Advertisement

Carbohydrate Spiro-heterocycles via Radical Chemistry

  • Angeles Martín
  • Ernesto SuárezEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 57)

Abstract

This review summarizes the current status of the preparation of spiro-heterocycles fused with a pyranose or furanose carbohydrate skeleton, using free radical chemistry. A variety of heterospiro[m.n]alkane bicyclic structures (m = 3–5, n = 4–6) possessing one, two, or three heteroatoms (N, O, Si, S) have been collected, in addition to three different 1,6,8-trioxadispiro-tetradecane and 1,6,8-trioxadispiro-pentadecane tricyclic systems. C(sp3)–H bond functionalization by 1,5- or 1,6-hydrogen atom transfer (HAT) initiated by C(sp3)-, C(sp2)-, O-, or N-radicals and 5-exo-trig or 6-exo-trig cyclization reactions are the most useful strategies employed for the construction of the heterocyclic rings. The intramolecular HAT promoted by photoexcited monoketones, α-diketones, furanones, and succinimides via a Norrish type II–Yang cyclization process has also been successfully applied.

Keywords

Alkoxyl radicals Carbohydrates C-radicals Hydrogen atom transfer (HAT) N-radicals Radical cascade Radical cyclization 

References

  1. 1.
    Pearce AJ, Mallet J-M, Sinaÿ P (2001) Radicals in carbohydrate chemistry. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 538–577.  https://doi.org/10.1002/9783527618293.ch52 CrossRefGoogle Scholar
  2. 2.
    Pérez-Martı́n I, Suárez E (2012) Radicals and carbohydrates. In: Chatgilialoglu C, Studer A (eds) Encyclopedia of radicals in chemistry, biology and materials. Wiley, Chichester, pp 1131–1174.  https://doi.org/10.1002/9781119953678.rad031 CrossRefGoogle Scholar
  3. 3.
    Binkley RW, Binkley ER (2013) Radical reaction of carbohydrates, vols I and II. http://www.carborad.com/default.html
  4. 4.
    McSweeney L, Dénès F, Scanlan EM (2016) Thiyl-radical reactions in carbohydrate chemistry: from thiosugars to glycoconjugate synthesis. Eur J Org Chem 2016:2080–2095.  https://doi.org/10.1002/ejoc.201501543 CrossRefGoogle Scholar
  5. 5.
    Hansen SG, Skrydstrup T (2006) Modification of amino acids, peptides, and carbohydrates through radical chemistry. In: Gansäuer A (ed) Radicals in synthesis II. Topics in current chemistry, vol 264. Springer, Berlin, pp 135–162.  https://doi.org/10.1007/128_022 CrossRefGoogle Scholar
  6. 6.
    Boultadakis-Arapinis M, Lescot C, Micouin L, Lecourt T (2013) Functionalization of the anomeric C–H bond of carbohydrates: old strategies and new opportunities. Synlett 24:2477–2491.  https://doi.org/10.1055/s-0033-1339317 CrossRefGoogle Scholar
  7. 7.
    Frihed TG, Bols M, Pedersen CM (2016) C–H functionalization on carbohydrates. Eur J Org Chem 2016:2740–2756.  https://doi.org/10.1002/ejoc.201600121 CrossRefGoogle Scholar
  8. 8.
    Murakami M, Ishida N (2017) β-Scission of alkoxy radicals in synthetic transformations. Chem Lett 46:1692–1700.  https://doi.org/10.1246/cl.170834 CrossRefGoogle Scholar
  9. 9.
    Salamone M, Bietti M (2014) Reaction pathways of alkoxyl radicals. The role of solvent effects on C–C bond fragmentation and hydrogen atom transfer reactions. Synlett 25:1803–1816.  https://doi.org/10.1055/s-0033-1341280 CrossRefGoogle Scholar
  10. 10.
    Undheim K (2015) Stereoselective reactions in preparation of chiral α-hetera-spiro[m.n]alkanes. Synthesis 47:2497–2522.  https://doi.org/10.1055/s-0034-1378863 CrossRefGoogle Scholar
  11. 11.
    Undheim K (2014) Preparation and structure classification of heteraspiro[m.n]alkanes. Synthesis 46:1957–2006.  https://doi.org/10.1055/s-0033-1338640 CrossRefGoogle Scholar
  12. 12.
    El Ashry ESH (ed) (2007) Heterocycles from carbohydrate precursors. Topics in heterocyclic chemistry, vol 7. Springer, Berlin.  https://doi.org/10.1007/978-3-540-72957-0 CrossRefGoogle Scholar
  13. 13.
    Soengas RG, da Silva G, Estévez JC (2017) Synthesis of spironucleosides: past and future perspectives. Molecules 22:2028.  https://doi.org/10.3390/molecules22112028 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Landais Y (ed) (2018) Free-radical synthesis and functionalization of heterocycles. Topics in heterocyclic chemistry, vol 54. Springer, Cham.  https://doi.org/10.1007/978-3-319-89521-5 CrossRefGoogle Scholar
  15. 15.
    Undheim K (2017) Spirocyclic orthoesters, orthothioesters and orthoaminals in the synthesis and structural modification of natural products. Synthesis 49:705–723.  https://doi.org/10.1055/s-0036-1588339 CrossRefGoogle Scholar
  16. 16.
    Brimble MA, Furkert DP (2003) Chemistry of bis-spiroacetal systems: natural products, synthesis and stereochemistry. Curr Org Chem 7:1461–1484.  https://doi.org/10.2174/1385272033486404 CrossRefGoogle Scholar
  17. 17.
    Brimble MA, Stubbing LA (2014) Synthesis of 5,6- and 6,6-spirocyclic compounds. In: Cossy J (ed) Synthesis of saturated oxygenated heterocycles I. Topics in heterocyclic chemistry, vol 35. Springer, Berlin, pp 189–267.  https://doi.org/10.1007/978-3-642-41473-2_5 CrossRefGoogle Scholar
  18. 18.
    Kiyota H (2006) Synthesis of marine natural products with bicyclic and/or spirocyclic acetals. In: Kiyota H (ed) Marine natural products. Topics in heterocyclic chemistry, vol 5. Springer, Berlin, pp 65–95.  https://doi.org/10.1007/7081_029 CrossRefGoogle Scholar
  19. 19.
    Smith LK, Baxendale IR (2015) Total syntheses of natural products containing spirocarbocycles. Org Biomol Chem 13:9907–9933.  https://doi.org/10.1039/C5OB01524C CrossRefPubMedGoogle Scholar
  20. 20.
    Sherburn MS (2012) Basic concepts on radical chain reactions. In: Chatgilialoglu C, Studer A (eds) Encyclopedia of radicals in chemistry, biology and materials. Wiley, Chichester, pp 57–80.  https://doi.org/10.1002/9781119953678.rad017 CrossRefGoogle Scholar
  21. 21.
