Carbohydrate-spiro-heterocycles pp 51-104 | Cite as
Carbohydrate Spiro-heterocycles via Radical Chemistry
- 1 Citations
- 223 Downloads
Abstract
This review summarizes the current status of the preparation of spiro-heterocycles fused with a pyranose or furanose carbohydrate skeleton, using free radical chemistry. A variety of heterospiro[m.n]alkane bicyclic structures (m = 3–5, n = 4–6) possessing one, two, or three heteroatoms (N, O, Si, S) have been collected, in addition to three different 1,6,8-trioxadispiro-tetradecane and 1,6,8-trioxadispiro-pentadecane tricyclic systems. C(sp3)–H bond functionalization by 1,5- or 1,6-hydrogen atom transfer (HAT) initiated by C(sp3)-, C(sp2)-, O-, or N-radicals and 5-exo-trig or 6-exo-trig cyclization reactions are the most useful strategies employed for the construction of the heterocyclic rings. The intramolecular HAT promoted by photoexcited monoketones, α-diketones, furanones, and succinimides via a Norrish type II–Yang cyclization process has also been successfully applied.
Keywords
Alkoxyl radicals Carbohydrates C-radicals Hydrogen atom transfer (HAT) N-radicals Radical cascade Radical cyclizationReferences
- 1.Pearce AJ, Mallet J-M, Sinaÿ P (2001) Radicals in carbohydrate chemistry. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 538–577. https://doi.org/10.1002/9783527618293.ch52 CrossRefGoogle Scholar
- 2.Pérez-Martı́n I, Suárez E (2012) Radicals and carbohydrates. In: Chatgilialoglu C, Studer A (eds) Encyclopedia of radicals in chemistry, biology and materials. Wiley, Chichester, pp 1131–1174. https://doi.org/10.1002/9781119953678.rad031 CrossRefGoogle Scholar
- 3.Binkley RW, Binkley ER (2013) Radical reaction of carbohydrates, vols I and II. http://www.carborad.com/default.html
- 4.McSweeney L, Dénès F, Scanlan EM (2016) Thiyl-radical reactions in carbohydrate chemistry: from thiosugars to glycoconjugate synthesis. Eur J Org Chem 2016:2080–2095. https://doi.org/10.1002/ejoc.201501543 CrossRefGoogle Scholar
- 5.Hansen SG, Skrydstrup T (2006) Modification of amino acids, peptides, and carbohydrates through radical chemistry. In: Gansäuer A (ed) Radicals in synthesis II. Topics in current chemistry, vol 264. Springer, Berlin, pp 135–162. https://doi.org/10.1007/128_022 CrossRefGoogle Scholar
- 6.Boultadakis-Arapinis M, Lescot C, Micouin L, Lecourt T (2013) Functionalization of the anomeric C–H bond of carbohydrates: old strategies and new opportunities. Synlett 24:2477–2491. https://doi.org/10.1055/s-0033-1339317 CrossRefGoogle Scholar
- 7.Frihed TG, Bols M, Pedersen CM (2016) C–H functionalization on carbohydrates. Eur J Org Chem 2016:2740–2756. https://doi.org/10.1002/ejoc.201600121 CrossRefGoogle Scholar
- 8.Murakami M, Ishida N (2017) β-Scission of alkoxy radicals in synthetic transformations. Chem Lett 46:1692–1700. https://doi.org/10.1246/cl.170834 CrossRefGoogle Scholar
- 9.Salamone M, Bietti M (2014) Reaction pathways of alkoxyl radicals. The role of solvent effects on C–C bond fragmentation and hydrogen atom transfer reactions. Synlett 25:1803–1816. https://doi.org/10.1055/s-0033-1341280 CrossRefGoogle Scholar
- 10.Undheim K (2015) Stereoselective reactions in preparation of chiral α-hetera-spiro[m.n]alkanes. Synthesis 47:2497–2522. https://doi.org/10.1055/s-0034-1378863 CrossRefGoogle Scholar
- 11.Undheim K (2014) Preparation and structure classification of heteraspiro[m.n]alkanes. Synthesis 46:1957–2006. https://doi.org/10.1055/s-0033-1338640 CrossRefGoogle Scholar
- 12.El Ashry ESH (ed) (2007) Heterocycles from carbohydrate precursors. Topics in heterocyclic chemistry, vol 7. Springer, Berlin. https://doi.org/10.1007/978-3-540-72957-0 CrossRefGoogle Scholar
- 13.Soengas RG, da Silva G, Estévez JC (2017) Synthesis of spironucleosides: past and future perspectives. Molecules 22:2028. https://doi.org/10.3390/molecules22112028 CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Landais Y (ed) (2018) Free-radical synthesis and functionalization of heterocycles. Topics in heterocyclic chemistry, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-89521-5 CrossRefGoogle Scholar
- 15.Undheim K (2017) Spirocyclic orthoesters, orthothioesters and orthoaminals in the synthesis and structural modification of natural products. Synthesis 49:705–723. https://doi.org/10.1055/s-0036-1588339 CrossRefGoogle Scholar
- 16.Brimble MA, Furkert DP (2003) Chemistry of bis-spiroacetal systems: natural products, synthesis and stereochemistry. Curr Org Chem 7:1461–1484. https://doi.org/10.2174/1385272033486404 CrossRefGoogle Scholar
- 17.Brimble MA, Stubbing LA (2014) Synthesis of 5,6- and 6,6-spirocyclic compounds. In: Cossy J (ed) Synthesis of saturated oxygenated heterocycles I. Topics in heterocyclic chemistry, vol 35. Springer, Berlin, pp 189–267. https://doi.org/10.1007/978-3-642-41473-2_5 CrossRefGoogle Scholar
- 18.Kiyota H (2006) Synthesis of marine natural products with bicyclic and/or spirocyclic acetals. In: Kiyota H (ed) Marine natural products. Topics in heterocyclic chemistry, vol 5. Springer, Berlin, pp 65–95. https://doi.org/10.1007/7081_029 CrossRefGoogle Scholar
- 19.Smith LK, Baxendale IR (2015) Total syntheses of natural products containing spirocarbocycles. Org Biomol Chem 13:9907–9933. https://doi.org/10.1039/C5OB01524C CrossRefPubMedGoogle Scholar
