Anomeric Spiro-Annulated Glycopyranosides: An Overview of Synthetic Methodologies and Biological Applications

  • Maxime Pommier
  • Sébastien VidalEmail author
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 57)


Organic chemistry developed a series of synthetic strategies toward spiro-annulated carbohydrates as potential pharmaceutical drugs or developed new organic synthetic methodologies. The present chapter gives a general overview of the spiro-annulation of carbohydrates at the anomeric position. The main synthetic strategies can be summarized in five paths. Intramolecular cyclizations can be performed through two short tethers with their reactive ends generating the spirocycle or through a single tether reacting at the anomeric position for cyclization. The three other strategies rely on intermolecular reactions with a portion of the spirocycle only in the external substrate or also on the carbohydrate. Radical-mediated cyclization and cycloaddition reactions are the main strategies toward spiro-annulated carbohydrates. A special attention is paid to discussion of the stereocontrol of the anomeric configuration and also to yields in industrial syntheses or biological activities of the molecules. A specific attention is devoted to tofogliflozin and glycogen phosphorylase inhibitors both used as antihyperglycemic drugs and drug candidates, respectively.


1,3-Dipolar cycloaddition Cycloaddition Glycogen phosphorylase Hydrogen atom transfer (HAT) Medicinal chemistry Radical cyclization Ring-closing metathesis SGLT2 Spiroketal Spiro-lactam Type 2 diabetes 



The authors thank the Université Claude Bernard Lyon 1 and the CNRS for financial support. MP is grateful to the Ministère de l’Enseignement supérieur et de la Recherche for a PhD stipend.


  1. 1.
    Vidal S (ed) (2019) Protecting groups: strategies and applications in carbohydrate chemistry. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Demchenko AV (ed) (2008) Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Zulueta MML, Hung S-C (eds) (2016) Glycochemical synthesis: strategies and applications. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Chen G-R, Fei Zhong B, Huang X-T, Xie Y-Y, Xu J-L, Gola J, Steng M, Praly J-P (2001). Eur J Org Chem:2939–2946Google Scholar
  5. 5.
    Lambu MR, Hussain A, Sharma DK, Yousuf SK, Singh B, Tripathi AK, Mukherjee D (2014). RSC Adv 4:11023–11028CrossRefGoogle Scholar
  6. 6.
    John Pal AP, Gupta P, Suman Reddy Y, Vankar YD (2010). Eur J Org Chem:6957–6966Google Scholar
  7. 7.
    Haudrechy A, Sinaÿ P (1992). Carbohydr Res 216:375–379CrossRefGoogle Scholar
  8. 8.
    Yamanoi T, Oda Y, Muraishi H, Matsuda S (2008). Molecules 13:1840CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dondoni A, Marra A (2009). Tetrahedron Lett 50:3593–3596CrossRefGoogle Scholar
  10. 10.
    Lin H-C, Chen Y-B, Lin Z-P, Wong FF, Lin C-H, Lin S-K (2010). Tetrahedron 66:5229–5234CrossRefGoogle Scholar
  11. 11.
    Chen Y-B, Liu S-H, Hsieh M-T, Chang C-S, Lin C-H, Chen C-Y, Chen P-Y, Lin H-C (2016). J Org Chem 81:3007–3016CrossRefGoogle Scholar
  12. 12.
    John Pal AP, Vankar YD (2010). Tetrahedron Lett 51:2519–2524CrossRefGoogle Scholar
  13. 13.
    John Pal AP, Kadigachalam P, Mallick A, Doddi VR, Vankar YD (2011). Org Biomol Chem 9:809–819CrossRefGoogle Scholar
  14. 14.
    Martín A, Salazar J, Suárez E (1995). Tetrahedron Lett 36:4489–4492CrossRefGoogle Scholar
  15. 15.
    Betancor C, Dorta RL, Freire R, Prangé T, Suárez E (2000). J Org Chem 65:8822–8825CrossRefGoogle Scholar
  16. 16.
    Martín A, Quintanal LM, Suárez E (2007). Tetrahedron Lett 48:5507–5511CrossRefGoogle Scholar
  17. 17.
