Carbohydrate-Derived Spiroketals and Spirocyclic Lactones

  • Perali Ramu SridharEmail author
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 57)


Various methods for the synthesis of carbohydrate-derived spiroketals and spirocyclic lactones starting from endo- and exo-glycals are discussed. Further conversion of the spiroketals and spirolactones to the natural products is also emphasized wherever applicable.


Bicycles bis-C,C-glycosides Endo-glycals Exo-glycals Natural products 











Camphor-10-sulfonic acid










Dess-Martin periodinane


Dimethyl sulfoxide


Ethyl diazoacetate


2-Iodoxybenzoic acid




Lithium aluminum hydride


Lithium 4,4′-di-tert-butylbiphenylide


Lithium hexamethyldisilazide


m-chloroperoxybenzoic acid


Methyl diazoacetate


Molecular sieves








Pyridinium p-toluenesulfonate


Stabilized 2-iodoxybenzoic acid










Trifluoroacetic acid












Trimethylsilyl trifluoromethanesulfonate




  1. 1.
    Nicolaou KC, Mitchell HJ (2001) Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew Chem Int Ed 40:1576–1624Google Scholar
  2. 2.
    Perron F, Albizati KF (1989) Chemistry of spiroketals. Chem Rev 89:1617–1661Google Scholar
  3. 3.
    Jacobs MF, Kitching W (1998) Spiroacetals of marine origin. Curr Org Chem 2:395–436Google Scholar
  4. 4.
    Mead KT, Brewer BN (2003) Strategies in spiroketal synthesis revisited: recent applications and advances. Curr Org Chem 7:227–256Google Scholar
  5. 5.
    Brimble MA, Furkert DP (2003) Chemistry of bis-spiroacetal systems: natural products, synthesis and stereochemistry. Curr Org Chem 7:1461–1484Google Scholar
  6. 6.
    Ley SV, Milroy LG, Myers RM (2007) Product class 9: spiroketals. Sci Synth 29:613–690Google Scholar
  7. 7.
    Verano AL, Tan DS (2017) Stereocontrolled synthesis of spiroketals: an engine for chemical and biological discovery. Isr J Chem 57:279–291PubMedPubMedCentralGoogle Scholar
  8. 8.
    Macial FA, Galindo JLG, Varela RM, Torres A, Molinillo JMG, Fronczek FR (2006) Heliespirones B and C: two new plant heliespiranes with a novel spiro heterocyclic sesquiterpene skeleton. Org Lett 8:4513–4516Google Scholar
  9. 9.
    Noguchi N, Nakada M (2006) Synthetic studies on (+)-ophiobolin A: asymmetric synthesis of the spirocyclic CD-ring moiety. Org Lett 8:2039–2042PubMedGoogle Scholar
  10. 10.
    Entzeroth M, Blackman AJ, Myndersel JS, Moore RE (1985) Structures and stereochemistries of oscillatoxin B, 31-noroscillatoxin B, oscillatoxin D, and 30-methyloscillatoxin D. J Org Chem 50:1255–1259Google Scholar
  11. 11.
    Springer JP, Arison BH, Hirshfield JM, Hoogsteen K (1981) The absolute stereochemistry and conformation of avermectin B2a aglycone and avermectin B1a. J Am Chem Soc 103:4221–4224Google Scholar
  12. 12.
    Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107:4796–4798Google Scholar
  13. 13.
    Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, van Engen D, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471Google Scholar
  14. 14.
    Chaney MO, Demarco PV, Jones ND, Occolowitz JL (1974) Structure of A23187, a divalent cation ionophore. J Am Chem Soc 96:1932–1933PubMedGoogle Scholar
  15. 15.
    Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T (1986) Bioactive marine metabolites. Part 16. Calyculin A. A novel antitumor metabolite from the marine sponge Discodermia calyx. J Am Chem Soc 108:2780–2781Google Scholar
  16. 16.
    Jones ND, Chaney MO, Chamberlin JW, Hamill RL, Shen S (1973) Structure of A204A, a new polyether antibiotic. J Am Chem Soc 95:3399–3400PubMedGoogle Scholar
  17. 17.
    Deslongchamps P, Rowan DD, Pothier N, Saunders JK (1981) 1,7-Dithia and 1-oxa-7-thiaspiro[5.5]undecanes. Excellent systems for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in the monothio and the dithioacetal functions. Can J Chem 59:1122–1131Google Scholar
