Advertisement

Recent Advances in the Chemistry and Biology of Spirocyclic Nucleosides

  • Martín Soto
  • Humberto Rodríguez-Solla
  • Raquel SoengasEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 57)

Abstract

Nucleosides are structural subunits of nucleic acids, the macromolecules that convey genetic information in living cells. Human creativity has been put to light in the ability of drug researchers to draw on an understanding of the biochemistry of naturally occurring nucleosides and to build up synthetic nucleoside analogues, which belong to the most important class of antiviral drugs and are extensively used as anticancer agents and in the treatment of other diseases. In this regard, the potential benefits associated with the spirocyclic restriction of nucleosides sparkled considerable interest in the synthesis and application of these molecules as therapeutic agents. The field of spirocyclic nucleosides started to grow since the isolation of hydantocidin, a natural spironucleoside isolated from fermentation broths of Streptomyces hygroscopicus, which exhibits potent herbicidal activity. The biological activity of hydantocidin prompted considerable synthetic interest in this nucleoside and also in a variety of analogues. The present overview describes the convenient approaches that have been developed in the past two decades for accessing varied members of the family of spiro-functionalized nucleosides.

Keywords

Nucleosides Spirocyclic compounds Spironucleosides 

References

  1. 1.
    de Clercq E (2010) Highlights in the discovery of antiviral drugs: a personal retrospective. J Med Chem 53:1438–1450.  https://doi.org/10.1021/jm900932g CrossRefPubMedGoogle Scholar
  2. 2.
    Mehellou Y, De Clercq E (2010) Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem 53:521–538.  https://doi.org/10.1021/jm900492g CrossRefPubMedGoogle Scholar
  3. 3.
    de Clercq E (2009) The history of antiretrovirals: key discoveries over the past 25 years. Rev Med Virol 19:287–299.  https://doi.org/10.1002/rmv.624 CrossRefPubMedGoogle Scholar
  4. 4.
    de Clercq E (2009) Looking back in 2009 at the dawning of antiviral therapy now 50 years ago in historical perspective. Adv Virus Res 73:1–53.  https://doi.org/10.1016/S0065-3527(09)73001-5 CrossRefPubMedGoogle Scholar
  5. 5.
    De Clercq E (2010) In search of a selective therapy of viral infections. Antivir Res 85:19–24.  https://doi.org/10.1016/j.antiviral.2009.10.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Gandhi V, Plunkett W (2006) Clofarabine and nelarabine: two new purine nucleoside analogs. Curr Opin Oncol 18:584–590.  https://doi.org/10.1097/01.cco.0000245326.65152.af CrossRefPubMedGoogle Scholar
  7. 7.
    Elgemeie GH (2003) Thioguanine, mercaptopurine: their analogs and nucleosides as antimetabolites. Curr Pharm Des 9:2627–2642.  https://doi.org/10.2174/1381612033453677 CrossRefPubMedGoogle Scholar
  8. 8.
    Miura S, Izuta S (2004) DNA polymerases as targets of anticancer nucleosides. Curr Drug Targets 5:191–195.  https://doi.org/10.2174/1381612033453677 CrossRefPubMedGoogle Scholar
  9. 9.
    Parker WB, Secrist JA, Waud WR (2004) Purine nucleoside antimetabolites in development for the treatment of cancer. Curr Opin Investig Drugs 5:592–596PubMedGoogle Scholar
  10. 10.
    Ying C, de Clercq E, Neyts J (2003) Selective inhibitors of hepatitis B virus replication. Curr Med Chem Anti-Infect Agents 2:227–240.  https://doi.org/10.2174/1568012033483042 CrossRefGoogle Scholar
  11. 11.
    Sharma PL, Nurpeisov V, Hernandez-Santiago B, Beltran T, Schinazi RF (2004) Nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Curr Top Med Chem 4:895–921.  https://doi.org/10.2174/1568026043388484 CrossRefPubMedGoogle Scholar
  12. 12.
    Otto M (2004) New nucleoside reverse transcriptase inhibitors for the treatment of HIV infections. Curr Opin Pharmacol 4:431–436.  https://doi.org/10.1016/j.coph.2004.06.001 CrossRefPubMedGoogle Scholar
  13. 13.
    Ichikawa E, Kato K (2001) Sugar-modified nucleosides in past 10 years, a review. Curr Med Chem 8:385–423.  https://doi.org/10.2174/0929867013373471 CrossRefPubMedGoogle Scholar
  14. 14.
    Ford H, Dai F, Mu L, Siddiqui MA, Nicklaus MC, Anderson L, Marquez VE, Barchi JJ (2000) Adenosine deaminase prefers a distinct sugar ring conformation for binding and catalysis: kinetic and structural studies. Biochemistry 39:2581–2592.  https://doi.org/10.1021/bi992112c CrossRefPubMedGoogle Scholar
  15. 15.
    Hernandez S, Ford H, Marquez VE (2002) Is the anomeric effect an important factor in the rate of adenosine deaminase catalyzed hydrolysis of purine nucleosides? A direct comparison of nucleoside analogues constructed on ribose and carbocyclic templates with equivalent heterocyclic bases selected to promote hydration. Bioorg Med Chem 10:2723–2730.  https://doi.org/10.1016/S0968-0896(02)00099-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Marquez VE, Choi Y, Comin MJ, Russ P, George C, Huleihel M, Ben-Kasus T, Agbaria R (2005) Understanding how the herpes thymidine kinase orchestrates optimal sugar and nucleobase conformations to accommodate its substrate at the active site: a chemical approach. J Am Chem Soc 127:15145–15150.  https://doi.org/10.1021/ja053789s CrossRefPubMedGoogle Scholar
  17. 17.
    Costanzi S, Joshi BV, Maddileti S, Mamedova L, Gonzalez-Moa MJ, Marquez VE, Harden TK, Jacobson KA (2005) Semirational design of (north)-methanocarba nucleosides as dual acting A1 and A3 adenosine receptor agonist: novel prototypes for cardioprotection. J Med Chem 48:8103–8107.  https://doi.org/10.1021/jm050726b CrossRefGoogle Scholar
  18. 18.
    Besada P, Shin DH, Costanzi S, Ko H, Mathé C, Gagneron J, Gosselin G, Maddileti S, Harden TK (2005) Human P2Y6 receptor: molecular modeling leads to the rational design of a novel agonist base on a unique conformational preference. J Med Chem 48:8108–8111.  https://doi.org/10.1021/jm050911p CrossRefGoogle Scholar
  19. 19.
    Boyer PL, Julias JG, Marquez VE, Hugues SH (2005) Fixed conformation nucleoside analogues effectively inhibit excision-proficient HIV-1 reverse transcriptases. J Mol Biol 345:441–450.  https://doi.org/10.1016/j.jmb.2004.10.021 CrossRefPubMedGoogle Scholar
  20. 20.
    Besada P, Shin DH, Costanzi S, Ko H, Mathé C, Gagneron J, Gosselin G, Maddileti S, Harden TK, Jacobson KA (2006) Structure-activity relationships of uridine 5′-diphosphate analogues at the human P2Y6 receptor. J Med Chem 49:5532–5543.  https://doi.org/10.1021/jm060485n CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Altona C, Sundaralingam M (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. J Am Chem Soc 94:8205–8212.  https://doi.org/10.1021/ja00778a043 CrossRefPubMedGoogle Scholar
  22. 22.