    Kittaka A, Asakura T, Kuze T, Tanaka H, Yamada N, Nakamura KT, Miyasaka T (1999) Cyclization reactions of nucleoside anomeric radical with olefin tethered on base: factors that induce anomeric stereochemistry. J Org Chem 64:7081–7093.  https://doi.org/10.1021/jo990611d CrossRefGoogle Scholar
  22. 22.
    Chatgilialoglu C, Gimisis T, Spada GP (1999) C-1′ radical-based approaches for the synthesis of anomeric spironucleosides. Chem Eur J 5:2866–2876.  https://doi.org/10.1002/(SICI)1521-3765(19991001)5:10<2866::AID-CHEM2866>3.0.CO;2-6 CrossRefGoogle Scholar
  23. 23.
    Taniguchi T (2017) Recent advances in reactions of heteroatom-centered radicals. Synthesis 49:3511–3534.  https://doi.org/10.1055/s-0036-1588481 CrossRefGoogle Scholar
  24. 24.
    Nechab M, Mondal S, Bertrand MP (2014) 1,n-hydrogen-atom transfer (HAT) reactions in which n≠5: an updated inventory. Chem Eur J 20:16034–16059.  https://doi.org/10.1002/chem.201403951 CrossRefPubMedGoogle Scholar
  25. 25.
    Sperry J, Liu Y-C, Brimble MA (2010) Synthesis of natural products containing spiroketals via intramolecular hydrogen abstraction. Org Biomol Chem 8:29–38.  https://doi.org/10.1039/B916041H CrossRefPubMedGoogle Scholar
  26. 26.
    Dénès F, Beaufils F, Renaud P (2008) Preparation of five-membered rings via the translocation-cyclization of vinyl radicals. Synlett 19:2389–2399.  https://doi.org/10.1055/s-2008-1078016 CrossRefGoogle Scholar
  27. 27.
    Renaud P, Beaufils F, Dénès F, Feray L, Imboden C, Kuznetsov N (2008) Stereoselective radical translocations. CHIMIA Int J Chem 62:510–513.  https://doi.org/10.2533/chimia.2008.510 CrossRefGoogle Scholar
  28. 28.
    Čeković Ž (2005) Reactions of carbon radicals generated by 1,5-transposition of reactive centers. J Serb Chem Soc 70:287–318.  https://doi.org/10.2298/JSC0503287C CrossRefGoogle Scholar
  29. 29.
    Čeković Ž (2003) Reactions of δ-carbon radicals generated by 1,5-hydrogen transfer to alkoxyl radicals. Tetrahedron 59:8073–8090.  https://doi.org/10.1016/S0040-4020(03)01202-X CrossRefGoogle Scholar
  30. 30.
    Feray L, Kuznetsov N, Renaud P (2001) Hydrogen atom abstraction. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 246–278.  https://doi.org/10.1002/9783527618293.ch39 CrossRefGoogle Scholar
  31. 31.
    Robertson J, Pillai J, Lush RK (2001) Radical translocation reactions in synthesis. Chem Soc Rev 30:94–103.  https://doi.org/10.1039/b000705f CrossRefGoogle Scholar
  32. 32.
    Majetich G, Wheless K (1995) Remote intramolecular free radical functionalizations: an update. Tetrahedron 51:7095–7129.  https://doi.org/10.1016/0040-4020(95)00406-X CrossRefGoogle Scholar
  33. 33.
    Mihailović ML, Čeković Ž (1970) Intramolecular oxidative cyclization of alcohols with lead tetraacetate. Synthesis 2:209–224.  https://doi.org/10.1055/s-1970-21596 CrossRefGoogle Scholar
  34. 34.
    Heusler K, Kalvoda J (1964) Intramolecular free-radical reactions. Angew Chem Int Ed 3:525–596.  https://doi.org/10.1002/anie.196405251 CrossRefGoogle Scholar
  35. 35.
    Dorigo AE, McCarrick MA, Loncharich RJ, Houk KN (1990) Transition structures for hydrogen atom transfers to oxygen. Comparisons of intermolecular and intramolecular processes, and open- and closed-shell systems. J Am Chem Soc 112:7508–7514.  https://doi.org/10.1021/ja00177a009 CrossRefGoogle Scholar
  36. 36.
    Dorigo AE, Houk KN (1988) The relationship between proximity and reactivity. An ab initio study of the flexibility of the OH + CH4 hydrogen abstraction transition state and a force-field model for the transition states of intramolecular hydrogen abstractions. J Org Chem 53:1650–1664.  https://doi.org/10.1021/jo00243a011 CrossRefGoogle Scholar
  37. 37.
    Dorigo AE, Houk KN (1987) Transition structures for intramolecular hydrogen atom transfers: the energetic advantage of seven-membered over six-membered transition structures. J Am Chem Soc 109:2195–2197.  https://doi.org/10.1021/ja00241a056 CrossRefGoogle Scholar
  38. 38.
    Yoshimura A, Zhdankin VV (2016) Advances in synthetic applications of hypervalent iodine compounds. Chem Rev 116:3328–3435.  https://doi.org/10.1021/acs.chemrev.5b00547 CrossRefPubMedGoogle Scholar
  39. 39.
    Zhdankin VV (2009) Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC 2009:1–62.  https://doi.org/10.3998/ark.5550190.0010.101 CrossRefGoogle Scholar
  40. 40.
    Togo H, Katohgi M (2001) Synthetic uses of organohypervalent iodine compounds through radical pathways. Synlett 12:565–581.  https://doi.org/10.1055/s-2001-13349 CrossRefGoogle Scholar
  41. 41.
    Hu X-Q, Chen J-R, Xiao W-J (2017) Controllable remote C−H bond functionalization by visible-light photocatalysis. Angew Chem Int Ed 56:1960–1962.  https://doi.org/10.1002/anie.201611463 CrossRefGoogle Scholar
  42. 42.
    Studer A, Curran DP (2016) Catalysis of radical reactions: a radical chemistry perspective. Angew Chem Int Ed 55:58–102.  https://doi.org/10.1002/anie.201505090 CrossRefGoogle Scholar
  43. 43.
    Huang W, Cheng X (2017) Hantzsch esters as multifunctional reagents in visible-light photoredox catalysis. Synlett 28:148–158.  https://doi.org/10.1055/s-0036-1588129 CrossRefGoogle Scholar
  44. 44.
    Shaw MH, Twilton J, MacMillan DWC (2016) Photoredox catalysis in organic chemistry. J Org Chem 81:6898–6926.  https://doi.org/10.1021/acs.joc.6b01449 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363.  https://doi.org/10.1021/cr300503r CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Stateman LM, Nakafuku KM, Nagib DA (2018) Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50:1569–1586.  https://doi.org/10.1055/s-0036-1591930 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yan M, Lo JC, Edwards JT, Baran PS (2016) Radicals: reactive intermediates with translational potential. J Am Chem Soc 138:12692–12714.  https://doi.org/10.1021/jacs.6b08856 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chiba S, Chen H (2014) sp3 C–H oxidation by remote H-radical shift with oxygen- and nitrogen-radicals: a recent update. Org Biomol Chem 12:4051–4060.  https://doi.org/10.1039/c4ob00469h CrossRefPubMedGoogle Scholar
  49. 49.