  18. 18.
    Pothier N, Rowan DD, Deslongchamps P, Saunders JK (1981) 13C chemical shift data for 1,7-dioxaspiro[S.S]undecanes and related compounds. Can J Chem 59:1132–1139Google Scholar
  19. 19.
    Moore RE, Blackman AJ, Cheuk CE, Mynderse JS (1984) Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J Org Chem 49:2484–2489Google Scholar
  20. 20.
    Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J (1985) Diarrhetic shellfish toxins. Tetrahedron 41:1019–1025Google Scholar
  21. 21.
    Jung JH, Sim CJ, Lee CO (1995) Cytotoxic compounds from a two-sponge association. J Nat Prod 58:1722–1726PubMedGoogle Scholar
  22. 22.
    Taillefumier C, Chapleur Y (2004) Synthesis and uses of exo-glycals. Chem Rev 104:263–292PubMedGoogle Scholar
  23. 23.
    Frederic CJM, Vincent SP (2018) Synthesis of exo-glycals and their biochemical applications. Tetrahedron 74:6512–6519Google Scholar
  24. 24.
    Pal P, Shaw AK (2017) The evolution of comprehensive strategies for furanoid glycal synthesis and their applications. RSC Adv 7:25897–25963Google Scholar
  25. 25.
    Haraguchi K, Konno K, Yamada K, Kitagawa Y, Nakamura KT, Tanaka H (2010) Electrophilic glycosidation employing 3,5-O-(di-tert-butylsilylene)-erythro-furanoid glycal leads to exclusive formation of the β-anomer: synthesis of 2′-deoxynucleosides and its 1′-branched analogues. Tetrahedron 66:4587–4600Google Scholar
  26. 26.
    Paquette LA, Brand S, Behrens C (1999) An enantioselective ring expansion route leading to furanose and pyranose nucleosides featuring spirodiketopiperazines at the anomeric position. J Org Chem 64:2010–2025PubMedGoogle Scholar
  27. 27.
    Boyce RS, Kennedy RM (1994) The oxidative spirocyclization of 2-(ω-(OH)-alkyl)cyclic enol ethers by rhenium (VII)-oxide. Tetrahedron Lett 35:5133–5136Google Scholar
  28. 28.
    Čorić I, List B (2012) Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483:315–319PubMedGoogle Scholar
  29. 29.
    Yang WB, Chang CF, Wang SH, Teo CF, Lin CH (2001) Expeditious synthesis of C-glycosyl conjugated dienes and aldehydes from sugar lactones. Tetrahedron Lett 42:4657–4660Google Scholar
  30. 30.
    Chang CF, Yang WB, Chang CC, Lin CH (2002) Inter- and intramolecular alcohol additions to exo-glycals. Tetrahedron Lett 43:6515–6519Google Scholar
  31. 31.
    Ramakrishna B, Sridhar PR (2015) Stereoselective synthesis of 1,6-dioxaspirolactones from spiro-cyclopropanecarboxylated sugars: total synthesis of dihydro-pyrenolide D. RSC Adv 5:8142–8145Google Scholar
  32. 32.
    Schneider TF, Kaschel J, Werz DB (2014) A new golden age for donor–acceptor cyclopropanes. Angew Chem Int Ed 53:5504–5523Google Scholar
  33. 33.
    Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf L (1967) Structure of monensic acid, a new biologically active compound. J Am Chem Soc 89:5737–5739PubMedGoogle Scholar
  34. 34.
    Haney Jr ME, Hoehn MM (1967) Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob Agents Chemother 7:349–352PubMedGoogle Scholar
  35. 35.
    Fuwa H, Sakamoto K, Muto T, Sasaki M (2015) Concise synthesis of the C15-C38 fragment of okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A. Tetrahedron 71:6369–6383Google Scholar
  36. 36.
    Zhankui S, Grace AW, Alina B, Pavel N (2012) Chiral phosphoric acid-catalyzed enantioselective and diastereoselective spiroketalizations. J Am Chem Soc 134:8074–8077Google Scholar
  37. 37.
    Potuzak JS, Moilanen SB, Tan DS (2005) Stereocontrolled synthesis of spiroketals via a remarkable methanol-induced kinetic spirocyclization reaction. J Am Chem Soc 127:13796–13797PubMedGoogle Scholar
  38. 38.