    Mathé C, Périgaud C (2008) Recent approaches in the synthesis of conformationally restricted nucleoside analogues. Eur J Org Chem 1489–1505.  https://doi.org/10.1002/ejoc.200700946
  23. 23.
    Kvaerna L, Wightman R, Wengel J (2001) Synthesis of a novel bicyclic nucleoside restricted to an S-type conformation and initial evaluation of its hybridization properties when incorporated into oligodeoxynucleotides. J Org Chem 66:5106–5112.  https://doi.org/10.1021/jo015602v CrossRefGoogle Scholar
  24. 24.
    Freitag M, Thomasen H, Christensen N, Petersen M, Nielsen P (2004) A ring-closing metathesis based synthesis of bicyclic nucleosides locked in S-type conformations by hydroxyl functionalised 3′-4′-trans linkages. Tetrahedron 60:3775–3786.  https://doi.org/10.1016/j.tet.2004.03.019 CrossRefGoogle Scholar
  25. 25.
    Wengel J (1999) Synthesis of 3′-C- and 4′-C- branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc Chem Res 32:301–310.  https://doi.org/10.1021/ar980051p CrossRefGoogle Scholar
  26. 26.
    Singh S, Kumar R, Wengel J (1998) Synthesis of 2′-amino-LNA: a novel conformationally restricted high-affinity oligonucleotide analogue with a handle. J Org Chem 63:10035–10039.  https://doi.org/10.1021/jo9814445 CrossRefGoogle Scholar
  27. 27.
    Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644.  https://doi.org/10.1046/j.1432-1033.2003.03555.x CrossRefPubMedGoogle Scholar
  28. 28.
    Paroo Z, Corey D (2004) Challenges in RNAi in vivo. Trends Biotechnol 22:390–394CrossRefGoogle Scholar
  29. 29.
    Manoharan M (2004) RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 8:570–579.  https://doi.org/10.1016/j.cbpa.2004.10.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford H, Feldman RJ, Mitsuya H, George C, Barchi JJ (1998) HIV-1 reverse transcriptase can discriminate between two conformationally locked carbocyclic AZT triphosphate analogues. J Am Chem Soc 120:2780–2789.  https://doi.org/10.1021/ja973535+ CrossRefGoogle Scholar
  31. 31.
    Herdewijn P (1996) Targeting RNA with conformationally restricted oligonucleotides. Liebigs Ann Chem 1337–1348.  https://doi.org/10.1002/jlac.199619960902
  32. 32.
    Kool ET (1997) Preorganization of DNA: design principles for improving nucleic acid recognition by synthetic oligonucleotides. Chem Rev 97:1473–1488.  https://doi.org/10.1021/cr9603791 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Soengas RG, Silva S (2012) Spirocyclic nucleosides in medicinal chemistry: an overview. Mini Rev Med Chem 12:1485–1496.  https://doi.org/10.2174/138955712803832681 CrossRefPubMedGoogle Scholar
  34. 34.
    Gimisis T, Chatgilialoglu C (1996) 1,5-radical translocation protocol for the generation of C-1′ radicals in nucleosides. Synthesis of spiro nucleosides through a rare 5-endo-trig cyclization. J Org Chem 61:1908–1909.  https://doi.org/10.1021/jo952218n CrossRefGoogle Scholar
  35. 35.
    Chatgilialoglu C, Gimisis T, Spada GP (1999) C-1′ radical-based approaches for the synthesis of anomeric spironucleosides. Chem Eur J 5:2866–2877.  https://doi.org/10.1002/(SICI)1521-3765(19991001)5:10<2866::AID-CHEM2866>3.0.CO;2-6 CrossRefGoogle Scholar
  36. 36.
    Kittaka A, Asakura T, Kuze T, Tanaka H, Yamada N, Nakamura KT, Miyasaka T (1999) Cyclization reactions of nucleoside anomeric radical with olefin tethered on base: factors that induce anomeric stereochemistry. J Org Chem 64:7081–7093.  https://doi.org/10.1021/jo990611d CrossRefGoogle Scholar
  37. 37.
    Gimisis T, Castellari C, Chatglilialoglu C (1997) A new class of anomeric spironucleosides. Chem Commun 2089–2090.  https://doi.org/10.1039/A705742C
  38. 38.
    El Kouni MH, Naguib FN, Panzica RP, Otter BA, Chu SH, Gosselin G, Chu CK, Schinazi RF, Shealy YF, Goudgaon N, Ozerov AA, Ueda T, Iltzsch MH (1996) Effects of modifications in the pentose moiety and conformational changes on the binding of nucleoside ligands to uridine phosphorylase from Toxoplasma gondii. Biochem Pharmacol 51:1687–1700.  https://doi.org/10.1016/0006-2952(96)00213-4 CrossRefPubMedGoogle Scholar
  39. 39.
    Sankyo (1987) Europe Patent Appl 0,232,572,A2. see CA 107: 149218nGoogle Scholar
  40. 40.
    Sankyo (1988) US Patent 4,952,234,A28. see CA 115: 66804qGoogle Scholar
  41. 41.
    Ciba-Geigy AG (1990) DE Patent 4,129,616 A1Google Scholar
  42. 42.
    Mitsubishi Kasei Corp (1990) Jap Patent 04/222,589 AGoogle Scholar
  43. 43.
    Nakajima M, Itoi K, Takamatsu Y, Kinoshita T, Okazaki T, Kawakubo K, Shindo M, Honma T, Tohjigamori M, Haneishi T (1991) Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus. J Antibiot 44:293–300.  https://doi.org/10.7164/antibiotics.44.293 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Heim DR, Cseke C, Gerwick BC, Murdoch MG, Green SB (1995) Hydantocidin: a possible proherbicide inhibiting purine biosynthesis at the site of adenylosuccinate synthetase. Pestic Biochem Physiol 53:138–145.  https://doi.org/10.1006/pest.1995.1061 CrossRefGoogle Scholar
  45. 45.
    Smith JL (1995) Enzymes of nucleotide synthesis. Curr Opin Struct Biol 5:752–757CrossRefGoogle Scholar
  46. 46.
    Gregoriou M, Noble ME, Watson KA, Garman EF, Krulle TM, de la Fuente C, Fleet GW, Oikonomakos NG, Johnson LN (1998) The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 A resolution and 100 K: the role of the water structure and its contribution to binding. Protein Sci 7:915–927.  https://doi.org/10.1002/pro.5560070409 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Barford D, Johnson LN (1989) The allosteric transition of glycogen phosphorylase. Nature 340:609–616.  https://doi.org/10.1038/340609a0 CrossRefPubMedGoogle Scholar
  48. 48.
    Johnson LN, O’Reilly M (1996) Control by phosphorylation. Curr Opin Struct Biol 6:762–769.  https://doi.org/10.1016/S0959-440X(96)80005-4 CrossRefPubMedGoogle Scholar
  49. 49.
    Ortmeyer HK, Bodkin NL, Hansen BC (1997) Insulin regulates liver glycogen synthase and glycogen phosphorylase activity reciprocally in rhesus monkeys. Am J Phys 272:E133–E138.  https://doi.org/10.1152/ajpendo.1997.272.1.E133 CrossRefGoogle Scholar
  50. 50.
    Martin JL, Veluraja K, Ross K, Johnson LN, Fleet GWJ, Ramsden NG, Bruce I, Orchard MG, Oikonomakos NG, Papageorgiou AC, Leonidas DD, Tsitoura HS (1991) Glucose analogue inhibitors of glycogen phosphorylase: the design of potential drugs for diabetes. Biochemistry 30:10101–10116.  https://doi.org/10.1021/bi00106a006 CrossRefPubMedGoogle Scholar
  51. 51.