    Martín A, Pérez-Martín I, Suárez E (2009). Tetrahedron 65:6147–6155CrossRefGoogle Scholar
  18. 18.
    Martín A, Pérez-Martín I, Suárez E (2005). Org Lett 7:2027–2030CrossRefGoogle Scholar
  19. 19.
    Probst N, Grelier G, Ghermani N, Gandon V, Alami M, Messaoudi S (2017). Org Lett 19:5038–5041CrossRefGoogle Scholar
  20. 20.
    Pezzotta J, Urban D, Guillot R, Doisneau G, Beau J-M (2014). Synlett 25:375–380Google Scholar
  21. 21.
    Briner K, Vasella A (1989). Helv Chim Acta 72:1371–1382CrossRefGoogle Scholar
  22. 22.
    Blüchel C, Linden A, Vasella A (2001). Helv Chim Acta 84:3495–3502CrossRefGoogle Scholar
  23. 23.
    Mangholz SE, Vasella A (1991). Helv Chim Acta 74:2100–2111CrossRefGoogle Scholar
  24. 24.
    Vasella A, Waldraff CAA (1991). Helv Chim Acta 74:585–593CrossRefGoogle Scholar
  25. 25.
    Somsák L, Praly J-P, Descotes G (1992). Synlett:119–120Google Scholar
  26. 26.
    Praly JP, El Kharraf Z, Descotes G (1990). Tetrahedron Lett 31:4441–4442CrossRefGoogle Scholar
  27. 27.
    Blüchel C, Ramana CV, Vasella A (2003). Helv Chim Acta 86:2998–3036CrossRefGoogle Scholar
  28. 28.
    Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009). J Org Chem 74:8779–8786CrossRefGoogle Scholar
  29. 29.
    Vasella A, Witzig C, Waldraff C, Uhlmann P, Briner K, Bernet B, Panza L, Husi R (1993). Helv Chim Acta 76:2847–2875CrossRefGoogle Scholar
  30. 30.
    Vasella A, Dhar P, Witzig C (1993). Helv Chim Acta 76:1767–1778CrossRefGoogle Scholar
  31. 31.
    Lay L, Nicotra F, Panza L, Russo G (1995). Synlett:167–168Google Scholar
  32. 32.
    Schweizer F, Inazu T (2001). Org Lett 3:4115–4118CrossRefGoogle Scholar
  33. 33.
    Zhang K, Schweizer F (2005). Synlett:3111–3115Google Scholar
  34. 34.
    Zhang K, Wang J, Sun Z, Nguyen D-H, Schweizer F (2007). Synlett:0239–0242Google Scholar
  35. 35.
    Zhang K, Mondal D, Zhanel GG, Schweizer F (2008). Carbohydr Res 343:1644–1652CrossRefGoogle Scholar
  36. 36.
    Zhang K, Schweizer F (2009). Carbohydr Res 344:576–585CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Praly JP, Brard L, Descotes G (1988). Tetrahedron Lett 29:2651–2654CrossRefGoogle Scholar
  38. 38.
    Praly J-P, Kharraf ZE, Corringer P-J, Brard L, Descotes G (1990). Tetrahedron 46:65–75CrossRefGoogle Scholar
  39. 39.
    Buchanan JG, Clelland APW, Wightman RH, Johnson T, Rennie RAC (1992). Carbohydr Res 237:295–301CrossRefGoogle Scholar
  40. 40.
    Baddeley KL, Cao Q, Muldoon MJ, Cook MJ (2015). Chem Eur J 21:7726–7730CrossRefGoogle Scholar
  41. 41.
    Zhang D, Ye D, Feng E, Wang J, Shi J, Jiang H, Liu H (2010). J Org Chem 75:3552–3557CrossRefGoogle Scholar
  42. 42.
    McDonald FE, Zhu HYH, Holmquist CR (1995). J Am Chem Soc 117:6605–6606CrossRefGoogle Scholar
  43. 43.
    Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H (2007). Chem Asian J 2:1388–1399CrossRefGoogle Scholar
  44. 44.
    Bartolozzi A, Capozzi G, Falciani C, Menichetti S, Nativi C, Bacialli AP (1999). J Org Chem 64:6490–6494CrossRefGoogle Scholar
  45. 45.