- 20.Sherburn MS (2012) Basic concepts on radical chain reactions. In: Chatgilialoglu C, Studer A (eds) Encyclopedia of radicals in chemistry, biology and materials. Wiley, Chichester, pp 57–80. https://doi.org/10.1002/9781119953678.rad017 CrossRefGoogle Scholar
- 21.Kittaka A, Asakura T, Kuze T, Tanaka H, Yamada N, Nakamura KT, Miyasaka T (1999) Cyclization reactions of nucleoside anomeric radical with olefin tethered on base: factors that induce anomeric stereochemistry. J Org Chem 64:7081–7093. https://doi.org/10.1021/jo990611d CrossRefGoogle Scholar
- 22.Chatgilialoglu C, Gimisis T, Spada GP (1999) C-1′ radical-based approaches for the synthesis of anomeric spironucleosides. Chem Eur J 5:2866–2876. https://doi.org/10.1002/(SICI)1521-3765(19991001)5:10<2866::AID-CHEM2866>3.0.CO;2-6 CrossRefGoogle Scholar
- 23.Taniguchi T (2017) Recent advances in reactions of heteroatom-centered radicals. Synthesis 49:3511–3534. https://doi.org/10.1055/s-0036-1588481 CrossRefGoogle Scholar
- 24.Nechab M, Mondal S, Bertrand MP (2014) 1,n-hydrogen-atom transfer (HAT) reactions in which n≠5: an updated inventory. Chem Eur J 20:16034–16059. https://doi.org/10.1002/chem.201403951 CrossRefPubMedGoogle Scholar
- 25.Sperry J, Liu Y-C, Brimble MA (2010) Synthesis of natural products containing spiroketals via intramolecular hydrogen abstraction. Org Biomol Chem 8:29–38. https://doi.org/10.1039/B916041H CrossRefPubMedGoogle Scholar
- 26.Dénès F, Beaufils F, Renaud P (2008) Preparation of five-membered rings via the translocation-cyclization of vinyl radicals. Synlett 19:2389–2399. https://doi.org/10.1055/s-2008-1078016 CrossRefGoogle Scholar
- 27.Renaud P, Beaufils F, Dénès F, Feray L, Imboden C, Kuznetsov N (2008) Stereoselective radical translocations. CHIMIA Int J Chem 62:510–513. https://doi.org/10.2533/chimia.2008.510 CrossRefGoogle Scholar
- 28.Čeković Ž (2005) Reactions of carbon radicals generated by 1,5-transposition of reactive centers. J Serb Chem Soc 70:287–318. https://doi.org/10.2298/JSC0503287C CrossRefGoogle Scholar
- 29.Čeković Ž (2003) Reactions of δ-carbon radicals generated by 1,5-hydrogen transfer to alkoxyl radicals. Tetrahedron 59:8073–8090. https://doi.org/10.1016/S0040-4020(03)01202-X CrossRefGoogle Scholar
- 30.Feray L, Kuznetsov N, Renaud P (2001) Hydrogen atom abstraction. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 246–278. https://doi.org/10.1002/9783527618293.ch39 CrossRefGoogle Scholar
- 31.Robertson J, Pillai J, Lush RK (2001) Radical translocation reactions in synthesis. Chem Soc Rev 30:94–103. https://doi.org/10.1039/b000705f CrossRefGoogle Scholar
- 32.Majetich G, Wheless K (1995) Remote intramolecular free radical functionalizations: an update. Tetrahedron 51:7095–7129. https://doi.org/10.1016/0040-4020(95)00406-X CrossRefGoogle Scholar
- 33.Mihailović ML, Čeković Ž (1970) Intramolecular oxidative cyclization of alcohols with lead tetraacetate. Synthesis 2:209–224. https://doi.org/10.1055/s-1970-21596 CrossRefGoogle Scholar
- 34.Heusler K, Kalvoda J (1964) Intramolecular free-radical reactions. Angew Chem Int Ed 3:525–596. https://doi.org/10.1002/anie.196405251 CrossRefGoogle Scholar
- 35.Dorigo AE, McCarrick MA, Loncharich RJ, Houk KN (1990) Transition structures for hydrogen atom transfers to oxygen. Comparisons of intermolecular and intramolecular processes, and open- and closed-shell systems. J Am Chem Soc 112:7508–7514. https://doi.org/10.1021/ja00177a009 CrossRefGoogle Scholar
- 36.Dorigo AE, Houk KN (1988) The relationship between proximity and reactivity. An ab initio study of the flexibility of the OH• + CH4 hydrogen abstraction transition state and a force-field model for the transition states of intramolecular hydrogen abstractions. J Org Chem 53:1650–1664. https://doi.org/10.1021/jo00243a011 CrossRefGoogle Scholar
- 37.Dorigo AE, Houk KN (1987) Transition structures for intramolecular hydrogen atom transfers: the energetic advantage of seven-membered over six-membered transition structures. J Am Chem Soc 109:2195–2197. https://doi.org/10.1021/ja00241a056 CrossRefGoogle Scholar
- 38.Yoshimura A, Zhdankin VV (2016) Advances in synthetic applications of hypervalent iodine compounds. Chem Rev 116:3328–3435. https://doi.org/10.1021/acs.chemrev.5b00547 CrossRefPubMedGoogle Scholar
- 39.Zhdankin VV (2009) Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC 2009:1–62. https://doi.org/10.3998/ark.5550190.0010.101 CrossRefGoogle Scholar
- 40.Togo H, Katohgi M (2001) Synthetic uses of organohypervalent iodine compounds through radical pathways. Synlett 12:565–581. https://doi.org/10.1055/s-2001-13349 CrossRefGoogle Scholar
- 41.Hu X-Q, Chen J-R, Xiao W-J (2017) Controllable remote C−H bond functionalization by visible-light photocatalysis. Angew Chem Int Ed 56:1960–1962. https://doi.org/10.1002/anie.201611463 CrossRefGoogle Scholar
- 42.Studer A, Curran DP (2016) Catalysis of radical reactions: a radical chemistry perspective. Angew Chem Int Ed 55:58–102. https://doi.org/10.1002/anie.201505090 CrossRefGoogle Scholar
- 43.Huang W, Cheng X (2017) Hantzsch esters as multifunctional reagents in visible-light photoredox catalysis. Synlett 28:148–158. https://doi.org/10.1055/s-0036-1588129 CrossRefGoogle Scholar
