P-Y, Lin H-C (2016). J Org Chem 81:3007–3016CrossRefGoogle Scholar
- 12.John Pal AP, Vankar YD (2010). Tetrahedron Lett 51:2519–2524CrossRefGoogle Scholar
- 13.John Pal AP, Kadigachalam P, Mallick A, Doddi VR, Vankar YD (2011). Org Biomol Chem 9:809–819CrossRefGoogle Scholar
- 14.Martín A, Salazar J, Suárez E (1995). Tetrahedron Lett 36:4489–4492CrossRefGoogle Scholar
- 15.Betancor C, Dorta RL, Freire R, Prangé T, Suárez E (2000). J Org Chem 65:8822–8825CrossRefGoogle Scholar
- 16.Martín A, Quintanal LM, Suárez E (2007). Tetrahedron Lett 48:5507–5511CrossRefGoogle Scholar
- 17.Martín A, Pérez-Martín I, Suárez E (2009). Tetrahedron 65:6147–6155CrossRefGoogle Scholar
- 18.Martín A, Pérez-Martín I, Suárez E (2005). Org Lett 7:2027–2030CrossRefGoogle Scholar
- 19.Probst N, Grelier G, Ghermani N, Gandon V, Alami M, Messaoudi S (2017). Org Lett 19:5038–5041CrossRefGoogle Scholar
- 20.Pezzotta J, Urban D, Guillot R, Doisneau G, Beau J-M (2014). Synlett 25:375–380Google Scholar
- 21.Briner K, Vasella A (1989). Helv Chim Acta 72:1371–1382CrossRefGoogle Scholar
- 22.Blüchel C, Linden A, Vasella A (2001). Helv Chim Acta 84:3495–3502CrossRefGoogle Scholar
- 23.Mangholz SE, Vasella A (1991). Helv Chim Acta 74:2100–2111CrossRefGoogle Scholar
- 24.Vasella A, Waldraff CAA (1991). Helv Chim Acta 74:585–593CrossRefGoogle Scholar
- 25.Somsák L, Praly J-P, Descotes G (1992). Synlett:119–120Google Scholar
- 26.Praly JP, El Kharraf Z, Descotes G (1990). Tetrahedron Lett 31:4441–4442CrossRefGoogle Scholar
- 27.Blüchel C, Ramana CV, Vasella A (2003). Helv Chim Acta 86:2998–3036CrossRefGoogle Scholar
- 28.Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009). J Org Chem 74:8779–8786CrossRefGoogle Scholar
- 29.Vasella A, Witzig C, Waldraff C, Uhlmann P, Briner K, Bernet B, Panza L, Husi R (1993). Helv Chim Acta 76:2847–2875CrossRefGoogle Scholar
- 30.Vasella A, Dhar P, Witzig C (1993). Helv Chim Acta 76:1767–1778CrossRefGoogle Scholar
- 31.Lay L, Nicotra F, Panza L, Russo G (1995). Synlett:167–168Google Scholar
- 32.Schweizer F, Inazu T (2001). Org Lett 3:4115–4118CrossRefGoogle Scholar
- 33.Zhang K, Schweizer F (2005). Synlett:3111–3115Google Scholar
- 34.Zhang K, Wang J, Sun Z, Nguyen D-H, Schweizer F (2007). Synlett:0239–0242Google Scholar
- 35.Zhang K, Mondal D, Zhanel GG, Schweizer F (2008). Carbohydr Res 343:1644–1652CrossRefGoogle Scholar
- 36.Zhang K, Schweizer F (2009). Carbohydr Res 344:576–585CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Praly JP, Brard L, Descotes G (1988). Tetrahedron Lett 29:2651–2654CrossRefGoogle Scholar
- 38.Praly J-P, Kharraf ZE, Corringer P-J, Brard L, Descotes G (1990). Tetrahedron 46:65–75CrossRefGoogle Scholar
- 39.Buchanan JG, Clelland APW, Wightman RH, Johnson T, Rennie RAC (1992). Carbohydr Res 237:295–301CrossRefGoogle Scholar
- 40.Baddeley KL, Cao Q, Muldoon MJ, Cook MJ (2015). Chem Eur J 21:7726–7730CrossRefGoogle Scholar
- 41.Zhang D, Ye D, Feng E, Wang J, Shi J, Jiang H, Liu H (2010). J Org Chem 75:3552–3557CrossRefGoogle Scholar
- 42.McDonald FE, Zhu HYH, Holmquist CR (1995). J Am Chem Soc 117:6605–6606CrossRefGoogle Scholar