    Watson KA, Mitchell EP, Johnson LN, Son JC, Bichard CJF, Orchard MG, Fleet GWJ, Oikonomakos NG, Leonidas DD, Kontou M, Papageorgiou AC (1994) Design of inhibitors of glycogen phosphorylase: a study of α- and β-C-glucosides and 1-thio- β-D-glucose compounds. Biochemistry 33:5745–5758.  https://doi.org/10.1021/bi00185a011 CrossRefPubMedGoogle Scholar
  52. 52.
    Board M, Bollen M, Stalmans W, Kim Y, Fleet GWJ, Johnson LN (1995) Effects of C-1 substituted glucose analogue on the activation states of glycogen synthase and glycogen phosphorylase in rat hepatocytes. Biochem J 311:845–852.  https://doi.org/10.1042/bj3110845 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Martin JL, Johnson LN, Withers SG (1990) Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry 29:10745–10757.  https://doi.org/10.1021/bi00500a005 CrossRefPubMedGoogle Scholar
  54. 54.
    Osei K (1995) In: Leslie RDG, Robbins DC (eds) Diabetes, clinical science in practice. Cambridge University, CambridgeGoogle Scholar
  55. 55.
    DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687CrossRefGoogle Scholar
  56. 56.
    Mio S, Ichinose R, Goto K, Sugai S (1991) Synthetic studies on (+)-hydantocidin: a total synthesis of (+)-hydantocidin, a new herbicidal metabolite from microorganism. Tetrahedron 47:2111–2120.  https://doi.org/10.1016/S0040-4020(01)96122-8 CrossRefGoogle Scholar
  57. 57.
    Soengas RG, da Silva G, Estévez JC (2017) Synthesis of spironucleosides: past and future perspectives. Molecules 22:2028–2063.  https://doi.org/10.3390/molecules22112028 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Shiozaki M (2002) Syntheses of hydantocidin and C-2-thioxohydantocidin. Carbohydr Res 337:2077–2088.  https://doi.org/10.1016/S0008-6215(02)00217-3 CrossRefPubMedGoogle Scholar
  59. 59.
    Mio S, Shiraishi M, Sugai S (1991) Synthetic studies on (+)-hydantocidin (2): aldol addition approaches towards the stereoisomers of (+)-hydantocidin. Tetrahedron 47:2121–2132.  https://doi.org/10.1016/S0040-4020(01)96123-X CrossRefGoogle Scholar
  60. 60.
    Mio S, Ueda M, Hamura M, Kitakawa J, Sugai S (1991) Synthetic studies on (+)-hydantocidin (4): synthesis of stereoisomers of (+)-hydantocidin. Tetrahedron 47:2145–2154.  https://doi.org/10.1016/S0040-4020(01)96125-3 CrossRefGoogle Scholar
  61. 61.
    Mio S, Sano H, Shindou M, Honma T, Sugai S (1991) Synthesis and herbicidal activity of deoxy derivatives of (+)-hydantocidin. Agric Biol Chem 55:1105–1109.  https://doi.org/10.1080/00021369.1991.10870692 CrossRefGoogle Scholar
  62. 62.
    Burton JW, Son JC, Fairbanks AJ, Choi SS, Taylor H, Watkin DJ, Winchester BG, Fleet GWJ (1993) Anomeric spirohydantoins of mannofuranose: approaches to novel anomeric amino acids by oxidative ring contraction. Tetrahedron Lett 34:6119–6122.  https://doi.org/10.1016/S0040-4039(00)61745-8 CrossRefGoogle Scholar
  63. 63.
    Brandstetter TW, Kim Y, Son JC, Taylor HM, Lilley PMDQ, Watkin DJ, Johnson LN, Oikonomakos NG, Fleet GWJ (1995) Spirohydantoins of glucofuranose: analogues of hydantocidin. Tetrahedron Lett 36:2149–2152.  https://doi.org/10.1016/0040-4039(95)00198-L CrossRefGoogle Scholar
  64. 64.
    Brandstetter TW, Wormald MR, Dwek RA, Butters TD, Platt FM, Tsitsanou KE, Zographos SE, Oikonomakos NG, Fleet GWJ (1996) A galactopyranose analogue of hydantocidin. Tetrahedron Asymmetry 7:157–170.  https://doi.org/10.1016/0957-4166(95)00432-7 CrossRefGoogle Scholar
  65. 65.
    Estévez JC, Smith MD, Wormald MR, Besra GS, Brenan PJ, Nash RJ, Fleet GWJ (1996) Mimics of L-rhamnose: analogues of rhamnopyranose containing a constituent amino acid at the anomeric position. A rhamnopyranose analogue of hydantocidin. Tetrahedron Asymmetry 7:391–394.  https://doi.org/10.1016/0957-4166(96)00014-6 CrossRefGoogle Scholar
  66. 66.
    Fuente C, Krülle TM, Watson KA, Gregoriou M, Johnson LN, Zographos SE, Oikonomakos NG, Fleet GWJ (1997) Glucopyranose analogues of spirohydantoins: specific inhibitors of glycogen phosphorylase. Synlett 485–487.  https://doi.org/10.1055/s-1997-940277
  67. 67.
    Bichard CJF, Mitchell EP, Wormald MR, Watson KA, Johnson LN, Zographos S, Koutra DD, Oikonomakos NG, Fleet GWJ (1995) Potent inhibition of glycogen phosphorylase by a spirohydantoin of glucopyranose: first pyranose analogues of hydantocidin. Tetrahedron Lett 36:2145–2148.  https://doi.org/10.1016/0040-4039(95)00197-K CrossRefGoogle Scholar
  68. 68.
    Blériot Y, Simone MI, Wormald MR, Dwek RA, Watkin DJ, Fleet GWJ (2006) Sugar amino acids at the anomeric position of carbohydrates: synthesis of spirocyclic amino acids of 6-deoxy-L-lyxofuranose. Tetrahedron Asymmetry 17:2276–2286.  https://doi.org/10.1016/j.tetasy.2006.07.027 CrossRefGoogle Scholar
  69. 69.
    Estévez JC, Smith MD, Lane AL, Crook S, Watkin DJ, Besra GS, Brennan PJ, Nash RJ, Fleet GWJ (1993) Synthesis of cyclopentane spirohydantoins by aldol cyclisations: an approach to highly substituted α-cyclopentane amino acids. Tetrahedron Lett 34:7953–7956.  https://doi.org/10.1016/S0040-4039(00)61521-6 CrossRefGoogle Scholar
  70. 70.
    Pham TQ, Pyne SG, Skelton BW, White AH (2005) Synthesis of carbocyclic hydantocidins via regioselective and diastereoselective phosphine catalyzed [3 + 2]-cycloadditions to 5-methylenehydantoins. J Org Chem 70:6369–6377.  https://doi.org/10.1021/jo050827h CrossRefPubMedGoogle Scholar
  71. 71.
    Hanessian S, Sancéau JY, Chemla P (1995) Synthesis of surrogate structures related to the herbicidal agent hydantocidin. Tetrahedron 51:6669–6678.  https://doi.org/10.1016/0040-4020(95)00324-2 CrossRefGoogle Scholar
  72. 72.