    Wagner PJ (2005) Abstraction of γ-hydrogens by excited carbonyls. In: Griesbeck AG, Mattay J (eds) Synthetic organic photochemistry. Marcel Dekker, New York, pp 11–39Google Scholar
  50. 50.
    Wessig P, Muhling O (2005) Abstraction of (γ±n)-hydrogen by excited carbonyls. In: Griesbeck A, Mattay J (eds) Synthetic organic photochemistry. Marcel Dekker, New York, pp 41–87Google Scholar
  51. 51.
    Wagner PJ, Klán P (2004) Norrish type II photoelimination of ketones: cleavage of 1,4-biradicals formed by γ-hydrogen abstraction. In: Horspool W, Lenci F (eds) Organic photochemistry and photobiology2nd edn. CRC, Boca Raton, pp 1–31Google Scholar
  52. 52.
    Wagner PJ (2004) Yang photocyclization: coupling of biradicals formed by intramolecular hydrogen abstraction of ketones. In: Horspool W, Lenci F (eds) Organic photochemistry and photobiology2nd edn. CRC, Boca Raton, pp 1–69Google Scholar
  53. 53.
    Arjona O, Gómez AM, López JC, Plumet J (2007) Synthesis and conformational and biological aspects of carbasugars. Chem Rev 107:1919–2036.  https://doi.org/10.1021/cr0203701 CrossRefPubMedGoogle Scholar
  54. 54.
    Martínez-Grau A, Marco-Contelles J (1998) Carbocycles from carbohydrates via free radical cyclizations: new synthetic approaches to glycomimetics. Chem Soc Rev 27:155–162.  https://doi.org/10.1039/a827155z CrossRefGoogle Scholar
  55. 55.
    Dalko PI, Sinaÿ P (1999) Recent advances in the conversion of carbohydrate furanosides and pyranosides into carbocycles. Angew Chem Int Ed 38:773–777.  https://doi.org/10.1002/(SICI)1521-3773(19990315)38:6<773::AID-ANIE773>3.0.CO;2-N CrossRefGoogle Scholar
  56. 56.
    Madsen R (2007) Synthetic strategies for converting carbohydrates into carbocycles by the use of olefin metathesis. Eur J Org Chem 2007:399–415.  https://doi.org/10.1002/ejoc.200600614 CrossRefGoogle Scholar
  57. 57.
    Chen Y-L, Cen J-D (2004) Recent advances in conversion from carbohydrates to functionalized carbocycles. Chin J Org Chem 24:1332–1339Google Scholar
  58. 58.
    Baldwin JE (1976) Rules for ring closure. J Chem Soc Chem Commun:734–736.  https://doi.org/10.1039/C39760000734
  59. 59.
    Baldwin JE, Thomas RC, Kruse LI, Silberman L (1977) Rules for ring closure: ring formation by conjugate addition of oxygen nucleophiles. J Org Chem 42:3846–3852.  https://doi.org/10.1021/jo00444a011 CrossRefGoogle Scholar
  60. 60.
    Beckwith ALJ, Easton CJ, Serelis AK (1980) Some guidelines for radical reactions. J Chem Soc Chem Commun:482–483.  https://doi.org/10.1039/C39800000482
  61. 61.
    Beckwith ALJ (1981) Regio-selectivity and stereo-selectivity in radical reactions. Tetrahedron 37:3073–3100.  https://doi.org/10.1016/S0040-4020(01)98839-8 CrossRefGoogle Scholar
  62. 62.
    Beckwith ALJ, Schiesser CH (1985) Regio- and stereo-selectivity of alkenyl radical ring closure: a theoretical study. Tetrahedron 41:3925–3941.  https://doi.org/10.1016/S0040-4020(01)97174-1 CrossRefGoogle Scholar
  63. 63.
    Walton JC (2006) Unusual radical cyclisations. In: Gansäuer A (ed) Radicals in synthesis II. Topics in current chemistry, vol 264. Springer, Berlin, pp 163–200.  https://doi.org/10.1007/128_021 CrossRefGoogle Scholar
  64. 64.
    Gilmore K, Alabugin IV (2012) Unusual cyclizations. In: Chatgilialoglu C, Studer A (eds) Encyclopedia of radicals in chemistry, biology and materials. Wiley, Chichester, pp 693–728.  https://doi.org/10.1002/9781119953678.rad021 CrossRefGoogle Scholar
  65. 65.
    Srikrishna A (2001) Unusual cyclizations. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 151–187.  https://doi.org/10.1002/9783527618293.ch34 CrossRefGoogle Scholar
  66. 66.
    Ishibashi H, Sato T, Ikeda M (2002) 5-Endo-trig radical cyclizations. Synthesis 34:695–713.  https://doi.org/10.1055/s-2002-25759 CrossRefGoogle Scholar
  67. 67.
    Taniguchi T, Ishibashi H (2013) Synthesis of alkaloids using radical cyclizations. Heterocycles 87:527–545.  https://doi.org/10.3987/REV-12-759 CrossRefGoogle Scholar
  68. 68.
    Ishibashi H (2006) Controlling the regiochemistry of radical cyclizations. Chem Rec 6:23–31.  https://doi.org/10.1002/tcr.20069 CrossRefPubMedGoogle Scholar
  69. 69.
    Ishibashi H (2012) Synthesis of alkaloids using radical cyclizations. Yakugaku Zasshi 132:1413–1430.  https://doi.org/10.1248/yakushi.12-00241 CrossRefPubMedGoogle Scholar
  70. 70.
    Chatgilialoglu C, Ferreri C, Guerra M, Timokhin V, Froudakis G, Gimisis T (2002) 5-Endo-trig radical cyclizations: disfavored or favored processes? J Am Chem Soc 124:10765–10772.  https://doi.org/10.1021/ja0261731 CrossRefPubMedGoogle Scholar
  71. 71.
    Hartung J (2001) Stereoselective construction of the tetrahydrofuran nucleus by alkoxyl radical cyclizations. Eur J Org Chem 2001:619–632.  https://doi.org/10.1002/1099-0690(200102)2001:4<619::AID-EJOC619>3.0.CO;2-A CrossRefGoogle Scholar
  72. 72.
    Herrera AJ, Rondón M, Suárez E (2007) Stereocontrolled photocyclization of 1,2-diketones applied to carbohydrate models: a new entry to C-ketosides. Synlett 18:1851–1856.  https://doi.org/10.1055/s-2007-984523 CrossRefGoogle Scholar
  73. 73.
    Herrera AJ, Rondón M, Suárez E (2008) Stereocontrolled photocyclization of 1,2-diketones. Application of a 1,3-acetyl group transfer methodology to carbohydrates. J Org Chem 73:3384–3391.  https://doi.org/10.1021/jo702663w CrossRefPubMedGoogle Scholar
  74. 74.