- 43.Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H (2007). Chem Asian J 2:1388–1399CrossRefGoogle Scholar
- 44.Bartolozzi A, Capozzi G, Falciani C, Menichetti S, Nativi C, Bacialli AP (1999). J Org Chem 64:6490–6494CrossRefGoogle Scholar
- 45.Wrodnigg TM, Kartusch C, Illaszewicz C (2008). Carbohydr Res 343:2057–2066CrossRefGoogle Scholar
- 46.Gallas K, Pototschnig G, Adanitsch F, Stütz AE, Wrodnigg TM (2012). Beilstein J Org Chem 8:1619–1629CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Denmark SE, Regens CS, Kobayashi T (2007). J Am Chem Soc 129:2774–2776CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Denmark SE, Kobayashi T, Regens CS (2010). Tetrahedron 66:4745–4759CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Song KS, Lee SH, Kim MJ, Seo HJ, Lee J, Lee SH, Jung ME, Son EJ, Lee M, Kim J, Lee J (2011). ACS Med Chem Lett 2:182–187CrossRefGoogle Scholar
- 50.Harada N, Inagaki N (2012). J Diabetes Investig 3:352–353CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Madaan T, Akhtar M, Najmi AK (2016). Eur J Pharm Sci 93:244–252CrossRefGoogle Scholar
- 52.Washburn WN (2012) SGLT2 inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 29–87CrossRefGoogle Scholar
- 53.Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L (2017). Chem Rev 117:1687–1764CrossRefGoogle Scholar
- 54.Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA (2018). Org Proc Res Dev 22:467–488CrossRefGoogle Scholar
- 55.Poole RM, Prossler JE (2014). Drugs 74:939–944CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Murakata M, Ikeda T, Kimura N, Kawase A, Nagase M, Yamamoto K, Takata N, Yoshizaki S, Takano K (2009) Crystal of spiroketal derivative, and process for production thereof. WO2009154276Google Scholar
- 57.Kobayashi T, Sato T, Nishimoto M (2005) Spiroketal derivative and use thereof as diabetic medicine. US2009030006Google Scholar
- 58.Kobayashi T, Sato T, Nishimoto M (2006) Preparation of 1,1-anhydro-1-C-[2-(hydroxyalkyl)aryl]-β-D-glucopyranose compounds as SGLT2 inhibitors. WO2006080421A1Google Scholar
- 59.Ohtake Y, Emura T, Nishimoto M, Takano K, Yamamoto K, Tsuchiya S, Yeu SY, Kito Y, Kimura N, Takeda S, Tsukazaki M, Murakata M, Sato T (2016). J Org Chem 81:2148–2153CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Yang X-D, Pan Z-X, Li D-J, Wang G, Liu M, Wu R-G, Wu Y-H, Gao Y-C (2016). Org Process Res Dev 20:1821–1827CrossRefGoogle Scholar
- 61.Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu SY, Ahn KH, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012). J Med Chem 55:7828–7840CrossRefPubMedPubMedCentralGoogle Scholar
- 62.Ross SA, Gulve EA, Wang M (2004). Chem Rev 104:1255–1282CrossRefGoogle Scholar
- 63.Morral N (2003). Trends Endocrinol Metab 14:169–175CrossRefGoogle Scholar
- 64.Baker DJ, Greenhaff PL, Timmons JA (2006). Expert Opin Ther Pat 16:459–466CrossRefGoogle Scholar
- 65.Khan M (2007). Top Heterocycl Chem 9:33–52CrossRefGoogle Scholar
- 66.Somsák L, Czifrák K, Tóth M, Bokor E, Chrysina ED, Alexacou KM, Hayes JM, Tiraidis C, Lazoura E, Leonidas DD, Zographos SE, Oikonomakos NG (2008). Curr Med Chem 15:2933–2983CrossRefGoogle Scholar
- 67.Praly J-P, Vidal S (2010). Mini-Rev Med Chem 10:1102–1126CrossRefGoogle Scholar