    Sano H, Mio S, Kitagawa J, Shindou M, Honma T, Sugai S (1995) Synthesis of spirothiohydantoin analogues of hydantocidin. Tetrahedron 51:12561–12572.  https://doi.org/10.1016/0040-4020(95)00810-U CrossRefGoogle Scholar
  73. 73.
    Ghoneim AA (2011) Synthesis of some nucleosides derivatives from L-rhamnose with expected biological activity. Chem Cent J 5:7.  https://doi.org/10.1186/1752-153X-5-7 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ősz E, Somsák L, Szilágyi L, Dinya Z (1997) A straightforward route to hydantocidin analogues with pyranose ring structure. Tetrahedron 53:5813–5824.  https://doi.org/10.1016/S0040-4020(97)00213-5 CrossRefGoogle Scholar
  75. 75.
    Ősz E, Somsák L, Szilágyi L, Kovács L, Docsa T, Tóth B, Gergely P (1999) Efficient inhibition of muscle and liver glycogen phosphorylases by a new glucopyranosylidene-spiro-thiohydantoin. Bioorg Med Chem Lett 9:1385–1390.  https://doi.org/10.1016/S0960-894X(99)00192-4 CrossRefPubMedGoogle Scholar
  76. 76.
    Somsák L, Nagy V, Docsa T, Tóth B, Gergely P (2000) Gram-scale synthesis of a glucopyranosylidene-spirothiohydantoin and its effect on hepatic glycogen metabolism studied in vitro and in vivo. Tetrahedron Asymmetry 11:405–408.  https://doi.org/10.1016/S0957-4166(99)00486-3 CrossRefGoogle Scholar
  77. 77.
    Somsák L, Nagy V (2000) A new, scalable preparation of a glucopyranosylidene-spiro-thiohydantoin: one of the best inhibitors of glycogen phosphorylases. Tetrahedron Asymmetry 11:1719–1727.  https://doi.org/10.1016/S0957-4166(00)00107-5 CrossRefGoogle Scholar
  78. 78.
    Somsák L, Kovács L, Tóth M, Ősz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P (2001) Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of D-gluco- and D-xylopyranosylidene-spiro-(thio)hydantoins and N-(D-glucopyranosyl) amides. J Med Chem 44:2843–2848.  https://doi.org/10.1021/jm010892t CrossRefPubMedGoogle Scholar
  79. 79.
    Kandra L, Remenyik J, Batta G, Somsák L, Gyémánt G, Park KH (2005) Enzymatic synthesis of a new inhibitor of α-amylases: acarviosinyl-isomaltosyl-spiro-thiohydantoin. Carbohydr Res 340:1311–1317.  https://doi.org/10.1016/j.carres.2005.03.003 CrossRefPubMedGoogle Scholar
  80. 80.
    Somsák L, Ferrier RJ (1991) Radical-mediated brominations at ring positions of carbohydrates. Adv Carbohydr Chem Biochem 49:37–92.  https://doi.org/10.1016/S0065-2318(08)60181-X CrossRefPubMedGoogle Scholar
  81. 81.
    Somsák L, Czifrák K (2013) Radical-mediated brominations at ring-positions of carbohydrates – 35 years later. Carbohydr Chem 39:1–37.  https://doi.org/10.1039/9781849737173-00001 CrossRefGoogle Scholar
  82. 82.
    Maza S, López O, Martos S, Maya I, Fernández-Bolaños JG (2009) Synthesis of the first selenium-containing acyclic nucleosides and anomeric spironucleosides from carbohydrate precursors. Eur J Org Chem 5239–5246.  https://doi.org/10.1002/ejoc.200900793
  83. 83.
    Estevez JC, Ardron H, Wormald MR, Brown D, Fleet GWJ (1994) Spirocyclic peptides at the anomeric position of mannofuranose. Tetrahedron Lett 35:8889–8890.  https://doi.org/10.1016/S0040-4039(00)78526-1 CrossRefGoogle Scholar
  84. 84.
    Estevez JC, Burton JW, Estévez RE, Ardron H, Wormald MR, Dwek RA, Brown D, Fleet GWJ (1998) Spirodiketopiperazines of mannofuranose: carbopeptoid α-amino acid esters at the anomeric position of mannofuranose. Tetrahedron Asymmetry 9:2137–2154.  https://doi.org/10.1016/S0957-4166(98)00206-7 CrossRefGoogle Scholar
  85. 85.
    Estevez JC, Long DD, Wormald MR, Dwek RA, Fleet GWJ (1995) Spirodiketopiperazines at the anomeric position of mannopyranose: novel N-linked glycopeptides incorporating an α-amino acid at the anomeric position of mannopyranose. Tetrahedron Lett 36:8287–8290.  https://doi.org/10.1016/0040-4039(95)01732-W CrossRefGoogle Scholar
  86. 86.
    Krülle TM, Watson KA, Gregoriou M, Johnson LN, Crook S, Watkin DJ, Griffith RC, Nash RJ, Tsitsanou KE, Zographos SE, Oikonomakos NG, Fleet GWJ (1995) Specific inhibition of glycogen phosphorylase by a spirodiketopiperazine at the anomeric position of glucopyranose. Tetrahedron Lett 36:8291–8294.  https://doi.org/10.1016/0040-4039(95)01733-X CrossRefGoogle Scholar
  87. 87.
    Estevez JC, Smith MD, Lane AL, Crook S, Watkin DJ, Besra GS, Brennan PJ, Nash RJ, Fleet GWJ (1996) Mimics of L-rhamnose: anomeric spirohydantoins and diketopiperazines – approaches to novel N-linked glycopeptides of rhamnofuranose. Tetrahedron Asymmetry 7:387–390.  https://doi.org/10.1016/0957-4166(96)00013-4 CrossRefGoogle Scholar
  88. 88.
    Long DD, Tennant-Eyles RJ, Estévez JC, Wormald MR, Dwek RA, Smith MD, Fleet GWJ et al (2001) Carbopeptoids: peptides and diketopiperazines incorporating the anomeric centre of mannopyranose. J Chem Soc Perkin Trans 1:807–813.  https://doi.org/10.1039/B009940F CrossRefGoogle Scholar
  89. 89.
    Kyogoku Y, Lord RC, Rich A (1968) Specific hydrogen bonding of barbiturates to adenine derivatives. Nature 218:69–72.  https://doi.org/10.1038/218069a0 CrossRefPubMedGoogle Scholar
  90. 90.
    Ito T, Suzuki T, Wellman SE, Ho IK (1996) Pharmacology of barbiturate tolerance/dependence: GABAA receptors and molecular aspects. Life Sci 59:169–195.  https://doi.org/10.1016/0024-3205(96)00199-3 CrossRefPubMedGoogle Scholar
  91. 91.
    Renard A, Lhomme J, Kotera M (2002) Synthesis and properties of spiro nucleosides containing the barbituric acid moiety. J Org Chem 67:1302–1307.  https://doi.org/10.1021/jo016194y CrossRefPubMedGoogle Scholar
  92. 92.
    Andersch J, Sicker D, Wilde H (1999) Methyl D-arabino-hex-2-ulopyranosonate as a building block for spiro[1,4,-benzoxazine-2,2′-pyrans]. Carbohydr Res 316:85–94.  https://doi.org/10.1016/S0008-6215(99)00039-7 CrossRefGoogle Scholar
  93. 93.
    Andersch J, Sicker D, Wilde H (1999) Synthesis of spiro 1,4-benzothiazine-2,2′-pyrans starting from methyl β-D-arabino-2-hexulopyranosonate. J Heterocyclic Chem 36:457–460.  https://doi.org/10.1002/jhet.5570360220 CrossRefGoogle Scholar
  94. 94.