    Wurst JM, Liu G, Tan DS (2011) Hydrogen-bonding catalysis and inhibition by simple solvents in the stereoselective kinetic epoxide-opening spirocyclization of glycal epoxides to form spiroketals. J Am Chem Soc 133:7916–7925PubMedPubMedCentralGoogle Scholar
  39. 39.
    Moilanen SB, Potuzak JS, Tan DS (2006) Stereocontrolled synthesis of spiroketals via Ti(Oi-Pr)4-mediated kinetic spirocyclization of glycal epoxides with retention of configuration. J Am Chem Soc 128:1792–1793PubMedPubMedCentralGoogle Scholar
  40. 40.
    Takaoka LR, Buckmelter AJ, LaCruz TE, Rychnovsky SD (2005) Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations. J Am Chem Soc 127:528–529PubMedGoogle Scholar
  41. 41.
    Lorenc C, Saur J, Moser A, Buevich AV, Williams AJ, Williamson RT, Martin GE, Peczuh MW (2015) Turning spiroketals inside out: a rearrangement triggered by an enol ether epoxidation. ChemistryOpen 4:577–580PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hasegawa S, Koyanagi H, Hirose Y (1990) Decarboxylated ascorbigens in the heartwood of Chamaecyparis pisifera. Phytochemistry 29:261–266Google Scholar
  43. 43.
    Robertson J, Chovatia PT, Fowler TG, Withey JM, Woollaston DJ (2010) Oxidative spirocyclisation routes towards the sawaranospirolides. Synthesis of ent-sawaranospirolides C and D. Org Biomol Chem 8:226–233PubMedGoogle Scholar
  44. 44.
    Alcaraz ML, Griffin FK, Paterson DE, Taylor RJK (1998) Synthetic applications of Ramberg-Bäcklund derived exo-glycals. Tetrahedron Lett 39:8183–8186Google Scholar
  45. 45.
    Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009) Synthesis of [n,5]-spiroketals by ring enlargement of donor-acceptor-substituted cyclopropane derivatives. J Org Chem 74:8779–8786PubMedGoogle Scholar
  46. 46.
    Kulkarni BA, Roth GP, Lobkovsky E, Porco JA (2002) Combinatorial synthesis of natural product-like molecules using a first-generation spiroketal scaffold. J Comb Chem 4:56–72PubMedGoogle Scholar
  47. 47.
    Lynn DG, Phillips NJ, Hutton WC, Shabanowitz J, Fennell DI, Cole RJ (1983) Talaromycins: application of homonuclear spin correlation maps to structure assignment. J Am Chem Soc 104:7319–7322Google Scholar
  48. 48.
    Hutton WC, Phillips NJ, Graden DW, Lynn DG (1983) The application of two-dimensional N.M.R. Cross relaxation spectroscopy to natural product structure determination: talaromycin B. J Chem Soc Chem Commun 16:864–866Google Scholar
  49. 49.
    Phillips NJ, Cole RJ, Lynn DG (1987) Talaromycins C,D,E, and F. Tetrahedron Lett 28:1619–1621Google Scholar
  50. 50.
    Petit GR, Cichacs ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA (1993) Antineoplastic agents. 257. Isolation and structure of spongistatin 1. J Org Chem 58:1302–1304Google Scholar
  51. 51.
    Uckun FM, Mao C, Vassilev AO, Huang H, Jan ST (2009) Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg Med Chem Lett 10:541–545Google Scholar
  52. 52.
    Mitsuhashi S, Shima H, Kawamura T, Kikuchi K, Oikawa M, Ichihara A, Oikawa H (1999) The spiroketals containing a benzyloxymethyl moiety at C8 position showed the most potent apoptosis-inducing activity. Bioorg Med Chem Lett 9:2007–2012PubMedGoogle Scholar
  53. 53.
    Conway JC, Urch CJ, Quayle P, Xu J (2006) Spiroketalization reactions on a carbohydrate template. Synlett 5:776–780Google Scholar
  54. 54.
    Fuwa H, Sasaki M (2008) An efficient strategy for the synthesis of endocyclic enol ethers and its application to the synthesis of spiroacetals. Org Lett 10:2549–2552PubMedGoogle Scholar
  55. 55.
    Holson EB, Roush WR (2002) Diastereoselective synthesis of the C(17)−C(28) fragment (the C−D spiroketal unit) of spongistatin 1 (altohyrtin A) via a kinetically controlled iodo-spiroketalization reaction. Org Lett 4:3719–3722PubMedGoogle Scholar
  56. 56.