- 68.Henke BR (2012) Inhibition of glycogen phosphorylase as a strategy for the treatment of type 2 diabetes. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 324–365CrossRefGoogle Scholar
- 69.Gaboriaud-Kolar N, Skaltsounis A-L (2013). Expert Opin Ther Pat 23:1017–1032CrossRefGoogle Scholar
- 70.Donnier-Maréchal M, Vidal S (2016). Expert Opin Ther Pat 26:199–212CrossRefGoogle Scholar
- 71.Somsák L, Nagy V, Hadady Z, Docsa T, Gergely P (2003). Curr Pharm Des 9:1177–1189CrossRefGoogle Scholar
- 72.Somsák L (2011). C R Chim 14:211–223CrossRefGoogle Scholar
- 73.Praly J-P, Boyé S, Joseph B, Rollin P (1993). Tetrahedron Lett 34:3419–3420CrossRefGoogle Scholar
- 74.Elek R, Kiss L, Praly J-P, Somsák L (2005). Carbohydr Res 340:1397–1402CrossRefGoogle Scholar
- 75.Somsák L, Nagy V, Vidal S, Czifrák K, Berzsényi E, Praly J-P (2008). Bioorg Med Chem Lett 18:5680–5683CrossRefGoogle Scholar
- 76.Nagy V, Benltifa M, Vidal S, Berzsényi E, Teilhet C, Czifrák K, Batta G, Docsa T, Gergely P, Somsák L, Praly J-P (2009). Bioorg Med Chem 17:5696–5707CrossRefGoogle Scholar
- 77.RajanBabu TV, Reddy GS (1986). J Org Chem 51:5458–5461CrossRefGoogle Scholar
- 78.Enderlin G, Taillefumier C, Didierjean C, Chapleur Y (2005). Tetrahedron Asymmetry 16:2459–2474CrossRefGoogle Scholar
- 79.Benltifa M, Vidal S, Gueyrard D, Goekjian PG, Msaddek M, Praly J-P (2006). Tetrahedron Lett 47:6143–6147CrossRefGoogle Scholar
- 80.Zhang P-Z, Li X-L, Chen H, Li Y-N, Wang R (2007). Tetrahedron Lett 48:7813–7816CrossRefGoogle Scholar
- 81.Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly JP, Kizilis G, Tiraidis C, Alexacou KM, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG (2009). Bioorg Med Chem 17:7368–7380CrossRefPubMedPubMedCentralGoogle Scholar
- 82.Goyard D, Kónya B, Chajistamatiou AS, Chrysina ED, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Somsák L, Docsa T, Gergely P, Praly J-P, Azay-Milhau J, Vidal S (2016). Eur J Med Chem 108:444–454CrossRefGoogle Scholar
- 83.Tite T, Tomas L, Docsa T, Gergely P, Kovensky J, Gueyrard D, Wadouachi A (2012). Tetrahedron Lett 53:959–961CrossRefGoogle Scholar
- 84.Benltifa M, Kiss MD, Garcia-Moreno MI, Mellet CO, Gueyrard D, Wadouachi A (2009). Tetrahedron Asymmetry 20:1817–1823CrossRefGoogle Scholar
- 85.Toumieux S, Compain P, Martin OR (2005). Tetrahedron Lett 46:4731–4735CrossRefGoogle Scholar
- 86.Somsák L, Kovács L, Gyóllai V, Ősz E (1999). Chem Commun 7:591–592CrossRefGoogle Scholar
- 87.Páhi A, Czifrák K, Kövér KE, Somsák L (2015). Carbohydr Res 403:192–201CrossRefGoogle Scholar
- 88.Somsák L, Kovács L, Tóth M, Ősz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P (2001). J Med Chem 44:2843–2848CrossRefGoogle Scholar
- 89.Czifrák K, Páhi A, Deák S, Kiss-Szikszai A, Kövér KE, Docsa T, Gergely P, Alexacou K-M, Papakonstantinou M, Leonidas DD, Zographos SE, Chrysina ED, Somsák L (2014). Bioorg Med Chem 22:4028–4041CrossRefGoogle Scholar
- 90.Szabó KE, Kun S, Mándi A, Kurtán T, Somsák L (2017). Molecules 22:1760CrossRefPubMedPubMedCentralGoogle Scholar
- 91.Czifrák K, Gyóllai V, Kövér KE, Somsák L (2011). Carbohydr Res 346:2104–2112CrossRefGoogle Scholar