- 44.Shaw MH, Twilton J, MacMillan DWC (2016) Photoredox catalysis in organic chemistry. J Org Chem 81:6898–6926. https://doi.org/10.1021/acs.joc.6b01449 CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. https://doi.org/10.1021/cr300503r CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Stateman LM, Nakafuku KM, Nagib DA (2018) Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50:1569–1586. https://doi.org/10.1055/s-0036-1591930 CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Yan M, Lo JC, Edwards JT, Baran PS (2016) Radicals: reactive intermediates with translational potential. J Am Chem Soc 138:12692–12714. https://doi.org/10.1021/jacs.6b08856 CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Chiba S, Chen H (2014) sp3 C–H oxidation by remote H-radical shift with oxygen- and nitrogen-radicals: a recent update. Org Biomol Chem 12:4051–4060. https://doi.org/10.1039/c4ob00469h CrossRefPubMedGoogle Scholar
- 49.Wagner PJ (2005) Abstraction of γ-hydrogens by excited carbonyls. In: Griesbeck AG, Mattay J (eds) Synthetic organic photochemistry. Marcel Dekker, New York, pp 11–39Google Scholar
- 50.Wessig P, Muhling O (2005) Abstraction of (γ±n)-hydrogen by excited carbonyls. In: Griesbeck A, Mattay J (eds) Synthetic organic photochemistry. Marcel Dekker, New York, pp 41–87Google Scholar
- 51.Wagner PJ, Klán P (2004) Norrish type II photoelimination of ketones: cleavage of 1,4-biradicals formed by γ-hydrogen abstraction. In: Horspool W, Lenci F (eds) Organic photochemistry and photobiology2nd edn. CRC, Boca Raton, pp 1–31Google Scholar
- 52.Wagner PJ (2004) Yang photocyclization: coupling of biradicals formed by intramolecular hydrogen abstraction of ketones. In: Horspool W, Lenci F (eds) Organic photochemistry and photobiology2nd edn. CRC, Boca Raton, pp 1–69Google Scholar
- 53.Arjona O, Gómez AM, López JC, Plumet J (2007) Synthesis and conformational and biological aspects of carbasugars. Chem Rev 107:1919–2036. https://doi.org/10.1021/cr0203701 CrossRefPubMedGoogle Scholar
- 54.Martínez-Grau A, Marco-Contelles J (1998) Carbocycles from carbohydrates via free radical cyclizations: new synthetic approaches to glycomimetics. Chem Soc Rev 27:155–162. https://doi.org/10.1039/a827155z CrossRefGoogle Scholar
- 55.Dalko PI, Sinaÿ P (1999) Recent advances in the conversion of carbohydrate furanosides and pyranosides into carbocycles. Angew Chem Int Ed 38:773–777. https://doi.org/10.1002/(SICI)1521-3773(19990315)38:6<773::AID-ANIE773>3.0.CO;2-N CrossRefGoogle Scholar
- 56.Madsen R (2007) Synthetic strategies for converting carbohydrates into carbocycles by the use of olefin metathesis. Eur J Org Chem 2007:399–415. https://doi.org/10.1002/ejoc.200600614 CrossRefGoogle Scholar
- 57.Chen Y-L, Cen J-D (2004) Recent advances in conversion from carbohydrates to functionalized carbocycles. Chin J Org Chem 24:1332–1339Google Scholar
- 58.Baldwin JE (1976) Rules for ring closure. J Chem Soc Chem Commun:734–736. https://doi.org/10.1039/C39760000734
- 59.Baldwin JE, Thomas RC, Kruse LI, Silberman L (1977) Rules for ring closure: ring formation by conjugate addition of oxygen nucleophiles. J Org Chem 42:3846–3852. https://doi.org/10.1021/jo00444a011 CrossRefGoogle Scholar
- 60.Beckwith ALJ, Easton CJ, Serelis AK (1980) Some guidelines for radical reactions. J Chem Soc Chem Commun:482–483. https://doi.org/10.1039/C39800000482
- 61.Beckwith ALJ (1981) Regio-selectivity and stereo-selectivity in radical reactions. Tetrahedron 37:3073–3100. https://doi.org/10.1016/S0040-4020(01)98839-8 CrossRefGoogle Scholar
- 62.Beckwith ALJ, Schiesser CH (1985) Regio- and stereo-selectivity of alkenyl radical ring closure: a theoretical study. Tetrahedron 41:3925–3941. https://doi.org/10.1016/S0040-4020(01)97174-1 CrossRefGoogle Scholar
- 63.Walton JC (2006) Unusual radical cyclisations. In: Gansäuer A (ed) Radicals in synthesis II. Topics in current chemistry, vol 264. Springer, Berlin, pp 163–200. https://doi.org/10.1007/128_021 CrossRefGoogle Scholar
- 64.Gilmore K, Alabugin IV (2012) Unusual cyclizations. In: Chatgilialoglu C, Studer A (eds) Encyclopedia of radicals in chemistry, biology and materials. Wiley, Chichester, pp 693–728. https://doi.org/10.1002/9781119953678.rad021 CrossRefGoogle Scholar
- 65.Srikrishna A (2001) Unusual cyclizations. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 151–187. https://doi.org/10.1002/9783527618293.ch34 CrossRefGoogle Scholar
- 66.Ishibashi H, Sato T, Ikeda M (2002) 5-Endo-trig radical cyclizations. Synthesis 34:695–713. https://doi.org/10.1055/s-2002-25759 CrossRefGoogle Scholar
- 67.Taniguchi T, Ishibashi H (2013) Synthesis of alkaloids using radical cyclizations. Heterocycles 87:527–545. https://doi.org/10.3987/REV-12-759 CrossRefGoogle Scholar
- 68.Ishibashi H (2006) Controlling the regiochemistry of radical cyclizations. Chem Rec 6:23–31. https://doi.org/10.1002/tcr.20069 CrossRefPubMedGoogle Scholar
- 69.Ishibashi H (2012) Synthesis of alkaloids using radical cyclizations. Yakugaku Zasshi 132:1413–1430. https://doi.org/10.1248/yakushi.12-00241 CrossRefPubMedGoogle Scholar
- 70.Chatgilialoglu C, Ferreri C, Guerra M, Timokhin V, Froudakis G, Gimisis T (2002) 5-Endo-trig radical cyclizations: disfavored or favored processes? J Am Chem Soc 124:10765–10772. https://doi.org/10.1021/ja0261731 CrossRefPubMedGoogle Scholar