    Somsák L, Batta G, Farkas I, Parkányi L, Kálmán A, Somogyi Á (1986) Synthesis and stereochemistry of a new spiro glycosylidene heterocycle from the reaction of 1-bromoglycosyl cyanides with S-nucleophiles: complete identification of hydrogen bridges by N.M.R. Methods and X-ray analysis. J Chem Res 12:436–437Google Scholar
  95. 95.
    Ősz E, Szilágyi L, Somsák L, Bényei A (1999) Synthesis of novel glycosylidene-spiro-heterocycles related to hydantocidin. Tetrahedron 55:2419–2430.  https://doi.org/10.1016/S0040-4020(99)00034-4 CrossRefGoogle Scholar
  96. 96.
    Meijer A, Ellervik U (2004) Interhalogens (ICI/IBr3) and AgOTf in thioglycoside activation; synthesis of bislactam analogues of ganglioside GD3. J Org Chem 69:6249–6256.  https://doi.org/10.1021/jo049184g CrossRefPubMedGoogle Scholar
  97. 97.
    Hossain N, Zapata A, Wilstermann M, Nilsson UJ, Magnusson G (2002) Synthesis of GD3-lactam: a potential ligand for the development of an anti-melanoma vaccine. Carbohydr Res 337:569–580.  https://doi.org/10.1016/s0008-6215(02)00036-8 CrossRefPubMedGoogle Scholar
  98. 98.
    Lamberth C, Blarer S (1996) Concise approach to 1-thia-hydantocidin. Synth Commun 26:75–81.  https://doi.org/10.1080/00397919608003864 CrossRefGoogle Scholar
  99. 99.
    Gasch C, Pradera MA, Salameh BAB, Molina JL, Fuentes J (2001) Isothiocyanato derivatives of sugars in the stereoselective synthesis of spironucleosides and spiro-C-glycosides. Tetrahedron Asymmetry 12:1267–1277.  https://doi.org/10.1016/S0957-4166(01)00223-3 CrossRefGoogle Scholar
  100. 100.
    Gash C, Pradera MA, Salameh BAB, Molina JL, Fuentes J (2006) Stereocontrolled synthesis of thiohydantoin spiro-nucleosides from sugar spiroacetals. Tetrahedron 62:97–111.  https://doi.org/10.1016/j.tet.2005.09.128 CrossRefGoogle Scholar
  101. 101.
    Silva S, Sánchez-Fernández EM, Ortiz Mellet C, Tatibouët A, Rauter AP, Rollin P (2013) N-Thiocarbonyl iminosugars: synthesis and evaluation of castanospermine analogues bearing oxazole-2(3H)-thione moieties. Eur J Org Chem 7941–7951.  https://doi.org/10.1002/ejoc.201300720
  102. 102.
    Vangala M, Shinde GP (2015) Synthesis of D-fructose-derived spirocyclic 2-substituted-2-oxazoline ribosides. Beilstein J Org Chem 11:2289–2296.  https://doi.org/10.3762/bjoc.11.249 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kraft J, Golkowski M, Ziegler T (2016) Spiro-fused carbohydrate oxazoline ligands: synthesis and application as enantio-discrimination agents in asymmetric allylic alkylation. Beilstein J Org Chem 12:166–171.  https://doi.org/10.3762/bjoc.12.18 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Soengas RG (2010) A straightforward route to novel α,α-disubstituted tetrahydrofuran β-amino acids and spirodiketopiperazines from sugar lactones. Synlett 2549–2552.  https://doi.org/10.1055/s-0030-1258572
  105. 105.
    Taillefumier C, Thielges S, Chapleur Y (2004) Anomeric spiroannelated 1,4-diazepine-2,5-diones from Furano exo-glycals: towards a new class of spironucleosides. Tetrahedron 60:2213–2224.  https://doi.org/10.1016/j.tet.2004.01.030 CrossRefGoogle Scholar
  106. 106.
    Li X, Wang R, Wang Y, Chen H, Li Z, Ba C, Zhang J (2008) Stereoselective synthesis and biological activity of novel spirooxazinanone-C-glycosides. Tetrahedron 64:9911–9920.  https://doi.org/10.1016/j.tet.2008.08.002 CrossRefGoogle Scholar
  107. 107.
    Wang B, Wong OA, Zhao M-X, Shi Y (2008) Asymmetric epoxidation of 1,1-disubstituted terminal olefins by chiral dioxirane via a planar-like transition state. J Org Chem 73:9539–9543.  https://doi.org/10.1021/jo801576k CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wong OA, Wang B, Zhao M-X, Shi Y (2009) Asymmetric epoxidation catalyzed by α,α-dimethylmorpholinone ketone. Methyl group effect on spiro and planar transition states. J Org Chem 74:6335–6338.  https://doi.org/10.1021/jo900739q CrossRefPubMedGoogle Scholar
  109. 109.
    Elek R, Kiss L, Praly JP, Somsák L (2005) β-D-Galactopyranosyl-thiohydroximates and D-galactopyranosylidene-spiro-oxathiazoles: synthesis and enzymatic evaluation against E. coli D-galactosidase. Carbohydr Res 340:1397–1402.  https://doi.org/10.1016/j.carres.2005.02.021 CrossRefPubMedGoogle Scholar
  110. 110.
    Nagy V, Benltifa M, Vidal S, Berzsényi E, Teilhet C, Czifrák K, Batta G, Docsa T, Gergely P, Somsák L, Praly JP (2009) Glucose-based spiro-heterocycles as potent inhibitors of glycogen phosphorylase. Bioorg Med Chem 17:5696–5707.  https://doi.org/10.1016/j.bmc.2009.05.080 CrossRefPubMedGoogle Scholar
  111. 111.
    Somsák L, Nagy V, Vidal S, Czifrák K, Berzsényi E, Praly JP (2008) Novel design principle validated: glucopyranosylidene-spiro-oxathiazole as new nanomolar inhibitor of glycogen phosphorylase, potential antidiabetic agent. Bioorg Med Chem 18:5680–5683.  https://doi.org/10.1016/j.bmcl.2008.08.052 CrossRefGoogle Scholar
  112. 112.
    Szabó KE, Kun S, Mándi A, Kurtán T, Somsák L (2017) Glucopyranosylidene-spiro-thiazolinones: synthetic studies and determination of absolute configuration by TDDFT-ECD calculations. Molecules 22:1760.  https://doi.org/10.3390/molecules22101760 CrossRefPubMedCentralGoogle Scholar
  113. 113.
    Czifrák K, Gyóllai V, Kövér KE, Somsák L (2011) Ritter-type reaction of C-(1-bromo-1-deoxy-D-glycopyranosyl)formamides and its application for the synthesis of oligopeptides incorporating anomeric α-amino acids. Carbohydr Res 346:2104–2112.  https://doi.org/10.1016/j.carres.2011.07.001 CrossRefPubMedGoogle Scholar
  114. 114.
    Somsák L, Bokor É, Czibere B, Czifrák K, Koppány C, Kulcsár L, Kun S, Szilágyi E, Tóth M, Docsa T, Gergely P (2014) Synthesis of C-xylopyranosyl- and xylopyranosylidene-spiroheterocycles as potential inhibitors of glycogen phosphorylase. Carbohydr Res 399:38–48.  https://doi.org/10.1016/j.carres.2014.05.020 CrossRefGoogle Scholar
  115. 115.
    Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly JP, Kizilis G, Tiraidis C, Alexacou K, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG (2009) Glucose-based spiro-isoxazolines: a new family of potent glycogen phosphorylase inhibitors. Bioorg Med Chem 17:7368–7380.  https://doi.org/10.1016/j.bmc.2009.08.060 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Goyard D, Kónya B, Chajistamatiou AS, Chrysina ED, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Somsák L, Docsa T, Gergely P, Praly JP, Azay-Milhau J, Vidal S (2016) Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition. Eur J Med Chem 108:444–454.  https://doi.org/10.1016/j.ejmech.2015.12.004 CrossRefGoogle Scholar
  117. 117.
    Czifrák K, Páhi A, Deák S, Kiss-Szikszai A, Kövér KE, Docsa T, Gergely P, Alexacou KM, Papakonstantinou M, Leonidas DD, Zographos SE, Chrysina ED, Somsák L (2014) Glucopyranosylidene-spiro-iminothiazolidinone, a new bicyclic ring system: synthesis, derivatization, and evaluation for inhibition of glycogen phosphorylase by enzyme kinetic and crystallographic methods. Bioorg Med Chem 22:4028–4041.  https://doi.org/10.1016/j.bmc.2014.05.076 CrossRefPubMedGoogle Scholar
  118. 118.
    Chatgilialoglu C, Ferreri C, Gimisis T (1999) Anionically induced formation of anomeric spironucleosides from l′-C-cyano-2′-deoxyuridine. Tetrahedron Lett 40:2837–2840.  https://doi.org/10.1016/S0040-4039(99)00273-7 CrossRefGoogle Scholar
  119. 119.
    Chatgilialoglu C, Ferreri C, Gimisis T, Roberti M, Balzarini J, de Clercq E (2004) Synthesis and biological evaluation of novel 1′-branched and spironucleoside analogues. Nucleosides Nucleotides Nucleic Acids 23:1565–1581.  https://doi.org/10.1081/NCN-200031391 CrossRefPubMedGoogle Scholar
  120. 120.
    Dell’Isola A, McLachlan MMW, Neuman BW, Al-Mullah HMN, Binks AWD, Elvidge W, Shankland K, Cobb JA (2014) Synthesis and antiviral properties of spirocyclic [1,2,3]-triazolooxazine nucleosides. Chem Eur J 20:11685–11689.  https://doi.org/10.1002/chem.201403560 CrossRefPubMedGoogle Scholar
  121. 121.
    Tong XG, Zhou LL, Wang YH, Xia C, Wang Y, Liang M, Hou FF, Cheng YX (2011) Acortatarins A and B, two novel antioxidative spiroalkaloids with a naturally unusual morpholine motif from Acorus tatarinowii. Org Lett 13:1844–1847.  https://doi.org/10.1021/ol100451p CrossRefGoogle Scholar
  122. 122.
    Geng HM, Stubbing LA, Chen JL, Furkert DP, Brimble MA (2014) Synthesis of the revised structure of acortatarin A. Eur J Org Chem 6227–6241.  https://doi.org/10.1002/ejoc.201403000
  123. 123.
    Cao Z, Li Y, Wang S, Guo X, Wang L, Zhao W (2015) Total synthesis of two pyrrole spiroketal alkaloids: pollenopyrroside A and capparisine B. Synlett 26:921–926.  https://doi.org/10.1055/s-0034-1380172 CrossRefGoogle Scholar
  124. 124.
    Jonckers TH, Lin TI, Buyck C, Lachau-Durand S, Vandyck K, van Hoof S, Vandekerckhove LA, Hu L, Berke JM, Vijgen L, Dillen LL, Cummings MD, de Kock H, Nilsson M, Sund C, Rydegård C, Samuelsson B, Rosenquist A, Fanning G, van Emelen K, Simmen K, Raboisson P (2010) 2′-Deoxy-2′-spirocyclopropylcytidine revisited: a new and selective inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 53:8150–8160.  https://doi.org/10.1021/jm101050a CrossRefPubMedGoogle Scholar
  125. 125.
    Shen GH, Hong JH (2012) Synthesis of novel 2′-spirocyclopropyl-5′-deoxyphosphonic acid furanosyl nucleoside analogues as potent antiviral agents. Nucleosides Nucleotides Nucleic Acids 31:503–521.  https://doi.org/10.1080/15257770.2012.695839 CrossRefPubMedGoogle Scholar
  126. 126.
    Gosselck J, Schmidt G (1968) A new route to 1,1-disubstituted cyclopropane. Angew Chem Int Ed 7:456–457.  https://doi.org/10.1002/anie.196804561 CrossRefGoogle Scholar
  127. 127.
    Shen GH, Hong JH (2013) Synthesis of novel 2′-spirocyclopropanoid 4′-deoxythreosyl phosphonic acid nucleoside analogues. Bull Kor Chem Soc 34:868–874.  https://doi.org/10.5012/bkcs.2013.34.3.868 CrossRefGoogle Scholar
  128. 128.
    Babu BR, Keinicke L, Petersen M, Nielsen C, Wengel J (2003) 2′-Spiro ribo- and arabinonucleosides: synthesis, molecular modelling and incorporation into oligodeoxynucleotides. Org Biomol Chem 1:3514–3526.  https://doi.org/10.1039/B306354B CrossRefPubMedGoogle Scholar
  129. 129.
    Du J, Chun BK, Mosley RT, Bansal S, Bao H, Espiritu C, Lam AM, Murakami E, Niu C, Micolochick Steuer HM, Furman PA, Sofia JM (2014) Use of 2′-spirocyclic ethers in HCV nucleoside design. J Med Chem 57:1826–1835.  https://doi.org/10.1021/jm401224y CrossRefPubMedGoogle Scholar
  130. 130.
    Versteeg K, Zwilling D, Wang H, Church KM (2010) Synthesis, structure, and sugar dynamics of a 2′-spiroisoxazolidine thymidine analog. Tetrahedron 66:8145–8150.  https://doi.org/10.1016/j.tet.2010.08.033 CrossRefGoogle Scholar
  131. 131.
    Bondada L, Gumina G, Nair R, Ning XH, Schinazi RF, Chu CK (2004) Synthesis of novel spiro[2.3]hexane carbocyclic nucleosides via enzymatic resolution. Org Lett 6:2531–2534.  https://doi.org/10.1021/ol0491989 CrossRefPubMedGoogle Scholar
  132. 132.
    Camarasa MJ, Pérez-Pérez MJ, San Félix A, Balzarine J, de Clerq E (1992) 3′-Spiro nucleosides, a new class of specific human immunodeficiency virus type 1 inhibitors: synthesis and antiviral activity of [2′,5′-bis-O-(tert-butyldimethylsilyl)-β-D-xylo- and- ribofuranose]-3′-spiro-5″-[4″-amino-1″-2″-oxathiole 2″, 2″-dioxide] (TSAO) pyrimidine nucleosides. J Med Chem 35:2721–2727.  https://doi.org/10.1021/jm00093a002 CrossRefGoogle Scholar
  133. 133.
    Balzarini J, Pérez-Pérez MJ, San-Félix A, Schols D, Perno CF, Vandamme AM, Camarasa MJ, De Clercq E (1992) 2′,5′-Bis-O-(tert-butyldimethylsilyl)-3′-spiro-5″-(4″-amino-1″,2″-oxathiole-2″,2″-dioxide)pyrimidine (TSAO) nucleoside analogues: highly selective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase. Proc Natl Acad Sci U S A 89:4392–4397CrossRefGoogle Scholar
  134. 134.