    Roberts SW, Rainier JD (2005) Substitution and remote protecting group influence on the oxidation/addition of α-substituted 1,2-anhydroglycosides: a novel entry into C-ketosides. Org Lett 7:1141–1144.  https://doi.org/10.1021/ol0501469 CrossRefPubMedGoogle Scholar
  75. 75.
    Bernasconi C, Cottier L, Descotes G, Rémy G (1979) Dégradations ménagées des sucres V. Synthèse par voie photochimique d’aldonolactones-1,5 à partir d’oxo-2 propylglycosides. Bull Soc Chim Fr 5–6:332–336Google Scholar
  76. 76.
    Descotes G (1982) Photoreactivite acetalique en serie heterocyclique et osidique. Bull Soc Chim Belg 91:973–983CrossRefGoogle Scholar
  77. 77.
    Hürzeler M, Bernet B, Vasella A (1993) Glyconothio-O-lactones. Part I. Preparation and reactions with nucleophiles. Helv Chim Acta 76:995–1012.  https://doi.org/10.1002/hlca.19930760223 CrossRefGoogle Scholar
  78. 78.
    Binkley RW (1977) A mild process for the oxidation of partially protected carbohydrates. J Org Chem 42:1216–1221.  https://doi.org/10.1021/jo00427a025 CrossRefGoogle Scholar
  79. 79.
    Brunckova J, Crich D (1995) Intramolecular hydrogen atom abstraction: the β-oxygen effect in the Norrish type II photoreaction. Tetrahedron 51:11945–11952.  https://doi.org/10.1016/0040-4020(95)00755-W CrossRefGoogle Scholar
  80. 80.
    Houlton JS, Motherwell WB, Ross BC, Tozer MJ, Williams DJ, Slawin AMZ (1993) A convenient strategy for replacement of the anomeric hydroxyl group by difluoromethyl functionality in carbohydrate derivatives. Tetrahedron 49:8087–8106.  https://doi.org/10.1016/S0040-4020(01)88029-7 CrossRefGoogle Scholar
  81. 81.
    Herpin TF, Motherwell WB, Tozer MJ (1994) The synthesis of difluoromethylene-linked C-glycosides and C-disaccharides. Tetrahedron Asymmetry 5:2269–2282.  https://doi.org/10.1016/S0957-4166(00)86305-3 CrossRefGoogle Scholar
  82. 82.
    Kittaka A, Tanaka H, Yamada N, Miyasaka T (1996) Nucleoside anomeric radicals via 1,5-translocation: Facile access to anomeric spiro nucleosides. Tetrahedron Lett 37:2801–2804.  https://doi.org/10.1016/0040-4039(96)00433-9 CrossRefGoogle Scholar
  83. 83.
    Kittaka A, Tanaka H, Yamada N, Kato H, Miyasaka T (1997) 1,5-translocation strategy for nucleoside anomeric radicals. Nucleosides Nucleotides Nucleic Acids 16:1423–1426.  https://doi.org/10.1080/07328319708006197 CrossRefGoogle Scholar
  84. 84.
    Gimisis T, Chatgilialoglu C (1996) 1,5-radical translocation protocol for the generation of C-1′ radicals in nucleosides. Synthesis of spiro nucleosides through a rare 5-endo-trig cyclization. J Org Chem 61:1908–1909.  https://doi.org/10.1021/jo952218n CrossRefGoogle Scholar
  85. 85.
    Strohmeier J, Nadler A, Heinrich D, Fitzner A, Diederichsen U (2010) Synthesis of 8,1′-etheno and 8,2′-ethano bridged guanosine derivatives using radical cyclization. Heterocycles 82:713–728.  https://doi.org/10.3987/COM-10-S(E)51 CrossRefGoogle Scholar
  86. 86.
    Stella L (1983) Homolytic cyclizations of N-chloroalkenylamines. Angew Chem Int Ed Engl 22:337–350.  https://doi.org/10.1002/anie.198303373 CrossRefGoogle Scholar
  87. 87.
    Dénès F (2018) Heteroatom-centred radicals for the synthesis of heterocyclic compounds. In: Landais Y (ed) Free-radical synthesis and functionalization of heterocycles. Topics in heterocyclic chemistry, vol 54. Springer, Cham, pp 151–230.  https://doi.org/10.1007/7081_2019_19 CrossRefGoogle Scholar
  88. 88.
    Freire R, Martı́n A, Pérez-Martı́n I, Suárez E (2002) Synthesis of oxa-aza spirobicycles by intramolecular hydrogen abstraction promoted by N-radicals in carbohydrate systems. Tetrahedron Lett 43:5113–5116.  https://doi.org/10.1016/S0040-4039(02)00983-8 CrossRefGoogle Scholar
  89. 89.
    Martín A, Pérez-Martín I, Suárez E (2009) Synthesis of oxa-aza spirobicycles by intramolecular hydrogen atom transfer promoted by N-radicals in carbohydrate systems. Tetrahedron 65:6147–6155.  https://doi.org/10.1016/j.tet.2009.05.049 CrossRefGoogle Scholar
  90. 90.
    Courtneidge JL, Lusztyk J, Pagé D (1994) Alkoxyl radicals from alcohols. Spectroscopic detection of intermediate alkyl and acyl hypoiodites in the Suárez and Beebe reactions. Tetrahedron Lett 35:1003–1006.  https://doi.org/10.1016/S0040-4039(00)79950-3 CrossRefGoogle Scholar
  91. 91.
    Martín A, Pérez-Martín I, Suárez E (2005) Intramolecular hydrogen abstraction promoted by amidyl radicals. Evidence for electronic factors in the nucleophilic cyclization of ambident amides to oxocarbenium ions. Org Lett 7:2027–2030.  https://doi.org/10.1021/ol050526u CrossRefPubMedGoogle Scholar
  92. 92.
    Kittaka A, Tanaka H, Odanaka Y, Ohnuki K, Yamaguchi K, Miyasaka T (1994) Vinyl radical-based cyclization of 6-substituted 1-(2-deoxy-d-erythro-pent-1-enofuranosyl) uracils: synthesis of anomeric spiro nucleosides. J Org Chem 59:3636–3641.  https://doi.org/10.1021/jo00092a024 CrossRefGoogle Scholar
  93. 93.
    Kittaka A, Tsubaki Y, Tanaka H, Nakamura KT, Miyasaka T (1996) Tandem radical cyclization-oxygenation of 6-(2,2-di-bromovinyl)-1-(2-deoxy-d-erythro-pent-1-enofuranosyl)-uracil: synthesis of anomeric spiro nucleosides having arabino and ribo configurations. Nucleosides Nucleotides 15:97–107.  https://doi.org/10.1080/07328319608002373 CrossRefGoogle Scholar
  94. 94.
    Kittaka A, Yamada N, Tanaka H, Nakamura KT, Miyasaka T (1996) Radical-mediated cyclization of a 6-chloro-9-(2-deoxy-d-erythro-pent-1-enofuranosyl)-8-(2,2-dibromovinyl)purine. Nucleosides Nucleotides 15:1447–1457.  https://doi.org/10.1080/07328319608002446 CrossRefGoogle Scholar
  95. 95.