- 71.Hartung J (2001) Stereoselective construction of the tetrahydrofuran nucleus by alkoxyl radical cyclizations. Eur J Org Chem 2001:619–632. https://doi.org/10.1002/1099-0690(200102)2001:4<619::AID-EJOC619>3.0.CO;2-A CrossRefGoogle Scholar
- 72.Herrera AJ, Rondón M, Suárez E (2007) Stereocontrolled photocyclization of 1,2-diketones applied to carbohydrate models: a new entry to C-ketosides. Synlett 18:1851–1856. https://doi.org/10.1055/s-2007-984523 CrossRefGoogle Scholar
- 73.Herrera AJ, Rondón M, Suárez E (2008) Stereocontrolled photocyclization of 1,2-diketones. Application of a 1,3-acetyl group transfer methodology to carbohydrates. J Org Chem 73:3384–3391. https://doi.org/10.1021/jo702663w CrossRefPubMedGoogle Scholar
- 74.Roberts SW, Rainier JD (2005) Substitution and remote protecting group influence on the oxidation/addition of α-substituted 1,2-anhydroglycosides: a novel entry into C-ketosides. Org Lett 7:1141–1144. https://doi.org/10.1021/ol0501469 CrossRefPubMedGoogle Scholar
- 75.Bernasconi C, Cottier L, Descotes G, Rémy G (1979) Dégradations ménagées des sucres V. Synthèse par voie photochimique d’aldonolactones-1,5 à partir d’oxo-2 propylglycosides. Bull Soc Chim Fr 5–6:332–336Google Scholar
- 76.Descotes G (1982) Photoreactivite acetalique en serie heterocyclique et osidique. Bull Soc Chim Belg 91:973–983CrossRefGoogle Scholar
- 77.Hürzeler M, Bernet B, Vasella A (1993) Glyconothio-O-lactones. Part I. Preparation and reactions with nucleophiles. Helv Chim Acta 76:995–1012. https://doi.org/10.1002/hlca.19930760223 CrossRefGoogle Scholar
- 78.Binkley RW (1977) A mild process for the oxidation of partially protected carbohydrates. J Org Chem 42:1216–1221. https://doi.org/10.1021/jo00427a025 CrossRefGoogle Scholar
- 79.Brunckova J, Crich D (1995) Intramolecular hydrogen atom abstraction: the β-oxygen effect in the Norrish type II photoreaction. Tetrahedron 51:11945–11952. https://doi.org/10.1016/0040-4020(95)00755-W CrossRefGoogle Scholar
- 80.Houlton JS, Motherwell WB, Ross BC, Tozer MJ, Williams DJ, Slawin AMZ (1993) A convenient strategy for replacement of the anomeric hydroxyl group by difluoromethyl functionality in carbohydrate derivatives. Tetrahedron 49:8087–8106. https://doi.org/10.1016/S0040-4020(01)88029-7 CrossRefGoogle Scholar
- 81.Herpin TF, Motherwell WB, Tozer MJ (1994) The synthesis of difluoromethylene-linked C-glycosides and C-disaccharides. Tetrahedron Asymmetry 5:2269–2282. https://doi.org/10.1016/S0957-4166(00)86305-3 CrossRefGoogle Scholar
- 82.Kittaka A, Tanaka H, Yamada N, Miyasaka T (1996) Nucleoside anomeric radicals via 1,5-translocation: Facile access to anomeric spiro nucleosides. Tetrahedron Lett 37:2801–2804. https://doi.org/10.1016/0040-4039(96)00433-9 CrossRefGoogle Scholar
- 83.Kittaka A, Tanaka H, Yamada N, Kato H, Miyasaka T (1997) 1,5-translocation strategy for nucleoside anomeric radicals. Nucleosides Nucleotides Nucleic Acids 16:1423–1426. https://doi.org/10.1080/07328319708006197 CrossRefGoogle Scholar
- 84.Gimisis T, Chatgilialoglu C (1996) 1,5-radical translocation protocol for the generation of C-1′ radicals in nucleosides. Synthesis of spiro nucleosides through a rare 5-endo-trig cyclization. J Org Chem 61:1908–1909. https://doi.org/10.1021/jo952218n CrossRefGoogle Scholar
- 85.Strohmeier J, Nadler A, Heinrich D, Fitzner A, Diederichsen U (2010) Synthesis of 8,1′-etheno and 8,2′-ethano bridged guanosine derivatives using radical cyclization. Heterocycles 82:713–728. https://doi.org/10.3987/COM-10-S(E)51 CrossRefGoogle Scholar
- 86.Stella L (1983) Homolytic cyclizations of N-chloroalkenylamines. Angew Chem Int Ed Engl 22:337–350. https://doi.org/10.1002/anie.198303373 CrossRefGoogle Scholar
- 87.Dénès F (2018) Heteroatom-centred radicals for the synthesis of heterocyclic compounds. In: Landais Y (ed) Free-radical synthesis and functionalization of heterocycles. Topics in heterocyclic chemistry, vol 54. Springer, Cham, pp 151–230. https://doi.org/10.1007/7081_2019_19 CrossRefGoogle Scholar
- 88.Freire R, Martı́n A, Pérez-Martı́n I, Suárez E (2002) Synthesis of oxa-aza spirobicycles by intramolecular hydrogen abstraction promoted by N-radicals in carbohydrate systems. Tetrahedron Lett 43:5113–5116. https://doi.org/10.1016/S0040-4039(02)00983-8 CrossRefGoogle Scholar
- 89.Martín A, Pérez-Martín I, Suárez E (2009) Synthesis of oxa-aza spirobicycles by intramolecular hydrogen atom transfer promoted by N-radicals in carbohydrate systems. Tetrahedron 65:6147–6155. https://doi.org/10.1016/j.tet.2009.05.049 CrossRefGoogle Scholar
- 90.Courtneidge JL, Lusztyk J, Pagé D (1994) Alkoxyl radicals from alcohols. Spectroscopic detection of intermediate alkyl and acyl hypoiodites in the Suárez and Beebe reactions. Tetrahedron Lett 35:1003–1006. https://doi.org/10.1016/S0040-4039(00)79950-3 CrossRefGoogle Scholar
- 91.Martín A, Pérez-Martín I, Suárez E (2005) Intramolecular hydrogen abstraction promoted by amidyl radicals. Evidence for electronic factors in the nucleophilic cyclization of ambident amides to oxocarbenium ions. Org Lett 7:2027–2030. https://doi.org/10.1021/ol050526u CrossRefPubMedGoogle Scholar
- 92.Kittaka A, Tanaka H, Odanaka Y, Ohnuki K, Yamaguchi K, Miyasaka T (1994) Vinyl radical-based cyclization of 6-substituted 1-(2-deoxy-d-erythro-pent-1-enofuranosyl) uracils: synthesis of anomeric spiro nucleosides. J Org Chem 59:3636–3641. https://doi.org/10.1021/jo00092a024 CrossRefGoogle Scholar