    Pérez-Pérez MJ, San Félix A, Balzarini J, De Clerq E, Camarasa MJ (1992) TSAO analogs. Stereospecific synthesis and anti-HIV-1 activity of 1-[2′,5′-bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl]-3′-spiro-5″-(4′-amino-1″,2″-oxathiole-2″-2″-dioxide)pyrimidine and pyrimidine-modified nucleosides. J Med Chem 35:2988–2995.  https://doi.org/10.1021/jm00094a009 CrossRefPubMedGoogle Scholar
  135. 135.
    Velázquez S, Félix S, Pérez-Pérez MJ, Balzarini J, de Clerq E, Camarasa MJ (1993) TSAO analogs. 3. Synthesis and anti-HIV-1. Activity of [2′-5′-bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl]-3′-spiro-5″-(4′-amino-1″,2″-oxathiole-2″-2″-dioxide)purin and purine-modified nucleosides. J Med Chem 36:3230–3239.  https://doi.org/10.1021/jm00074a003 CrossRefPubMedGoogle Scholar
  136. 136.
    San-Félix A, Velázquez S, Pérez-Pérez MJ, Balzarini J, de Clercq E, Camarasa MJ (1994) Novel series of TSAO-T derivatives. Synthesis and anti-HIV-1 activity of 4-, 5-, and 6-substituted pyrimidine analogs. J Med Chem 37:453–460.  https://doi.org/10.1021/jm00030a004 CrossRefPubMedGoogle Scholar
  137. 137.
    Alvarez R, Velázquez S, San-Félix A, Aquaro S, de Clercq E, Perno CF, Karlsson A, Balzarini J, Camarasa MJ (1994) 1,2,3-Triazole-[2,5-bis-O-(tert-butyldimethylsilyl)-beta.-D-ribofuranosyl]-3′-spiro-5″-(4′-amino-1″,2″-oxathiole-2″-2″-dioxide) (TSAO) analogs: synthesis and anti-HIV-1 activity. J Med Chem 37:4185–4194.  https://doi.org/10.1021/jm00050a015 CrossRefPubMedGoogle Scholar
  138. 138.
    Lobatón E, Velázquez S, San-Félix A, Chamorro C, Tuñón V, Esteban-Gamboa A, de Clercq E, Balzarini J, Camarasa MJ, Pérez-Pérez MJ (1999) Novel TSAO derivatives modified at positions 3″ and 4′ of the spiro moiety. Nucleosides Nucleotides 18:675–676.  https://doi.org/10.1080/15257779908041536 CrossRefPubMedGoogle Scholar
  139. 139.
    Lobatón E, Camarasa MJ, Velázquez S (2000) An efficient synthesis of 3′-spiro sultone nucleosides functionalized on the sultone moiety via Pd-catalyzed cross-coupling reaction. Synlett 9:1312–1314.  https://doi.org/10.1055/s-2000-7124 CrossRefGoogle Scholar
  140. 140.
    de Castro S, Lobatón E, Pérez-Pérez MJ, San-Félix A, Cordeiro A, Andrei G, Snoeck R, de Clercq E, Balzarini J, Camarasa MJ, Velázquez S (2005) Novel [2′,5′-bis-O-(tert-butyldimethylsilyl)-α-D-ribofuranosyl]-3′-spiro-5″-(4″-amino-1″,2″-oxathiole-2″,2″-dioxide) derivatives with anti-HIV-1 and anti-human-cytomegalovirus activity. J Med Chem 48:1158–1168.  https://doi.org/10.1021/jm040868q CrossRefPubMedGoogle Scholar
  141. 141.
    Tronchet JM, Kovacs I, Seman M, Dilda P, de Clercq E, Balzarini J (2000) Highly stereoselective synthesis and biological properties of nucleoside analogues bearing a spiro inserted oxirane ring. Nucleosides Nucleotides Nucleic Acids 19:775–779.  https://doi.org/10.1080/15257770008035024 CrossRefPubMedGoogle Scholar
  142. 142.
    Gash C, Illagua JM, Merino-Montiel P, Fuentes J (2009) Stereocontrolled synthesis of (5 + 5), (5 + 6) and (6 + 6) 3-spiropseudonucleosides. Tetrahedron 65:4149–4155.  https://doi.org/10.1016/j.tet.2009.03.038 CrossRefGoogle Scholar
  143. 143.
    Turks M, Rodins V, Rolava E, Ostrovskis P, Belyakov S (2013) A practical access to glucose- and allose-based (5 + 5) 3-spiropseudonucleosides from a common intermediate. Carbohydr Res 375:5–15.  https://doi.org/10.1016/j.carres.2013.04.008 CrossRefPubMedGoogle Scholar
  144. 144.
    Lipshutz BH, Sharma S, Dimock SH, Behling JR (1992) Preparation of C-4 alkylated dideoxyribosides: potential precursors to a novel series of nucleosides. Synthesis 191–195.  https://doi.org/10.1055/s-1992-34158
  145. 145.
    Crich D, Hao X (1999) Asymmetric synthesis of C4′-α-carboxylated 2′-deoxynucleosides. Preparation of oxetanone derivatives and influence of solvent on the stereochemistry of base introduction. J Org Chem 64:4016–4024.  https://doi.org/10.1021/jo990046e CrossRefGoogle Scholar
  146. 146.
    Paquette LA (2004) Spirocyclic restriction of nucleosides. Aust J Chem 57:7–17.  https://doi.org/10.1021/ol010209x CrossRefGoogle Scholar
  147. 147.
    Paquette LA, Owen DR, Bibart RT, Seekamp CK, Kahane AL, Lanter JC, Corral MA (2001) 1-Oxaspiro[4.4]nonan-6-ones. Synthetic access via oxonium ion technology, optical resolution, and conversion into enantiopure spirocyclic α,β-butenolides. J Org Chem 66:2828–2834.  https://doi.org/10.1021/jo010026o CrossRefPubMedGoogle Scholar
  148. 148.
    Paquette LA, Bibart RT, Seekamp CK, Kahane AL (2001) Spirocyclic restriction of nucleosides. Synthesis of the first exemplary syn-1-oxaspiro[4.4]nonanyl member. Org Lett 3:4039–4041.  https://doi.org/10.1021/ol010209x CrossRefPubMedGoogle Scholar
  149. 149.
    Paquette LA, Owen DR, Bibart RT, Seekamp CK (2001) Spirocyclic restriction of nucleosides. An analysis of protecting group feasibility while accessing prototype anti-1-oxaspiro[4.4]nonanyl mimics. Org Lett 3:4043–4045.  https://doi.org/10.1021/ol010212g CrossRefPubMedGoogle Scholar
  150. 150.
    Paquette LA, Seekamp CK, Kahane AL (2003) Conformational restriction of nucleosides by spirocyclic annulation at C4′ including synthesis of the complementary dideoxy and didehydrodideoxy analogues. J Org Chem 68:8614–8624.  https://doi.org/10.1021/jo0301954 CrossRefPubMedGoogle Scholar
  151. 151.
    Dong S, Paquette LA (2006) Highly stereoselective β-anomeric glycosidation of a 2′-deoxy syn-5′-configured 4′-spironucleoside. J Org Chem 71:1647–1652.  https://doi.org/10.1021/jo052324h CrossRefPubMedGoogle Scholar
  152. 152.