    Wrodnigg TM, Kartusch C, Illaszewicz C (2008). Carbohydr Res 343:2057–2066CrossRefGoogle Scholar
  46. 46.
    Gallas K, Pototschnig G, Adanitsch F, Stütz AE, Wrodnigg TM (2012). Beilstein J Org Chem 8:1619–1629CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Denmark SE, Regens CS, Kobayashi T (2007). J Am Chem Soc 129:2774–2776CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Denmark SE, Kobayashi T, Regens CS (2010). Tetrahedron 66:4745–4759CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Song KS, Lee SH, Kim MJ, Seo HJ, Lee J, Lee SH, Jung ME, Son EJ, Lee M, Kim J, Lee J (2011). ACS Med Chem Lett 2:182–187CrossRefGoogle Scholar
  50. 50.
    Harada N, Inagaki N (2012). J Diabetes Investig 3:352–353CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Madaan T, Akhtar M, Najmi AK (2016). Eur J Pharm Sci 93:244–252CrossRefGoogle Scholar
  52. 52.
    Washburn WN (2012) SGLT2 inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 29–87CrossRefGoogle Scholar
  53. 53.
    Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L (2017). Chem Rev 117:1687–1764CrossRefGoogle Scholar
  54. 54.
    Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA (2018). Org Proc Res Dev 22:467–488CrossRefGoogle Scholar
  55. 55.
    Poole RM, Prossler JE (2014). Drugs 74:939–944CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Murakata M, Ikeda T, Kimura N, Kawase A, Nagase M, Yamamoto K, Takata N, Yoshizaki S, Takano K (2009) Crystal of spiroketal derivative, and process for production thereof. WO2009154276Google Scholar
  57. 57.
    Kobayashi T, Sato T, Nishimoto M (2005) Spiroketal derivative and use thereof as diabetic medicine. US2009030006Google Scholar
  58. 58.
    Kobayashi T, Sato T, Nishimoto M (2006) Preparation of 1,1-anhydro-1-C-[2-(hydroxyalkyl)aryl]-β-D-glucopyranose compounds as SGLT2 inhibitors. WO2006080421A1Google Scholar
  59. 59.
    Ohtake Y, Emura T, Nishimoto M, Takano K, Yamamoto K, Tsuchiya S, Yeu SY, Kito Y, Kimura N, Takeda S, Tsukazaki M, Murakata M, Sato T (2016). J Org Chem 81:2148–2153CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yang X-D, Pan Z-X, Li D-J, Wang G, Liu M, Wu R-G, Wu Y-H, Gao Y-C (2016). Org Process Res Dev 20:1821–1827CrossRefGoogle Scholar
  61. 61.
    Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu SY, Ahn KH, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012). J Med Chem 55:7828–7840CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ross SA, Gulve EA, Wang M (2004). Chem Rev 104:1255–1282CrossRefGoogle Scholar
  63. 63.
    Morral N (2003). Trends Endocrinol Metab 14:169–175CrossRefGoogle Scholar
  64. 64.
    Baker DJ, Greenhaff PL, Timmons JA (2006). Expert Opin Ther Pat 16:459–466CrossRefGoogle Scholar
  65. 65.
    Khan M (2007). Top Heterocycl Chem 9:33–52CrossRefGoogle Scholar
  66. 66.
    Somsák L, Czifrák K, Tóth M, Bokor E, Chrysina ED, Alexacou KM, Hayes JM, Tiraidis C, Lazoura E, Leonidas DD, Zographos SE, Oikonomakos NG (2008). Curr Med Chem 15:2933–2983CrossRefGoogle Scholar
  67. 67.
    Praly J-P, Vidal S (2010). Mini-Rev Med Chem 10:1102–1126CrossRefGoogle Scholar
  68. 68.
    Henke BR (2012) Inhibition of glycogen phosphorylase as a strategy for the treatment of type 2 diabetes. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 324–365CrossRefGoogle Scholar
  69. 69.
    Gaboriaud-Kolar N, Skaltsounis A-L (2013). Expert Opin Ther Pat 23:1017–1032CrossRefGoogle Scholar
  70. 70.