- 93.Kittaka A, Tsubaki Y, Tanaka H, Nakamura KT, Miyasaka T (1996) Tandem radical cyclization-oxygenation of 6-(2,2-di-bromovinyl)-1-(2-deoxy-d-erythro-pent-1-enofuranosyl)-uracil: synthesis of anomeric spiro nucleosides having arabino and ribo configurations. Nucleosides Nucleotides 15:97–107. https://doi.org/10.1080/07328319608002373 CrossRefGoogle Scholar
- 94.Kittaka A, Yamada N, Tanaka H, Nakamura KT, Miyasaka T (1996) Radical-mediated cyclization of a 6-chloro-9-(2-deoxy-d-erythro-pent-1-enofuranosyl)-8-(2,2-dibromovinyl)purine. Nucleosides Nucleotides 15:1447–1457. https://doi.org/10.1080/07328319608002446 CrossRefGoogle Scholar
- 95.Kodama T, Shuto S, Nomura M, Matsuda A (2001) An efficient method for the preparation of 1′α-branched-chain sugar pyrimidine ribonucleosides from uridine: the first conversion of a natural nucleoside into 1′-substituted ribonucleosides. Chem Eur J 7:2332–2340. https://doi.org/10.1002/1521-3765(20010601)7:11<2332::AID-CHEM23320>3.0.CO;2-W CrossRefPubMedGoogle Scholar
- 96.Dang SF, Sun JB, Xu XX, Wang P, Wu JC (2008) Synthesis of 4′-spironucleoside via radical translocation cyclization reaction. Chem Res Chin Univ 24:473–476. https://doi.org/10.1016/S1005-9040(08)60099-9 CrossRefGoogle Scholar
- 97.Martín A, Salazar JA, Suárez E (1995) Synthesis of chiral spiroacetals from carbohydrates. Tetrahedron Lett 36:4489–4492. https://doi.org/10.1016/0040-4039(95)00766-6 CrossRefGoogle Scholar
- 98.Martín A, Salazar JA, Suárez E (1996) Synthesis of chiral spiroacetals from carbohydrates. J Org Chem 61:3999–4006. https://doi.org/10.1021/jo960060g CrossRefPubMedGoogle Scholar
- 99.Crich D, Huang X, Newcomb M (1999) Synthesis of tetrahydrofurans by a tandem hydrogen atom abstraction/radical nucleophilic displacement sequence. Org Lett 1:225–228. https://doi.org/10.1021/ol990564b CrossRefGoogle Scholar
- 100.Crich D, Huang X, Newcomb M (2000) Inter- and intramolecular pathways for the formation of tetrahydrofurans from β-(phosphatoxy)alkyl radicals. Evidence for a dissociative mechanism. J Org Chem 65:523–529. https://doi.org/10.1021/jo991570o CrossRefPubMedGoogle Scholar
- 101.Sartillo-Piscil F, Vargas M, Anaya de Parrodi C, Quintero L (2003) Diastereoselective synthesis of 1,2-O-isopropylidene-1,6-dioxaspiro[4.4]nonane applying the methodology of generation of radical cations under non-oxidizing conditions. Tetrahedron Lett 44:3919–3921. https://doi.org/10.1016/S0040-4039(03)00817-7 CrossRefGoogle Scholar
- 102.Cortezano-Arellano O, Quintero L, Sartillo-Piscil F (2015) Total synthesis of cephalosporolide E via a tandem radical/polar crossover reaction. The use of the radical cations under nonoxidative conditions in total synthesis. J Org Chem 80:2601–2608. https://doi.org/10.1021/jo502757c CrossRefPubMedGoogle Scholar
- 103.Crich D (2001) Radical rearrangements of esters. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, pp 188–206. https://doi.org/10.1002/9783527618293.ch35 CrossRefGoogle Scholar
- 104.Sharma GVM, Chander AS, Reddy VG, Krishnudu K, Rao MHVR, Kunwar AC (2000) Radical mediated stereoselective synthesis of chiral spiroacetals from enol-esters. Tetrahedron Lett 41:1997–2000. https://doi.org/10.1016/S0040-4039(00)00083-6 CrossRefGoogle Scholar
- 105.Sharma GVM, Rakesh CAS, Reddy VG, Rao MHVR, Kunwar AC (2003) Radical reactions on enol-esters: facile synthesis of 3-ulosonic acid derivatives and chiral spiroacetals. Tetrahedron Asymmetry 14:2991–3004. https://doi.org/10.1016/S0957-4166(03)00448-8 CrossRefGoogle Scholar
- 106.Stork G, Sher PM (1986) A catalytic tin system for trapping of radicals from cyclization reactions. Regio- and stereocontrolled formation of two adjacent chiral centers. J Am Chem Soc 108:303–304. https://doi.org/10.1021/ja00262a024 CrossRefGoogle Scholar
- 107.Kittaka A, Tanaka H, Kato H, Nonaka Y, Nakamura KT, Miyasaka T (1997) Synthesis of anomeric spiro uracil nucleosides with an orthoester structure: stereoselective cyclization controlled by the C6-substituent. Tetrahedron Lett 38:6421–6424. https://doi.org/10.1016/S0040-4039(97)01486-X CrossRefGoogle Scholar
- 108.Kittaka A, Kato H, Tanaka H, Nonaka Y, Amano M, Nakamura KT, Miyasaka T (1999) Face selective 6,1′-(1-oxo)ethano bridge formation of uracil nucleosides under hypoiodite reaction conditions. Tetrahedron 55:5319–5344. https://doi.org/10.1016/S0040-4020(99)00232-X CrossRefGoogle Scholar
- 109.Gimisis T, Castellari C, Chatgilialoglu C (1997) A new class of anomeric spironucleosides. Chem Commun 21:2089–2090. https://doi.org/10.1039/a705742c CrossRefGoogle Scholar
- 110.El Kouni MH, Naguib FNM, Panzica RP, Otter BA, Chu S-H, Gosselin G, Chu CK, Schinazi RF, Shealy YF, Goudgaon N, Ozerov AA, Ueda T, Iltzsch MH (1996) Effects of modifications in the pentose moiety and conformational changes on the binding of nucleoside ligands to uridine phosphorylase from Toxoplasma gondii. Biochem Pharmacol 51:1687–1700. https://doi.org/10.1016/0006-2952(96)00213-4 CrossRefPubMedGoogle Scholar
- 111.Ogamino J, Mizunuma H, Kumamoto H, Takeda S, Haraguchi K, Nakamura KT, Sugiyama H, Tanaka H (2005) 5-Exo versus 6-endo cyclization of nucleoside 2-sila-5-hexenyl radicals: reaction of 6-(bromomethyl)dimethylsilyl 1′,2′-unsaturated uridines. J Org Chem 70:1684–1690. https://doi.org/10.1021/jo040260p CrossRefPubMedGoogle Scholar