    Kodama T, Shuto S, Nomura M, Matsuda A (2001) An efficient method for the preparation of 1′α-branched-chain sugar pyrimidine ribonucleosides from uridine: the first conversion of a natural nucleoside into 1′-substituted ribonucleosides. Chem Eur J 7:2332–2340.  https://doi.org/10.1002/1521-3765(20010601)7:11<2332::AID-CHEM23320>3.0.CO;2-W CrossRefPubMedGoogle Scholar
  96. 96.
    Dang SF, Sun JB, Xu XX, Wang P, Wu JC (2008) Synthesis of 4′-spironucleoside via radical translocation cyclization reaction. Chem Res Chin Univ 24:473–476.  https://doi.org/10.1016/S1005-9040(08)60099-9 CrossRefGoogle Scholar
  97. 97.
    Martín A, Salazar JA, Suárez E (1995) Synthesis of chiral spiroacetals from carbohydrates. Tetrahedron Lett 36:4489–4492.  https://doi.org/10.1016/0040-4039(95)00766-6 CrossRefGoogle Scholar
  98. 98.
    Martín A, Salazar JA, Suárez E (1996) Synthesis of chiral spiroacetals from carbohydrates. J Org Chem 61:3999–4006.  https://doi.org/10.1021/jo960060g CrossRefPubMedGoogle Scholar
  99. 99.
    Crich D, Huang X, Newcomb M (1999) Synthesis of tetrahydrofurans by a tandem hydrogen atom abstraction/radical nucleophilic displacement sequence. Org Lett 1:225–228.  https://doi.org/10.1021/ol990564b CrossRefGoogle Scholar
  100. 100.
    Crich D, Huang X, Newcomb M (2000) Inter- and intramolecular pathways for the formation of tetrahydrofurans from β-(phosphatoxy)alkyl radicals. Evidence for a dissociative mechanism. J Org Chem 65:523–529.  https://doi.org/10.1021/jo991570o CrossRefPubMedGoogle Scholar
  101. 101.
    Sartillo-Piscil F, Vargas M, Anaya de Parrodi C, Quintero L (2003) Diastereoselective synthesis of 1,2-O-isopropylidene-1,6-dioxaspiro[4.4]nonane applying the methodology of generation of radical cations under non-oxidizing conditions. Tetrahedron Lett 44:3919–3921.  https://doi.org/10.1016/S0040-4039(03)00817-7 CrossRefGoogle Scholar
  102. 102.
    Cortezano-Arellano O, Quintero L, Sartillo-Piscil F (2015) Total synthesis of cephalosporolide E via a tandem radical/polar crossover reaction. The use of the radical cations under nonoxidative conditions in total synthesis. J Org Chem 80:2601–2608.  https://doi.org/10.1021/jo502757c CrossRefPubMedGoogle Scholar
  103. 103.
    Crich D (2001) Radical rearrangements of esters. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 188–206.  https://doi.org/10.1002/9783527618293.ch35 CrossRefGoogle Scholar
  104. 104.
    Sharma GVM, Chander AS, Reddy VG, Krishnudu K, Rao MHVR, Kunwar AC (2000) Radical mediated stereoselective synthesis of chiral spiroacetals from enol-esters. Tetrahedron Lett 41:1997–2000.  https://doi.org/10.1016/S0040-4039(00)00083-6 CrossRefGoogle Scholar
  105. 105.
    Sharma GVM, Rakesh CAS, Reddy VG, Rao MHVR, Kunwar AC (2003) Radical reactions on enol-esters: facile synthesis of 3-ulosonic acid derivatives and chiral spiroacetals. Tetrahedron Asymmetry 14:2991–3004.  https://doi.org/10.1016/S0957-4166(03)00448-8 CrossRefGoogle Scholar
  106. 106.
    Stork G, Sher PM (1986) A catalytic tin system for trapping of radicals from cyclization reactions. Regio- and stereocontrolled formation of two adjacent chiral centers. J Am Chem Soc 108:303–304.  https://doi.org/10.1021/ja00262a024 CrossRefGoogle Scholar
  107. 107.
    Kittaka A, Tanaka H, Kato H, Nonaka Y, Nakamura KT, Miyasaka T (1997) Synthesis of anomeric spiro uracil nucleosides with an orthoester structure: stereoselective cyclization controlled by the C6-substituent. Tetrahedron Lett 38:6421–6424.  https://doi.org/10.1016/S0040-4039(97)01486-X CrossRefGoogle Scholar
  108. 108.
    Kittaka A, Kato H, Tanaka H, Nonaka Y, Amano M, Nakamura KT, Miyasaka T (1999) Face selective 6,1′-(1-oxo)ethano bridge formation of uracil nucleosides under hypoiodite reaction conditions. Tetrahedron 55:5319–5344.  https://doi.org/10.1016/S0040-4020(99)00232-X CrossRefGoogle Scholar
  109. 109.
    Gimisis T, Castellari C, Chatgilialoglu C (1997) A new class of anomeric spironucleosides. Chem Commun 21:2089–2090.  https://doi.org/10.1039/a705742c CrossRefGoogle Scholar
  110. 110.
    El Kouni MH, Naguib FNM, Panzica RP, Otter BA, Chu S-H, Gosselin G, Chu CK, Schinazi RF, Shealy YF, Goudgaon N, Ozerov AA, Ueda T, Iltzsch MH (1996) Effects of modifications in the pentose moiety and conformational changes on the binding of nucleoside ligands to uridine phosphorylase from Toxoplasma gondii. Biochem Pharmacol 51:1687–1700.  https://doi.org/10.1016/0006-2952(96)00213-4 CrossRefPubMedGoogle Scholar
  111. 111.
    Ogamino J, Mizunuma H, Kumamoto H, Takeda S, Haraguchi K, Nakamura KT, Sugiyama H, Tanaka H (2005) 5-Exo versus 6-endo cyclization of nucleoside 2-sila-5-hexenyl radicals: reaction of 6-(bromomethyl)dimethylsilyl 1′,2′-unsaturated uridines. J Org Chem 70:1684–1690.  https://doi.org/10.1021/jo040260p CrossRefPubMedGoogle Scholar
  112. 112.
    Sakaguchi N, Hirano S, Matsuda A, Shuto S (2006) Radical reactions with 2-bromobenzylidene group, a protecting/radical-translocating group for the 1,6-radical hydrogen transfer reaction. Org Lett 8:3291–3294.  https://doi.org/10.1021/ol061162o CrossRefPubMedGoogle Scholar
  113. 113.
    Shuto S, Sugimoto I, Abe H, Matsuda A (2000) Mechanistic study of the ring-enlargement reaction of (3-oxa-2-silacyclopentyl)methyl radicals into 4-oxa-3-silacyclohexyl radicals. Evidence for a pentavalent silicon-bridging radical transition state in 1,2-rearrangement reactions of β-silyl radicals. J Am Chem Soc 122:1343–1351.  https://doi.org/10.1021/ja993239s CrossRefGoogle Scholar
  114. 114.