    Maity JK, Achari B, Drew MGB, Mandal SB (2010) Synthesis of a carbohydrate-derived 1-oxaspiro[4.4] nonane skeleton and its conversion into spironucleosides. Synthesis 2533–2542.  https://doi.org/10.1055/s-0029-1218828
  153. 153.
    Marquez VE, Lim MI (1986) Carbocyclic nucleosides. Med Res Rev 6:1–40CrossRefGoogle Scholar
  154. 154.
    Rodriquez JB, Comin MJ (2003) New progresses in the enantioselective synthesis and biological properties of carbocyclic nucleosides. Mini-Rev Med Chem 3:95–114.  https://doi.org/10.2174/1389557033405331 CrossRefGoogle Scholar
  155. 155.
    Schneller SW (2002) Carbocyclic nucleosides (carbanucleosides) as new therapeutic leads. Curr Top Med Chem 2:1087–1092.  https://doi.org/10.2174/1568026023393228 CrossRefPubMedGoogle Scholar
  156. 156.
    Crimmins MT (1998) New developments in the enantioselective synthesis of cyclopentyl carbocyclic nucleosides. Tetrahedron 54:9229–9272.  https://doi.org/10.1016/S0040-4020(98)00320-2 CrossRefGoogle Scholar
  157. 157.
    Huryn DM, Okabe M (1992) AIDS-driven nucleoside chemistry. Chem Rev 92:1745–1768.  https://doi.org/10.1021/cr00016a004 CrossRefGoogle Scholar
  158. 158.
    Borthwick AD, Biggadike K (1992) Synthesis of chiral carbocyclic nucleosides. Tetrahedron 48:571–623.  https://doi.org/10.1016/S0040-4020(01)88122-9 CrossRefGoogle Scholar
  159. 159.
    Paquette LA, Hartung RE, France DJ (2003) Conversion of the enantiomers of spiro[4.4]nonane-1,6-diol into both epimeric carbaspironucleosides having natural C1′ absolute configuration. Org Lett 5:869–871.  https://doi.org/10.1021/ol0340033 CrossRefPubMedGoogle Scholar
  160. 160.
    Hartung RE, Paquette LA (2005) Development of a generic stereocontrolled pathway to fully hydroxylated spirocarbocyclic nucleosides as a prelude to RNA targeting. Synthesis 3209–3218.  https://doi.org/10.1055/s-2005-918472
  161. 161.
    Dyson MR, Coe PL, Walker RT (1991) The synthesis and antiviral properties of E-5-(2-bromovinyl)-4′-thio-2′-deoxyuridine. J Chem Soc Chem Commun 741–742. doi: https://doi.org/10.1039/c39910000741
  162. 162.
    Tiwari KN, Seacrist JA, Montgomery JA (1994) Synthesis and biological activity of 4′-thionucleosides of 2-chloroadenine. Nucleosides Nucleotides 13:1819–1828.  https://doi.org/10.1080/15257779408009484 CrossRefGoogle Scholar
  163. 163.
    Young RJ, Shae-Ponter S, Thomson JB, Miller JA, Cumming JG, Pugh AW, Rider P (1995) Synthesis and antiviral evaluation of enantiomeric 2′,3′-dideoxy- and 2′,3′-didehydro-2′,3′-dideoxy-4′-thionucleosides. Bioorg Med Chem Lett 5:2599–2604.  https://doi.org/10.1016/0960-894X(95)00472-6 CrossRefGoogle Scholar
  164. 164.
    Yoshimura Y, Watanabe M, Satoh H, Ashida N, Ijichi K, Sakata S, Machida H, Matsuda A (1997) A facile, alternative synthesis of 4′-thioarabinonucleosides and their biological activities. J Med Chem 40:2177–2183.  https://doi.org/10.1021/jm9701536 CrossRefPubMedGoogle Scholar
  165. 165.
    Satoh H, Yoshimura Y, Watanabe M, Ashida N, Ijichi K, Sakata S, Machida H (1998) Synthesis and antiviral activities of 5-substituted 1-(2-deoxy-2-C-methylene-4-thio-β-D-erythro-pentofuranosyl)uracil. Nucleosides Nucleotides 17:65–79.  https://doi.org/10.1080/07328319808005158 CrossRefPubMedGoogle Scholar
  166. 166.
    Paquette LA, Fabris F, Gallou F, Dong S (2003) C4′-Spiroalkylated nucleosides having sulfur incorporated at the apex position. J Org Chem 68:8625–8634.  https://doi.org/10.1021/jo030196w CrossRefPubMedGoogle Scholar
  167. 167.
    Roy A, Achari B, Mandal SB (2006) An easy access to spiroannulated glyco-oxetane, -thietane and -azetane rings: synthesis of spironucleosides. Tetrahedron Lett 47:3875–3879.  https://doi.org/10.1016/j.tetlet.2006.03.175 CrossRefGoogle Scholar
  168. 168.
    Mandal SB (2008) Introduction of vinyl and hydroxymethyl functionalities at C-4 of glucose-derived substrates: synthesis of spirocyclic, bicyclic, and tricyclic nucleosides. J Org Chem 73:4305–4308.  https://doi.org/10.1021/jo8002826 CrossRefPubMedGoogle Scholar
  169. 169.
    de Carvalho GSG, Fourrey JL, Dodd RH, Da Silva AD (2009) Synthesis of a 4′,4′-spirothietane-2′, N3-cycloadenosine as a highly constrained analogue of 5′-deoxy-5′-methylthioadenosine (MTA). Tetrahedron Lett 50:463–466.  https://doi.org/10.1016/j.tetlet.2008.11.039 CrossRefGoogle Scholar
  170. 170.
    Tripathi S, Roy BG, Drew MG, Achari B, Mandal SB (2007) Synthesis of oxepane ring containing monocyclic, conformationally restricted bicyclic and spirocyclic nucleosides from D-glucose: a cycloaddition approach. J Org Chem 72:7427–7430.  https://doi.org/10.1021/jo070846m CrossRefPubMedGoogle Scholar
  171. 171.
    Klumpp K, Lévêque V, Le Pogam S, Ma H, Jiang WR, Kang H, Granycome C, Singer M, Laxton C, Hang JQ, Sarma K, Smith DB, Heindl D, Hobbs CJ, Merrett JH, Symons J, Cammack N, Martin JA, Devos R, Nájera I (2006) The novel nucleoside analog R1479 (4′-azidocytidine) is a potent inhibitor of NS5B-dependent RNA synthesis and hepatitis C virus replication in cell culture. J Biol Chem 281:3793–3799.  https://doi.org/10.1074/jbc.M510195200 CrossRefPubMedGoogle Scholar
  172. 172.
    Dang Q, Zhang Z, He S, Liu Y, Chen T, Bogen S, Girijavallabhan V, Olsen DB, Meinke PT (2014) Syntheses of 4′-spirocyclic phosphono-nucleosides as potential inhibitors of hepatitis C virus NS5B polymerase. Tetrahedron Lett 55:4407–4409.  https://doi.org/10.1016/j.tetlet.2014.06.029 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martín Soto
    • 1
  • Humberto Rodríguez-Solla
    • 1
  • Raquel Soengas
    • 2
    Email author
  1. 1.Department of Organic and Inorganic ChemistryUniversity of OviedoOviedoSpain
  2. 2.Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de AlmeríaAlmeríaSpain

Personalised recommendations