- 112.Sakaguchi N, Hirano S, Matsuda A, Shuto S (2006) Radical reactions with 2-bromobenzylidene group, a protecting/radical-translocating group for the 1,6-radical hydrogen transfer reaction. Org Lett 8:3291–3294. https://doi.org/10.1021/ol061162o CrossRefPubMedGoogle Scholar
- 113.Shuto S, Sugimoto I, Abe H, Matsuda A (2000) Mechanistic study of the ring-enlargement reaction of (3-oxa-2-silacyclopentyl)methyl radicals into 4-oxa-3-silacyclohexyl radicals. Evidence for a pentavalent silicon-bridging radical transition state in 1,2-rearrangement reactions of β-silyl radicals. J Am Chem Soc 122:1343–1351. https://doi.org/10.1021/ja993239s CrossRefGoogle Scholar
- 114.Shuto S, Kanazaki M, Ichikawa S, Minakawa N, Matsuda A (1998) Stereo- and regioselective introduction of 1- or 2-hydroxyethyl group via intramolecular radical cyclization reaction with a novel silicon-containing tether. An efficient synthesis of 4’α-branched 2′-deoxyadenosines. J Org Chem 63:746–754. https://doi.org/10.1021/jo971703a CrossRefPubMedGoogle Scholar
- 115.Tamao K, Ishida N, Tanaka T, Kumada M (1983) Hydrogen peroxide oxidation of the silicon-carbon bond in organoalkoxysilanes. Organometallics 2:1694–1696. https://doi.org/10.1021/om50005a041 CrossRefGoogle Scholar
- 116.Yoshimura Y, Ueda T, Matsuda A (1991) Synthesis of 6,1′-propanouridine, fixed in syn-conformation by a spiro-carbon bridge. Tetrahedron Lett 32:4549–4552. https://doi.org/10.1016/0040-4039(91)80036-6 CrossRefGoogle Scholar
- 117.Yoshimura Y, Otter BA, Ueda T, Matsuda A (1992) Nucleosides and nucleotides. 108. Synthesis and optical properties of syn-fixed carbon-bridged pyrimidine cyclonucleotides. Chem Pharm Bull 40:1761–1769. https://doi.org/10.1248/cpb.40.1761 CrossRefGoogle Scholar
- 118.Rémy G, Cottier L, Descotes G (1979) Photolyse stereospecifique d’(oxo-3 butyl)-tetra-O-acetyl-2,3,4,6-β-d-glucopyranoside en spiro-C-1-sucre. Tetrahedron Lett 20:1847–1850. https://doi.org/10.1016/S0040-4039(01)86857-X CrossRefGoogle Scholar
- 119.Rémy G, Cottier L, Descotes G (1980) Photocyclisation des (oxo-3)-butyl glycopyranosides. Can J Chem 58:2660–2665. https://doi.org/10.1139/v80-425 CrossRefGoogle Scholar
- 120.Rémy G, Cottier L, Descotes G, Faure R, Loiseleur H, Thomas-David G (1980) Confirmation d’une reaction de photocarbocyclisation stéréospécifique de l’(oxo-3 butyl) tétra-O-acétyl-2,3,4,6-β-d-glucopyrannoside par détermination de la structure cristalline du tétra-O-acétyl-2,3,4,6-désoxy-1β-d-glucopyrannoside-1-spiro-2′-(méthyl-3′ tétrahydrofurannol-3′)1,4 B (cis et trans). Acta Crystallogr Sect B 36:873–877. https://doi.org/10.1107/S0567740880004736 CrossRefGoogle Scholar
- 121.Rémy G, Cottier L, Descotes G (1983) Synthèses et epimérisation de déoxy-spiro C-1 sucres. Can J Chem 61:434–438. https://doi.org/10.1139/v83-077 CrossRefGoogle Scholar
- 122.Rémy G, Cottier L, Descotes G (1982) Photolyse des (oxo-3)-butyl-α et β-d-mannopyranosides. J Carbohydr Chem 1:37–47. https://doi.org/10.1080/07328308208085077 CrossRefGoogle Scholar
- 123.Rémy G, Descotes G (1983) Synthese et photochimie des (oxo-3)butyl- α et β-l-arabinopyranosides. J Carbohydr Chem 2:159–166. https://doi.org/10.1080/07328308308057864 CrossRefGoogle Scholar
- 124.Bron P, Cottier L, Descotes G (1984) Synthèse d’arylhydroxyspirocétals. Influence du groupe aryle sur la photocyclisation d’arylcétoacétals en série hétérocyclique et osidique. J Heterocycl Chem 21:21–25. https://doi.org/10.1002/jhet.5570210106 CrossRefGoogle Scholar
- 125.Praly J-P, Descotes G (1981) Photocyclisation de phenyl-glycosides orthocarbonyles: voies d’acces stereo-selectives aux dioxaspirannones aromatiques. Carbohydr Res 95:C1–C4. https://doi.org/10.1016/S0008-6215(00)85306-9 CrossRefGoogle Scholar
- 126.Bernasconi C, Cottier L, Descotes G, Praly J-P, Rémy G, Grenier-Loustalot M-F, Metras F (1983) Photocyclisation de phényl-glycosides orthocarbonylés: Voies d’accès stéréosélectives aux dioxaspirannones aromatiques. Carbohydr Res 115:105–116. https://doi.org/10.1016/0008-6215(83)88139-7 CrossRefGoogle Scholar
- 127.Saito T, Fujiwara K, Sano Y, Sato T, Kondo Y, Akiba U, Ishigaki Y, Katoono R, Suzuki T (2018) An improved synthesis of the C42–C52 segment of ciguatoxin 3C. Tetrahedron Lett 59:1372–1376. https://doi.org/10.1016/j.tetlet.2018.02.052 CrossRefGoogle Scholar
- 128.Kraus GA, Thurston J (1987) Alkoxy radicals in organic synthesis. A novel approach to spiroketals. Tetrahedron Lett 28:4011–4014. https://doi.org/10.1016/S0040-4039(01)83848-X CrossRefGoogle Scholar
- 129.Haudrechy A, Sinaÿ P (1991) A novel type of spiroketalisation on pyranoses. Carbohydr Res 216:375–379. https://doi.org/10.1016/0008-6215(92)84174-Q CrossRefGoogle Scholar
- 130.Ferrier RJ, Hall DW (1992) One-step synthesis of glycosidic spiroketals from 2,3-epoxybutyl glycoside derivatives. J Chem Soc Perkin Trans 1:3029–3034. https://doi.org/10.1039/p19920003029 CrossRefGoogle Scholar
- 131.Ösz E, Sós E, Somsák L, Szilágyi L, Dinya Z (1997) A straightforward route to hydantocidin analogues with pyranose ring structure. Tetrahedron 53:5813–5824. https://doi.org/10.1016/S0040-4020(97)00213-5 CrossRefGoogle Scholar
- 132.Somsák L, Kovács L, Tóth M, Ösz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P (2001) Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of d-gluco- and d-xylopyranosylidene-spiro-(thio)hydantoins and N-(d-glucopyranosyl) amides. J Med Chem 44:2843–2848. https://doi.org/10.1021/jm010892t CrossRefPubMedGoogle Scholar