    Shuto S, Kanazaki M, Ichikawa S, Minakawa N, Matsuda A (1998) Stereo- and regioselective introduction of 1- or 2-hydroxyethyl group via intramolecular radical cyclization reaction with a novel silicon-containing tether. An efficient synthesis of 4’α-branched 2′-deoxyadenosines. J Org Chem 63:746–754.  https://doi.org/10.1021/jo971703a CrossRefPubMedGoogle Scholar
  115. 115.
    Tamao K, Ishida N, Tanaka T, Kumada M (1983) Hydrogen peroxide oxidation of the silicon-carbon bond in organoalkoxysilanes. Organometallics 2:1694–1696.  https://doi.org/10.1021/om50005a041 CrossRefGoogle Scholar
  116. 116.
    Yoshimura Y, Ueda T, Matsuda A (1991) Synthesis of 6,1′-propanouridine, fixed in syn-conformation by a spiro-carbon bridge. Tetrahedron Lett 32:4549–4552.  https://doi.org/10.1016/0040-4039(91)80036-6 CrossRefGoogle Scholar
  117. 117.
    Yoshimura Y, Otter BA, Ueda T, Matsuda A (1992) Nucleosides and nucleotides. 108. Synthesis and optical properties of syn-fixed carbon-bridged pyrimidine cyclonucleotides. Chem Pharm Bull 40:1761–1769.  https://doi.org/10.1248/cpb.40.1761 CrossRefGoogle Scholar
  118. 118.
    Rémy G, Cottier L, Descotes G (1979) Photolyse stereospecifique d’(oxo-3 butyl)-tetra-O-acetyl-2,3,4,6-β-d-glucopyranoside en spiro-C-1-sucre. Tetrahedron Lett 20:1847–1850.  https://doi.org/10.1016/S0040-4039(01)86857-X CrossRefGoogle Scholar
  119. 119.
    Rémy G, Cottier L, Descotes G (1980) Photocyclisation des (oxo-3)-butyl glycopyranosides. Can J Chem 58:2660–2665.  https://doi.org/10.1139/v80-425 CrossRefGoogle Scholar
  120. 120.
    Rémy G, Cottier L, Descotes G, Faure R, Loiseleur H, Thomas-David G (1980) Confirmation d’une reaction de photocarbocyclisation stéréospécifique de l’(oxo-3 butyl) tétra-O-acétyl-2,3,4,6-β-d-glucopyrannoside par détermination de la structure cristalline du tétra-O-acétyl-2,3,4,6-désoxy-1β-d-glucopyrannoside-1-spiro-2′-(méthyl-3′ tétrahydrofurannol-3′)1,4 B (cis et trans). Acta Crystallogr Sect B 36:873–877.  https://doi.org/10.1107/S0567740880004736 CrossRefGoogle Scholar
  121. 121.
    Rémy G, Cottier L, Descotes G (1983) Synthèses et epimérisation de déoxy-spiro C-1 sucres. Can J Chem 61:434–438.  https://doi.org/10.1139/v83-077 CrossRefGoogle Scholar
  122. 122.
    Rémy G, Cottier L, Descotes G (1982) Photolyse des (oxo-3)-butyl-α et β-d-mannopyranosides. J Carbohydr Chem 1:37–47.  https://doi.org/10.1080/07328308208085077 CrossRefGoogle Scholar
  123. 123.
    Rémy G, Descotes G (1983) Synthese et photochimie des (oxo-3)butyl- α et β-l-arabinopyranosides. J Carbohydr Chem 2:159–166.  https://doi.org/10.1080/07328308308057864 CrossRefGoogle Scholar
  124. 124.
    Bron P, Cottier L, Descotes G (1984) Synthèse d’arylhydroxyspirocétals. Influence du groupe aryle sur la photocyclisation d’arylcétoacétals en série hétérocyclique et osidique. J Heterocycl Chem 21:21–25.  https://doi.org/10.1002/jhet.5570210106 CrossRefGoogle Scholar
  125. 125.
    Praly J-P, Descotes G (1981) Photocyclisation de phenyl-glycosides orthocarbonyles: voies d’acces stereo-selectives aux dioxaspirannones aromatiques. Carbohydr Res 95:C1–C4.  https://doi.org/10.1016/S0008-6215(00)85306-9 CrossRefGoogle Scholar
  126. 126.
    Bernasconi C, Cottier L, Descotes G, Praly J-P, Rémy G, Grenier-Loustalot M-F, Metras F (1983) Photocyclisation de phényl-glycosides orthocarbonylés: Voies d’accès stéréosélectives aux dioxaspirannones aromatiques. Carbohydr Res 115:105–116.  https://doi.org/10.1016/0008-6215(83)88139-7 CrossRefGoogle Scholar
  127. 127.
    Saito T, Fujiwara K, Sano Y, Sato T, Kondo Y, Akiba U, Ishigaki Y, Katoono R, Suzuki T (2018) An improved synthesis of the C42–C52 segment of ciguatoxin 3C. Tetrahedron Lett 59:1372–1376.  https://doi.org/10.1016/j.tetlet.2018.02.052 CrossRefGoogle Scholar
  128. 128.
    Kraus GA, Thurston J (1987) Alkoxy radicals in organic synthesis. A novel approach to spiroketals. Tetrahedron Lett 28:4011–4014.  https://doi.org/10.1016/S0040-4039(01)83848-X CrossRefGoogle Scholar
  129. 129.
    Haudrechy A, Sinaÿ P (1991) A novel type of spiroketalisation on pyranoses. Carbohydr Res 216:375–379.  https://doi.org/10.1016/0008-6215(92)84174-Q CrossRefGoogle Scholar
  130. 130.
    Ferrier RJ, Hall DW (1992) One-step synthesis of glycosidic spiroketals from 2,3-epoxybutyl glycoside derivatives. J Chem Soc Perkin Trans 1:3029–3034.  https://doi.org/10.1039/p19920003029 CrossRefGoogle Scholar
  131. 131.
    Ösz E, Sós E, Somsák L, Szilágyi L, Dinya Z (1997) A straightforward route to hydantocidin analogues with pyranose ring structure. Tetrahedron 53:5813–5824.  https://doi.org/10.1016/S0040-4020(97)00213-5 CrossRefGoogle Scholar
  132. 132.
    Somsák L, Kovács L, Tóth M, Ösz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P (2001) Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of d-gluco- and d-xylopyranosylidene-spiro-(thio)hydantoins and N-(d-glucopyranosyl) amides. J Med Chem 44:2843–2848.  https://doi.org/10.1021/jm010892t CrossRefPubMedGoogle Scholar
  133. 133.
    Miljković M (2010) Carbohydrate-based antibiotics. In: Carbohydrates. Springer, New York, pp 469–486.  https://doi.org/10.1007/978-0-387-92265-2_14
  134. 134.