    Donnier-Maréchal M, Vidal S (2016). Expert Opin Ther Pat 26:199–212CrossRefGoogle Scholar
  71. 71.
    Somsák L, Nagy V, Hadady Z, Docsa T, Gergely P (2003). Curr Pharm Des 9:1177–1189CrossRefGoogle Scholar
  72. 72.
    Somsák L (2011). C R Chim 14:211–223CrossRefGoogle Scholar
  73. 73.
    Praly J-P, Boyé S, Joseph B, Rollin P (1993). Tetrahedron Lett 34:3419–3420CrossRefGoogle Scholar
  74. 74.
    Elek R, Kiss L, Praly J-P, Somsák L (2005). Carbohydr Res 340:1397–1402CrossRefGoogle Scholar
  75. 75.
    Somsák L, Nagy V, Vidal S, Czifrák K, Berzsényi E, Praly J-P (2008). Bioorg Med Chem Lett 18:5680–5683CrossRefGoogle Scholar
  76. 76.
    Nagy V, Benltifa M, Vidal S, Berzsényi E, Teilhet C, Czifrák K, Batta G, Docsa T, Gergely P, Somsák L, Praly J-P (2009). Bioorg Med Chem 17:5696–5707CrossRefGoogle Scholar
  77. 77.
    RajanBabu TV, Reddy GS (1986). J Org Chem 51:5458–5461CrossRefGoogle Scholar
  78. 78.
    Enderlin G, Taillefumier C, Didierjean C, Chapleur Y (2005). Tetrahedron Asymmetry 16:2459–2474CrossRefGoogle Scholar
  79. 79.
    Benltifa M, Vidal S, Gueyrard D, Goekjian PG, Msaddek M, Praly J-P (2006). Tetrahedron Lett 47:6143–6147CrossRefGoogle Scholar
  80. 80.
    Zhang P-Z, Li X-L, Chen H, Li Y-N, Wang R (2007). Tetrahedron Lett 48:7813–7816CrossRefGoogle Scholar
  81. 81.
    Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly JP, Kizilis G, Tiraidis C, Alexacou KM, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG (2009). Bioorg Med Chem 17:7368–7380CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Goyard D, Kónya B, Chajistamatiou AS, Chrysina ED, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Somsák L, Docsa T, Gergely P, Praly J-P, Azay-Milhau J, Vidal S (2016). Eur J Med Chem 108:444–454CrossRefGoogle Scholar
  83. 83.
    Tite T, Tomas L, Docsa T, Gergely P, Kovensky J, Gueyrard D, Wadouachi A (2012). Tetrahedron Lett 53:959–961CrossRefGoogle Scholar
  84. 84.
    Benltifa M, Kiss MD, Garcia-Moreno MI, Mellet CO, Gueyrard D, Wadouachi A (2009). Tetrahedron Asymmetry 20:1817–1823CrossRefGoogle Scholar
  85. 85.
    Toumieux S, Compain P, Martin OR (2005). Tetrahedron Lett 46:4731–4735CrossRefGoogle Scholar
  86. 86.
    Somsák L, Kovács L, Gyóllai V, Ősz E (1999). Chem Commun 7:591–592CrossRefGoogle Scholar
  87. 87.
    Páhi A, Czifrák K, Kövér KE, Somsák L (2015). Carbohydr Res 403:192–201CrossRefGoogle Scholar
  88. 88.
    Somsák L, Kovács L, Tóth M, Ősz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P (2001). J Med Chem 44:2843–2848CrossRefGoogle Scholar
  89. 89.
    Czifrák K, Páhi A, Deák S, Kiss-Szikszai A, Kövér KE, Docsa T, Gergely P, Alexacou K-M, Papakonstantinou M, Leonidas DD, Zographos SE, Chrysina ED, Somsák L (2014). Bioorg Med Chem 22:4028–4041CrossRefGoogle Scholar
  90. 90.
    Szabó KE, Kun S, Mándi A, Kurtán T, Somsák L (2017). Molecules 22:1760CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Czifrák K, Gyóllai V, Kövér KE, Somsák L (2011). Carbohydr Res 346:2104–2112CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246)Université Claude Bernard Lyon 1 and CNRS, Bâtiment LedererVilleurbanneFrance

Personalised recommendations