- 133.Miljković M (2010) Carbohydrate-based antibiotics. In: Carbohydrates. Springer, New York, pp 469–486. https://doi.org/10.1007/978-0-387-92265-2_14
- 134.Ollis WD, Smith C, Wrigth DE (1979) The orthosomycin family of antibiotics-I: the constitution of flambamycin. Tetrahedron 35:105–127. https://doi.org/10.1016/0040-4020(79)85015-2 CrossRefGoogle Scholar
- 135.Wright DE (1979) The orthosomycins, a new family of antibiotics. Tetrahedron 35:1207–1237. https://doi.org/10.1016/0040-4020(79)80046-0 CrossRefGoogle Scholar
- 136.Praly J-P, Descotes G (1982) Photocyclisation d’hydroxyalkyl glycosides en orthoesters glycosidiques. Tetrahedron Lett 23:849–852. https://doi.org/10.1016/S0040-4039(00)86965-8 CrossRefGoogle Scholar
- 137.Praly J-P, Descotes G, Grenier-Loustalot M-F, Metras F (1984) Nouvelle synthèse de spiro-orthoesters d-glucosidiques par photocyclisation stéréoselective d’hydroxyalkyl-d-glucosides. Carbohydr Res 128:21–35. https://doi.org/10.1016/0008-6215(84)85081-8 CrossRefGoogle Scholar
- 138.Praly J-P, Descotes G, Faure R, Loiseleur H (1984) O-Isopropylidène-1,2 O-méthyl-3 O-[tétra-O-acétyl-2,3,4,6 désoxy-1 d-glucopyrannosylidène-1-(1S)]-5,6 α-d-glucofurannose, C24H34O15. Acta Crystallogr Sect C 40:1206–1207. https://doi.org/10.1107/S0108270184007344 CrossRefGoogle Scholar
- 139.Francisco CG, Herrera AJ, Kennedy AR, Melián D, Suárez E (2002) Intramolecular 1,8-hydrogen abstraction between glucopyranose units in a disaccharide model promoted by alkoxy radicals. Angew Chem Int Ed Engl 41:856–858. https://doi.org/10.1002/1521-3773(20020301)41:5<856::AID-ANIE856>3.0.CO;2-F CrossRefPubMedGoogle Scholar
- 140.Francisco CG, Herrera AJ, Kennedy AR, Martín A, Melián D, Pérez-Martín I, Quintanal LM, Suárez E (2008) Intramolecular 1,8-hydrogen-atom transfer reactions in (1→4)-O-disaccharide systems: conformational and stereochemical requirements. Chem Eur J 14:10369–10381. https://doi.org/10.1002/chem.200801414 CrossRefPubMedGoogle Scholar
- 141.Crich D, Huang W (2001) Dynamics of alkene radical cation/phosphate anion pair formation from nucleotide C4′ radicals. The DNA/RNA paradox revisited. J Am Chem Soc 123:9239–9245. https://doi.org/10.1021/ja010841l CrossRefPubMedGoogle Scholar
- 142.Jahjah R, Gassama A, Bulach V, Suzuki C, Abe M, Hoffmann N, Martinez A, Nuzillard J-M (2010) Stereoselective triplet-sensitised radical reactions of furanone derivatives. Chem Eur J 16:3341–3354. https://doi.org/10.1002/chem.200903045 CrossRefPubMedGoogle Scholar
- 143.Dorta RL, Francisco CG, Freire R, Suárez E (1988) Intramolecular hydrogen abstraction. The use of organoselenium reagents for the generation of alkoxy radicals. Tetrahedron Lett 29:5429–5432. https://doi.org/10.1016/S0040-4039(00)82887-7 CrossRefGoogle Scholar
- 144.Dorta RL, Francisco CG, Suárez E (1994) Organoselenium reagents in the tandem β-fragmentation-cyclization of carbohydrate anomeric alkoxy radicals. Tetrahedron Lett 35:2049–2052. https://doi.org/10.1016/S0040-4039(00)73046-2 CrossRefGoogle Scholar
- 145.Dorta RL, Francisco CG, Suárez E (1994) A selenurane derivative promotes β-fragmentation of carbinolamides leading to cyclic imides. Tetrahedron Lett 35:1083–1086. https://doi.org/10.1016/S0040-4039(00)79971-0 CrossRefGoogle Scholar
- 146.Martín A, Quintanal LM, Suárez E (2007) Hydrogen atom transfer experiments provide chemical evidence for the conformational differences between C- and O-glycosides. Tetrahedron Lett 48:5507–5511. https://doi.org/10.1016/j.tetlet.2007.05.166 CrossRefGoogle Scholar
- 147.León EI, Martín A, Pérez-Martín I, Quintanal LM, Suárez E (2010) Hydrogen atom transfer experiments provide chemical evidence for the conformational differences between C- and O-disaccharides. Eur J Org Chem 2010:5248–5262. https://doi.org/10.1002/ejoc.201000470 CrossRefGoogle Scholar
- 148.Martín A, Pérez-Martín I, Quintanal LM, Suárez E (2007) Intramolecular 1,8- versus 1,6-hydrogen atom transfer between pyranose units in a (1→4)-disaccharide model promoted by alkoxyl radicals. Conformational and stereochemical requirements. Org Lett 9:1785–1788. https://doi.org/10.1021/ol070496q CrossRefPubMedGoogle Scholar
- 149.Guyenne S, León EI, Martín A, Pérez-Martín I, Suárez E (2012) Intramolecular 1,8-hydrogen atom transfer reactions in disaccharide systems containing furanose units. J Org Chem 77:7371–7391. https://doi.org/10.1021/jo301153u CrossRefPubMedGoogle Scholar
- 150.Alvarez-Dorta D, León EI, Kennedy AR, Martín A, Pérez-Martín I, Suárez E (2016) Radical-mediated C–H functionalization: a strategy for access to modified cyclodextrins. J Org Chem 81:11766–11787. https://doi.org/10.1021/acs.joc.6b02241 CrossRefPubMedGoogle Scholar
- 151.Foulard G, Brigaud T, Portella C (1997) Radical trifluoromethylation of a d-mannose derived ketene dithioacetal. Synthesis of 2-C-trifluoromethyl derivatives of d-glycero-d-galacto- and d-glycero-d-talo-heptopyranose. J Org Chem 62:9107–9113. https://doi.org/10.1021/jo971187o CrossRefGoogle Scholar
- 152.Sowa CE, Stark M, Heidelberg T, Thiem J (1996) Novel approach to sugar derived spiroannelated heterocycles. Synlett 7:227–228. https://doi.org/10.1055/s-1996-5370 CrossRefGoogle Scholar
- 153.Stark M, Thiem J (2006) Highly functionalized glyco-conjugated hexahydroazepindiones from saccharide imides via the Norrish type II reaction. Carbohydr Res 341:1543–1556. https://doi.org/10.1016/j.carres.2006.03.016. Corrigendum: Stark M, Thiem J (2007). Carbohydr Res 342:772. https://doi.org.10.1016/j.carres.2006.12.001CrossRefPubMedGoogle Scholar
- 154.Thiering S, Thiem J, Kopf J (2007) Reactions of glycosan-annelated oxolactams. Heterocycles 74:533–543. https://doi.org/10.3987/COM-07-S(W)31 CrossRefGoogle Scholar
- 155.Sowa CE, Kopf J, Thiem J (1995) Syntheses of sugar-derived heterotricyclic lactams. J Chem Soc Chem Commun 2:211–212. https://doi.org/10.1039/c39950000211 CrossRefGoogle Scholar
- 156.Sowa CE, Thiem J (1994) Stereoselective intramolecular alkylation of glycosylimides to highly functionalized bicyclic 2,5-azepanediones and heterotricyclic[5.3.1.02,6]undecanamides. Angew Chem Int Ed Engl 33:1979–1981. https://doi.org/10.1002/anie.199419791 CrossRefGoogle Scholar
- 157.Cottier L, Descotes G, Grenier MF, Metras F (1981) Synthese photochimique et etude structurale d’alcoxy-spirocetals et de trioxa-bis-spiroacetals. Tetrahedron 37:2515–2524. https://doi.org/10.1016/S0040-4020(01)88911-0 CrossRefGoogle Scholar
- 158.Cottier L, Descotes G, Faure R, Loiseleur H (1981) Etude structurale de trioxa-bis-spirocétals: Structure de la configuration E–E du diméthyl-4,11 trioxa-1,6,8 dispiro[4.1.4.3]tétradécanediol-4,11. Acta Crystallogr Sect B 37:1155–1157. https://doi.org/10.1107/S0567740881005359 CrossRefGoogle Scholar
- 159.Cottier L, Descotes G (1985) Syntheses stereoselectives des isomeres cinetiques et thermodynamiques d’alcoxy-spirocetals et de trioxa-bis-spirocetals. Tetrahedron 41:409–412. https://doi.org/10.1016/S0040-4020(01)96433-6 CrossRefGoogle Scholar
- 160.Hu T, Curtis JM, Oshima Y, Quilliam MA, Walter JA, Watson-Wright WM, Wright JLC (1995) Spirolides B and D, two novel macrocycles isolated from the digestive glands of shellfish. J Chem Soc Chem Commun 20:2159–2161. https://doi.org/10.1039/C39950002159 CrossRefGoogle Scholar
- 161.Meilert K, Brimble MA (2006) Synthesis of the bis-spiroacetal moiety of the shellfish toxins spirolides B and D using an iterative oxidative radical cyclization strategy. Org Biomol Chem 4:2184–2192. https://doi.org/10.1039/b604334h CrossRefPubMedGoogle Scholar
- 162.Meilert K, Brimble MA (2005) Synthesis of the bis-spiroacetal moiety of spirolides B and D. Org Lett 7:3497–3500. https://doi.org/10.1021/ol051260u CrossRefPubMedGoogle Scholar
- 163.Furkert DP, Brimble MA (2002) Synthesis of the C10-C22 bis-spiroacetal domain of spirolides B and D via iterative oxidative radical cyclization. Org Lett 4:3655–3658. https://doi.org/10.1021/ol026605c CrossRefPubMedGoogle Scholar
- 164.Berg DH, Hamill RL (1978) The isolation and characterization of narasin, a new polyether antibiotic. J Antibiot 31:1–6. https://doi.org/10.7164/antibiotics.31.1 CrossRefPubMedGoogle Scholar
- 165.Dutton CJ, Banks BJ, Cooper CB (1995) Polyether lonophores. Nat Prod Rep 12:165–181. https://doi.org/10.1039/NP9951200165 CrossRefPubMedGoogle Scholar
- 166.Keller-Juslén C, King HD, Kuhn M, Loosli H-R, Von Wartburg A (1978) Noboritomycins A and B, new polyether antibiotics. J Antibiot 31:820–828. https://doi.org/10.7164/antibiotics.31.820 CrossRefPubMedGoogle Scholar
- 167.Allen P, Brimble MA, Turner P (2001) Polyether antibiotic CP44,161. Acta Crystallogr Sect C 57:95–96. https://doi.org/10.1107/S0108270100013950 CrossRefGoogle Scholar
- 168.Westley JW, Evans RH, Sello LH, Troupe N, Liu C-M, Blount JF, Pitcher RG, Williams TH, Miller PA (1981) Isolation and characterization of the first halogen containing polyether antibiotic X-14766A, a product of Streptomyces malachitofuscus subsp. Downeyi. J Antibiot 34:139–147. https://doi.org/10.7164/antibiotics.34.139 CrossRefPubMedGoogle Scholar
- 169.Warabi K, Williams DE, Patrick BO, Roberge M, Andersen RJ (2007) Spirastrellolide B reveals the absolute configuration of the spirastrellolide macrolide core. J Am Chem Soc 129:508–509. https://doi.org/10.1021/ja068271i CrossRefPubMedGoogle Scholar
- 170.Dorta RL, Martín A, Salazar JA, Suárez E, Prangé T (1996) Synthesis of dispiroacetals from carbohydrates by intramolecular hydrogen abstractions. Tetrahedron Lett 37:6021–6024. https://doi.org/10.1016/0040-4039(96)01265-8 CrossRefGoogle Scholar
- 171.Dorta RL, Martín A, Salazar JA, Suárez E, Prangé T (1998) Syntheses of chiral dispiroacetals from carbohydrates. J Org Chem 63:2251–2261. https://doi.org/10.1021/jo972023a CrossRefGoogle Scholar
- 172.Dorta RL, Martín A, Betancor C, Suárez E (1997) Serendipitous acid-catalyzed rearrangement of 13-methoxy-1,6,8-trioxadispiro[4.1.5.3]pentadecane to 3-chroman-5-yl-propan-1-ol. J Org Chem 62:2273–2274. https://doi.org/10.1021/jo962065j CrossRefPubMedGoogle Scholar
- 173.Dorta RL, Martín A, Suárez E, Prangé T (1996) Synthesis of (5R,7S,13S)-13-methoxy-1,6,8-trioxadispiro[4.1.5.3]pentadecane. Tetrahedron Asymmetry 7:1907–1910. https://doi.org/10.1016/0957-4166(96)00227-3 CrossRefGoogle Scholar
- 174.Wu Y-B, Tang Y, Luo G-Y, Chen Y, Hsung RP (2014) An approach toward constructing the trioxadispiroketal core in the DEF-ring of (+)-spirastrellolide A. Org Lett 16:4550–4553. https://doi.org/10.1021/ol502103b CrossRefPubMedGoogle Scholar