    Ollis WD, Smith C, Wrigth DE (1979) The orthosomycin family of antibiotics-I: the constitution of flambamycin. Tetrahedron 35:105–127.  https://doi.org/10.1016/0040-4020(79)85015-2 CrossRefGoogle Scholar
  135. 135.
    Wright DE (1979) The orthosomycins, a new family of antibiotics. Tetrahedron 35:1207–1237.  https://doi.org/10.1016/0040-4020(79)80046-0 CrossRefGoogle Scholar
  136. 136.
    Praly J-P, Descotes G (1982) Photocyclisation d’hydroxyalkyl glycosides en orthoesters glycosidiques. Tetrahedron Lett 23:849–852.  https://doi.org/10.1016/S0040-4039(00)86965-8 CrossRefGoogle Scholar
  137. 137.
    Praly J-P, Descotes G, Grenier-Loustalot M-F, Metras F (1984) Nouvelle synthèse de spiro-orthoesters d-glucosidiques par photocyclisation stéréoselective d’hydroxyalkyl-d-glucosides. Carbohydr Res 128:21–35.  https://doi.org/10.1016/0008-6215(84)85081-8 CrossRefGoogle Scholar
  138. 138.
    Praly J-P, Descotes G, Faure R, Loiseleur H (1984) O-Isopropylidène-1,2 O-méthyl-3 O-[tétra-O-acétyl-2,3,4,6 désoxy-1 d-glucopyrannosylidène-1-(1S)]-5,6 α-d-glucofurannose, C24H34O15. Acta Crystallogr Sect C 40:1206–1207.  https://doi.org/10.1107/S0108270184007344 CrossRefGoogle Scholar
  139. 139.
    Francisco CG, Herrera AJ, Kennedy AR, Melián D, Suárez E (2002) Intramolecular 1,8-hydrogen abstraction between glucopyranose units in a disaccharide model promoted by alkoxy radicals. Angew Chem Int Ed Engl 41:856–858.  https://doi.org/10.1002/1521-3773(20020301)41:5<856::AID-ANIE856>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  140. 140.
    Francisco CG, Herrera AJ, Kennedy AR, Martín A, Melián D, Pérez-Martín I, Quintanal LM, Suárez E (2008) Intramolecular 1,8-hydrogen-atom transfer reactions in (1→4)-O-disaccharide systems: conformational and stereochemical requirements. Chem Eur J 14:10369–10381.  https://doi.org/10.1002/chem.200801414 CrossRefPubMedGoogle Scholar
  141. 141.
    Crich D, Huang W (2001) Dynamics of alkene radical cation/phosphate anion pair formation from nucleotide C4′ radicals. The DNA/RNA paradox revisited. J Am Chem Soc 123:9239–9245.  https://doi.org/10.1021/ja010841l CrossRefPubMedGoogle Scholar
  142. 142.
    Jahjah R, Gassama A, Bulach V, Suzuki C, Abe M, Hoffmann N, Martinez A, Nuzillard J-M (2010) Stereoselective triplet-sensitised radical reactions of furanone derivatives. Chem Eur J 16:3341–3354.  https://doi.org/10.1002/chem.200903045 CrossRefPubMedGoogle Scholar
  143. 143.
    Dorta RL, Francisco CG, Freire R, Suárez E (1988) Intramolecular hydrogen abstraction. The use of organoselenium reagents for the generation of alkoxy radicals. Tetrahedron Lett 29:5429–5432.  https://doi.org/10.1016/S0040-4039(00)82887-7 CrossRefGoogle Scholar
  144. 144.
    Dorta RL, Francisco CG, Suárez E (1994) Organoselenium reagents in the tandem β-fragmentation-cyclization of carbohydrate anomeric alkoxy radicals. Tetrahedron Lett 35:2049–2052.  https://doi.org/10.1016/S0040-4039(00)73046-2 CrossRefGoogle Scholar
  145. 145.
    Dorta RL, Francisco CG, Suárez E (1994) A selenurane derivative promotes β-fragmentation of carbinolamides leading to cyclic imides. Tetrahedron Lett 35:1083–1086.  https://doi.org/10.1016/S0040-4039(00)79971-0 CrossRefGoogle Scholar
  146. 146.
    Martín A, Quintanal LM, Suárez E (2007) Hydrogen atom transfer experiments provide chemical evidence for the conformational differences between C- and O-glycosides. Tetrahedron Lett 48:5507–5511.  https://doi.org/10.1016/j.tetlet.2007.05.166 CrossRefGoogle Scholar
  147. 147.
    León EI, Martín A, Pérez-Martín I, Quintanal LM, Suárez E (2010) Hydrogen atom transfer experiments provide chemical evidence for the conformational differences between C- and O-disaccharides. Eur J Org Chem 2010:5248–5262.  https://doi.org/10.1002/ejoc.201000470 CrossRefGoogle Scholar
  148. 148.
    Martín A, Pérez-Martín I, Quintanal LM, Suárez E (2007) Intramolecular 1,8- versus 1,6-hydrogen atom transfer between pyranose units in a (1→4)-disaccharide model promoted by alkoxyl radicals. Conformational and stereochemical requirements. Org Lett 9:1785–1788.  https://doi.org/10.1021/ol070496q CrossRefPubMedGoogle Scholar
  149. 149.
    Guyenne S, León EI, Martín A, Pérez-Martín I, Suárez E (2012) Intramolecular 1,8-hydrogen atom transfer reactions in disaccharide systems containing furanose units. J Org Chem 77:7371–7391.  https://doi.org/10.1021/jo301153u CrossRefPubMedGoogle Scholar
  150. 150.
    Alvarez-Dorta D, León EI, Kennedy AR, Martín A, Pérez-Martín I, Suárez E (2016) Radical-mediated C–H functionalization: a strategy for access to modified cyclodextrins. J Org Chem 81:11766–11787.  https://doi.org/10.1021/acs.joc.6b02241 CrossRefPubMedGoogle Scholar
  151. 151.
    Foulard G, Brigaud T, Portella C (1997) Radical trifluoromethylation of a d-mannose derived ketene dithioacetal. Synthesis of 2-C-trifluoromethyl derivatives of d-glycero-d-galacto- and d-glycero-d-talo-heptopyranose. J Org Chem 62:9107–9113.  https://doi.org/10.1021/jo971187o CrossRefGoogle Scholar
  152. 152.
    Sowa CE, Stark M, Heidelberg T, Thiem J (1996) Novel approach to sugar derived spiroannelated heterocycles. Synlett 7:227–228.  https://doi.org/10.1055/s-1996-5370 CrossRefGoogle Scholar
  153. 153.
    Stark M, Thiem J (2006) Highly functionalized glyco-conjugated hexahydroazepindiones from saccharide imides via the Norrish type II reaction. Carbohydr Res 341:1543–1556.  https://doi.org/10.1016/j.carres.2006.03.016. Corrigendum: Stark M, Thiem J (2007). Carbohydr Res 342:772. https://doi.org.10.1016/j.carres.2006.12.001CrossRefPubMedGoogle Scholar
  154. 154.
    Thiering S, Thiem J, Kopf J (2007) Reactions of glycosan-annelated oxolactams. Heterocycles 74:533–543.  https://doi.org/10.3987/COM-07-S(W)31 CrossRefGoogle Scholar
  155. 155.
    Sowa CE, Kopf J, Thiem J (1995) Syntheses of sugar-derived heterotricyclic lactams. J Chem Soc Chem Commun 2:211–212.  https://doi.org/10.1039/c39950000211 CrossRefGoogle Scholar
  156. 156.
    Sowa CE, Thiem J (1994) Stereoselective intramolecular alkylation of glycosylimides to highly functionalized bicyclic 2,5-azepanediones and heterotricyclic[5.3.1.02,6]undecanamides. Angew Chem Int Ed Engl 33:1979–1981.  https://doi.org/10.1002/anie.199419791 CrossRefGoogle Scholar
  157. 157.
    Cottier L, Descotes G, Grenier MF, Metras F (1981) Synthese photochimique et etude structurale d’alcoxy-spirocetals et de trioxa-bis-spiroacetals. Tetrahedron 37:2515–2524.  https://doi.org/10.1016/S0040-4020(01)88911-0 CrossRefGoogle Scholar
  158. 158.
    Cottier L, Descotes G, Faure R, Loiseleur H (1981) Etude structurale de trioxa-bis-spirocétals: Structure de la configuration EE du diméthyl-4,11 trioxa-1,6,8 dispiro[4.1.4.3]tétradécanediol-4,11. Acta Crystallogr Sect B 37:1155–1157.  https://doi.org/10.1107/S0567740881005359 CrossRefGoogle Scholar
  159. 159.
    Cottier L, Descotes G (1985) Syntheses stereoselectives des isomeres cinetiques et thermodynamiques d’alcoxy-spirocetals et de trioxa-bis-spirocetals. Tetrahedron 41:409–412.  https://doi.org/10.1016/S0040-4020(01)96433-6 CrossRefGoogle Scholar
  160. 160.
    Hu T, Curtis JM, Oshima Y, Quilliam MA, Walter JA, Watson-Wright WM, Wright JLC (1995) Spirolides B and D, two novel macrocycles isolated from the digestive glands of shellfish. J Chem Soc Chem Commun 20:2159–2161.  https://doi.org/10.1039/C39950002159 CrossRefGoogle Scholar
  161. 161.
    Meilert K, Brimble MA (2006) Synthesis of the bis-spiroacetal moiety of the shellfish toxins spirolides B and D using an iterative oxidative radical cyclization strategy. Org Biomol Chem 4:2184–2192.  https://doi.org/10.1039/b604334h CrossRefPubMedGoogle Scholar
  162. 162.
    Meilert K, Brimble MA (2005) Synthesis of the bis-spiroacetal moiety of spirolides B and D. Org Lett 7:3497–3500.  https://doi.org/10.1021/ol051260u CrossRefPubMedGoogle Scholar
  163. 163.
    Furkert DP, Brimble MA (2002) Synthesis of the C10-C22 bis-spiroacetal domain of spirolides B and D via iterative oxidative radical cyclization. Org Lett 4:3655–3658.  https://doi.org/10.1021/ol026605c CrossRefPubMedGoogle Scholar
  164. 164.
    Berg DH, Hamill RL (1978) The isolation and characterization of narasin, a new polyether antibiotic. J Antibiot 31:1–6.  https://doi.org/10.7164/antibiotics.31.1 CrossRefPubMedGoogle Scholar
  165. 165.
    Dutton CJ, Banks BJ, Cooper CB (1995) Polyether lonophores. Nat Prod Rep 12:165–181.  https://doi.org/10.1039/NP9951200165 CrossRefPubMedGoogle Scholar
  166. 166.
    Keller-Juslén C, King HD, Kuhn M, Loosli H-R, Von Wartburg A (1978) Noboritomycins A and B, new polyether antibiotics. J Antibiot 31:820–828.  https://doi.org/10.7164/antibiotics.31.820 CrossRefPubMedGoogle Scholar
  167. 167.
    Allen P, Brimble MA, Turner P (2001) Polyether antibiotic CP44,161. Acta Crystallogr Sect C 57:95–96.  https://doi.org/10.1107/S0108270100013950 CrossRefGoogle Scholar
  168. 168.
    Westley JW, Evans RH, Sello LH, Troupe N, Liu C-M, Blount JF, Pitcher RG, Williams TH, Miller PA (1981) Isolation and characterization of the first halogen containing polyether antibiotic X-14766A, a product of Streptomyces malachitofuscus subsp. Downeyi. J Antibiot 34:139–147.  https://doi.org/10.7164/antibiotics.34.139 CrossRefPubMedGoogle Scholar
  169. 169.
    Warabi K, Williams DE, Patrick BO, Roberge M, Andersen RJ (2007) Spirastrellolide B reveals the absolute configuration of the spirastrellolide macrolide core. J Am Chem Soc 129:508–509.  https://doi.org/10.1021/ja068271i CrossRefPubMedGoogle Scholar
  170. 170.
    Dorta RL, Martín A, Salazar JA, Suárez E, Prangé T (1996) Synthesis of dispiroacetals from carbohydrates by intramolecular hydrogen abstractions. Tetrahedron Lett 37:6021–6024.  https://doi.org/10.1016/0040-4039(96)01265-8 CrossRefGoogle Scholar
  171. 171.
    Dorta RL, Martín A, Salazar JA, Suárez E, Prangé T (1998) Syntheses of chiral dispiroacetals from carbohydrates. J Org Chem 63:2251–2261.  https://doi.org/10.1021/jo972023a CrossRefGoogle Scholar
  172. 172.
    Dorta RL, Martín A, Betancor C, Suárez E (1997) Serendipitous acid-catalyzed rearrangement of 13-methoxy-1,6,8-trioxadispiro[4.1.5.3]pentadecane to 3-chroman-5-yl-propan-1-ol. J Org Chem 62:2273–2274.  https://doi.org/10.1021/jo962065j CrossRefPubMedGoogle Scholar
  173. 173.
    Dorta RL, Martín A, Suárez E, Prangé T (1996) Synthesis of (5R,7S,13S)-13-methoxy-1,6,8-trioxadispiro[4.1.5.3]pentadecane. Tetrahedron Asymmetry 7:1907–1910.  https://doi.org/10.1016/0957-4166(96)00227-3 CrossRefGoogle Scholar
  174. 174.
    Wu Y-B, Tang Y, Luo G-Y, Chen Y, Hsung RP (2014) An approach toward constructing the trioxadispiroketal core in the DEF-ring of (+)-spirastrellolide A. Org Lett 16:4550–4553.  https://doi.org/10.1021/ol502103b CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Síntesis de Productos NaturalesInstituto de Productos Naturales y Agrobiología del CSICSan Cristóbal de La LagunaSpain

Personalised recommendations