    Holson EB, Roush WR (2002) Synthesis of the C(2)−C(13) fragment (the A−B spiroketal unit) of spongistatin 1 (altohyrtin A): use of a common intermediate for the synthesis of both spongistatin spiroketals. Org Lett 4:3723–3725PubMedGoogle Scholar
  57. 57.
    Mori K, Ikunaka M (1987) Synthesis of (-)-talaromycins a and b. Tetrahedron 43:45–58Google Scholar
  58. 58.
    Corbet M, Bourdon B, Gueyrard D, Goekjian PGA (2008) Julia olefination approach to the synthesis of functionalized enol ethers and their transformation into carbohydrate-derived spiroketals. Tetrahedron Lett 49:750–754Google Scholar
  59. 59.
    Lin HC, Chen YB, Lin ZP, Wong FF, Lin CH, Lin SK (2008) Synthesis of 1,7-dioxaspiro[5.5]undecanes and 1-oxa-7-thiaspiro[5.5]undecanes from exo-glycal. Tetrahedron 66:5229–5234Google Scholar
  60. 60.
    Matsuda S, Yoshida A, Nakagawa J, Watanabe M, Oda Y, Yamanoi T (2014) Stereocontrolled spirocyclization of exo-glucal derivatives for stereodivergent synthesis of spiro[5.5]ketals. Tetrahedron Lett 55:6394–6398Google Scholar
  61. 61.
    Yamanoi T, Nara Y, Matsuda S, Oda Y, Yoshida A, Katsuraya K, Watanabe M (2007) Synthetic approach to exo-glycals from 1-C-vinyl-D-glycopyranose derivatives via an SN1′-substitution mechanism. Synlett 5:785–789Google Scholar
  62. 62.
    Deslongchamps P, Rowan DD, Pothier N, Sauvé G, Saunders JK (1981) 1,7-Dioxaspiro[5.5]undecanes. An excellent system for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in acetals. Can J Chem 59:1105–1121Google Scholar
  63. 63.
    Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon, OxfordGoogle Scholar
  64. 64.
    Paquette LA, Kinney MJ, Dullweber U (1997) Practical synthesis of spirocyclic bis-C,C-glycosides. Mechanistic models in explanation of rearrangement stereoselectivity and the bifurcation of reaction pathways. J Org Chem 62:1713–1722Google Scholar
  65. 65.
    Smith MJ, Mazzola EP, Sims JJ, Midland SL, Keen NT, Burton V, Stayton MM (1993) The syringolides: bacterial C-glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett 34:223–226Google Scholar
  66. 66.
    Midland SL, Keen NT, Sims JJ, Midland MM, Stayton MM, Burton V, Smith MJ, Mazzola EP, Graham KJ, Clardy J (1993) The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. Tomato. J Org Chem 58:2940–2945Google Scholar
  67. 67.
    Umezawa S, Usui T, Umezawa H, Tsuchiya T, Takeuchi T, Hamada M (1971) A new microbial metabolite, sphydrofuran. I. J Antibiot 24:85–92PubMedGoogle Scholar
  68. 68.
    Umezawa S, Tsuchiya T, Naganawa H, Takeuchi T, Umezawa H (1971) A new microbial metabolite, sphydrofuran. II. J Antibiot 24:93–106PubMedGoogle Scholar
  69. 69.
    Sridhar PR, Seshadri K, Reddy GD (2012) Stereoselective synthesis of sugar fused β-disubstituted γ-butyro-lactones: C-spiro-glycosides from 1,2-cyclopropanecarboxylated sugars. Chem Commun 48:756–758Google Scholar
  70. 70.
    Honda T, Mizutani H, Kanai K (1996) Enantioselective syntheses of syributin 1 and novel C-glycosidic elicitors syringolides 1 and 2. J Org Chem 61:9374–9378Google Scholar
  71. 71.
    Mukai C, Moharram SM, Azukizawa S, Hanaoka M (1997) Total syntheses of (+)-secosyrins 1 and 2 and (+)-syributins 1 and 2. J Org Chem 62:8095–8103PubMedGoogle Scholar
  72. 72.
    Edwards RL, Maitland DJ, Oliver CL, Pacey MS, Shields L, Whalley AJS (1999) Metabolites of the higher fungi. Part 31. Longianone, a C7H6O4 spiro bicyclic lactone from the fungus Xylaria longiana (Rehm.). J Chem Soc Perkin Trans 1:715–720Google Scholar
  73. 73.
    Sridhar PR, Seshadri K (2012) First enantioselective total synthesis of (S)-(−)-longianone. Tetrahedron 68:3725–3728Google Scholar
  74. 74.
    Lykakis IN, Zaravinos IP, Raptis C, Stratakis M (2009) Divergent synthesis of the Co-isolated mycotoxins longianone, isopatulin, and (Z)-ascladiol via furan oxidation. J Org Chem 74:6339–6342PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations