Advertisement

Spiro Iminosugars: Structural Diversity and Synthetic Strategies

  • Damien Hazelard
  • Raphaël Hensienne
  • Jean-Bernard Behr
  • Philippe CompainEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 57)

Abstract

From their discovery in the late 1960s, iminosugars have undergone an expansion from an area of science limited to a few researchers to a field that now attracts the interest of members of the whole synthetic organic chemistry community. Indeed, many tasks concern structural modifications of standard iminosugars in order to improve their biological and pharmacological properties. In this way, the introduction of an adjoining spirocycle afforded unprecedented polyhydroxy-azaspiranes, the structures and syntheses of which are presented in this chapter. Special attention is paid to the key steps involved in the generation of the pivotal quaternary spiro atom.

Keywords

Conformational constraint Glycochemistry Glycomimetics Glycosidase inhibitors Iminosugars Spiro compounds 

References

  1. 1.
    Sinibaldi ME, Canet I (2008) Eur J Org Chem 2008:4391–4399Google Scholar
  2. 2.
    Dake G (2006) Tetrahedron 62:3467–3492Google Scholar
  3. 3.
    Galliford CV, Scheidt KA (2007) Angew Chem Int Ed 46:8748–8758Google Scholar
  4. 4.
    Singh GS, Desta ZY (2012) Chem Rev 112:6104–6155PubMedGoogle Scholar
  5. 5.
    Fujita S, Nishikawa K, Iwata T, Tomiyama T, Ikenaga H, Mastumoto K, Shindo M (2018) Chem Eur J 24:1539–11543PubMedGoogle Scholar
  6. 6.
    Altman RA, Nilsson BL, Overman LE, Read de Alaniz J, Rohde JM, Taupin V (2010) J Org Chem 75:7519–7534PubMedPubMedCentralGoogle Scholar
  7. 7.
    Burkhard JA, Wagner B, Fischer H, Schuler F, Müller K, Carreira EM (2010) Angew Chem Int Ed 49:3524–3527Google Scholar
  8. 8.
    Compain P, Martin OR (2007) Iminosugars from synthesis to therapeutic applications. Wiley, WeinheimGoogle Scholar
  9. 9.
    Winchester BG (2009) Tetrahedron Asymm 20:645–651Google Scholar
  10. 10.
    Nash RJ, Kato A, Yu CY, Fleet GWJ (2011) Future Med Chem 3:1513–1521PubMedGoogle Scholar
  11. 11.
    Horne G, Wilson FX (2011) Prog Med Chem 50:135–176PubMedGoogle Scholar
  12. 12.
    Orsato A, Barbagallo E, Costa B, Olivieri S, De Gioia L, Nicotra F, La Ferla B (2011) Eur J Org Chem 2011:5012–5019Google Scholar
  13. 13.
    Decroocq C, Stauffert F, Pamlard O, Oulaïdi F, Gallienne E, Martin OR, Guillou C, Compain P (2015) Bioorg Med Chem Lett 25:830–833PubMedGoogle Scholar
  14. 14.
    Santos C, Stauffert F, Ballereau S, Dehoux C, Rodriguez F, Bodlenner A, Compain P, Génisson Y (2017) Bioorg Med Chem 25:1984–1989PubMedGoogle Scholar
  15. 15.
    Markham A (2016) Drugs 11:1147–1152Google Scholar
  16. 16.
    Compain P, Decroocq C, Iehl J, Holler M, Hazelard D, Mena Barragán T, Ortiz Mellet C, Nierengarten JF (2010) Angew Chem Int Ed 49:5753–5756Google Scholar
  17. 17.
    Compain P, Bodlenner A (2014) ChemBioChem 15:1239–1251PubMedGoogle Scholar
  18. 18.
    Gouin S (2014) Chem Eur J 20:11616–11628PubMedGoogle Scholar
  19. 19.
    Lillelund VH, Jensen HH, Liang X, Bols M (2002) Chem Rev 102:515–553PubMedGoogle Scholar
  20. 20.
    Gloster TM, Davies GJ (2010) Org Biomol Chem 8:305–320PubMedGoogle Scholar
  21. 21.
    Zheng Y, Tice CM, Singh SB (2014) Bioorg Med Chem Lett 24:3673–3682PubMedGoogle Scholar
  22. 22.
    Maaliki C, Gauthier C, Massinon O, Sagar R, Vincent SP, Blériot Y (2014) In: Pilar Rauter A, Lindhorst T, Queneau Y (eds) Carbohydrate chemistry, vol 20. Royal Society of Chemistry, Cambridge, pp 418–444Google Scholar
  23. 23.
    Lahiri R, Ansari AA, Vankar YD (2013) Chem Soc Rev 42:5102–5118PubMedGoogle Scholar
  24. 24.
    Yanagisawa H, Kinoshita M, Umezawa S (1971) Bull Chem Soc Jap 44:3399–3405Google Scholar
  25. 25.
    Rios R (2012) Chem Soc Rev 41:1060–1074PubMedGoogle Scholar
  26. 26.
    Ding A, Meazza M, Guo H, Yang JW, Rios R (2018) Chem Soc Rev 47:5946–5996PubMedGoogle Scholar
  27. 27.
    Kapferer P, Birault V, Poisson JF, Vasella A (2003) Helv Chim Acta 86:2210–2227Google Scholar
  28. 28.
    Ahmadian M, Khare NK, Riordan JM, Klon AE, Borhani DW (2001) Tetrahedron 57:9899–9909Google Scholar
  29. 29.
    Brewster K, Harrison JM, Inch TD, Williams NJ (1987) J Chem Soc Perkin Trans 1:21–26Google Scholar
  30. 30.
    Nocquet PA, Hensienne R, Wencel-Delord J, Wimmer E, Hazelard D, Compain P (2015) Org Biomol Chem 13:9176–9180PubMedGoogle Scholar
  31. 31.
    Nocquet PA, Hensienne R, Wencel-Delord J, Laigre E, Sidelarbi K, Becq F, Norez C, Hazelard D, Compain P (2016) Org Biomol Chem 14:2780–2796PubMedGoogle Scholar
  32. 32.
    Nocquet PA, Hazelard D, Gruntz G, Compain P (2013) J Org Chem 78:6751–6757PubMedGoogle Scholar
  33. 33.
    Hazelard D, Compain P (2017) Org Biomol Chem 15:3806–3827PubMedGoogle Scholar
  34. 34.
    Lin W, Gupta A, Kim KH, Mendel D, Miller MJ (2009) Org Lett 11:449–452PubMedPubMedCentralGoogle Scholar
  35. 35.
    Haruyama H, Takayama T, Kinoshita T, Kondo M, Nakajima M, Haneishi T (1991) J Chem Soc Perkin Trans 1:1637–1640Google Scholar
  36. 36.
    Nakajima M, Itoi K, Takamatsu Y, Kinoshita T, Okazaki T, Kawakubo K, Shindo M, Honma T, Tohjigamori M, Haneishi T (1991) J Antibiot 44:293–300PubMedGoogle Scholar
  37. 37.
    Soengas RG, da Silva G, Estévez JC (2017) Molecules 22:2028PubMedCentralGoogle Scholar
  38. 38.
    Freire R, Martín A, Pérez-Martín I, Suárez E (2002) Tetrahedron Lett 43:5113–5116Google Scholar
  39. 39.
    Martín A, Pérez-Martín I, Suárez E (2009) Tetrahedron 65:6147–6155Google Scholar
  40. 40.
    Fransisco CG, Herrera AJ, Martín A, Pérez-Martín I, Suárez E (2007) Tetrahedron Lett 48:6384–6388Google Scholar
  41. 41.
    Martín A, Pérez-Martín I, Suárez E (2015) Org Lett 7:2027–2030Google Scholar
  42. 42.
    Pal APJ, Vankar YD (2010) Tetrahedron Lett 51:2519–2524Google Scholar
  43. 43.
    Aebisher B, Vasella A (1983) Helv Chem Acta 66:789–794Google Scholar
  44. 44.
    Somsák L (2001) Chem Rev 101:81–135PubMedGoogle Scholar
  45. 45.
    Toumieux S, Compain P, Martin OR (2005) Tetrahedron Lett 46:4731–4735Google Scholar
  46. 46.
    Alves RJ, Castillon S, Dessinges A, Herczegh P, Lopez JC, Lukacs G, Olesker A, Thang TT (1988) J Org Chem 53:4616–4618Google Scholar
  47. 47.
    Tardy S, Vicente JL, Tatibouët A, Dujardin G, Rollin P (2008) Synthesis 2008:3108–3120Google Scholar
  48. 48.
    Bourgeois JM (1976) Helv Chem Acta 59:2114–2124Google Scholar
  49. 49.
    Bourgeois JM (1974) Helv Chem Acta 57:2553–2557Google Scholar
  50. 50.
    Bourgeois JM (1975) Helv Chem Acta 58:363–372Google Scholar
  51. 51.
    Sayago FJ, Pradera MÁ, Gasch C, Fuentes J (2006) Tetrahedron 62:915–921Google Scholar
  52. 52.
    Roy A, Achari B, Mandal SB (2006) Tetrahedron Lett 47:3875–3879Google Scholar
  53. 53.
    Mascitti V, Robinson RP, Préville C, Thuma BA, Carr CL, Resse MR, Maguire RJ, Leininger MT, Lowe A, Steppan CM (2010) Tetrahedron Lett 51:1880–1883Google Scholar
  54. 54.
    Chincholkbar PM, Puranik VG, Deshmukh ARAS (2007) Tetrahedron 63:9179–9187Google Scholar
  55. 55.
    Maity JK, Ghosh R, Drew MGB, Achari B, Mandal SB (2008) J Org Chem 73:4305–4308PubMedGoogle Scholar
  56. 56.
    Mio S, Kumagawa Y, Sugai S (1991) Tetrahedron 47:2133–2144Google Scholar
  57. 57.
    Sano H, Mio S, Kitagawa J, Sugai S (1994) Tetrahedron Asymm 5:2233–2240Google Scholar
  58. 58.
    Zhang K, Schweizer F (2005) Synlett 20:3111–3115Google Scholar
  59. 59.
    Zhang K, Schweizer F (2009) Carbohydr Res 344:576–585PubMedGoogle Scholar
  60. 60.
    Hazelard D, Compain P (2017) Top Heterocycl Chem 47:111–154Google Scholar
  61. 61.
    Compain P (2007) Adv Synth Catal 349:1829–1846Google Scholar
  62. 62.
    Felpin FX, Lebreton J (2003) Eur J Org Chem 2003:3693–3712Google Scholar
  63. 63.
    Dragutan I, Dragutan V, Mitan C, Vosloo HCM, Delaude L, Demonceau A (2011) Belstein J Org Chem 2011:699–716Google Scholar
  64. 64.
    Deiters A, Martin SF (2004) Chem Rev 104:2199–2238PubMedGoogle Scholar
  65. 65.
    Pal APJ, Gupta P, Reddy YS, Vankar YD (2010) Eur J Org Chem 2010:6957–6966Google Scholar
  66. 66.
    Robertson J, Stevens K (2017) Nat Prod Rep 34:62–89PubMedGoogle Scholar
  67. 67.
    Davies SG, Fletcher AM, Roberts PM, Thomson JE (2017) Synlett 26:2697–2706Google Scholar
  68. 68.
    Pansare SV, Thorat RG (2013) Targets Heterocycl Syst 17:57–86Google Scholar
  69. 69.
    Kim IS, Jung YH (2011) Heterocycles 83:2489–2507Google Scholar
  70. 70.
    Rowicki T (2016) Targets Heterocycl Syst 20:409–447Google Scholar
  71. 71.
    Forcher G, Clousier N, Beauseigneur A, Setzer P, Boeda F, Pearson-Long MSM, Karoyan P, Szymoniak J, Bertus P (2015) Synthesis 47:992–1006Google Scholar
  72. 72.
    Szalata C, Szymoniak J, Fabis F, Butt-Gueule S, Rault S, Bertus P, Gerard S, Sapi J (2013) ChemMedChem 8:70–73PubMedGoogle Scholar
  73. 73.
    Wolan A, Six Y (2010) Tetrahedron 66:15–61Google Scholar
  74. 74.
    Bertus P, Szymoniak J, Jeanneau E, Docsa T, Gergely P, Praly JP, Vidal S (2008) Bioorg Med Chem Lett 18:4774–4778PubMedGoogle Scholar
  75. 75.
    Bertus P, Szymoniak J (2007) Synlett 2007:1346–1356Google Scholar
  76. 76.
    Pearson MSM, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB (2007) Synthesis 2007:3589–3594Google Scholar
  77. 77.
    Pearson MSM, Floquet N, Bello C, Vogel P, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB (2009) Bioorg Med Chem 17:8020–8026PubMedGoogle Scholar
  78. 78.
    Laroche C, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB (2006) Synlett 2006:223–226Google Scholar
  79. 79.
    Laroche C, Behr JB, Szymoniak J, Bertus P, Schütz C, Vogel P, Plantier-Royon R (2006) Bioorg Med Chem 14:4047–4054PubMedGoogle Scholar
  80. 80.
    Dhand V, Draper JA, Moore J, Britton R (2013) Org Lett 15:1914–1917PubMedGoogle Scholar
  81. 81.
    Chen W, Pinto BM (2007) Carbohydr Res 342:2163–2172PubMedGoogle Scholar
  82. 82.
    Morozov DA, Kirilyuk IA, Komarov DA, Goti A, Bagryanskaya IY, Kuratieva NV, Grigor’ev IA (2012) J Org Chem 77:10688–10698PubMedGoogle Scholar
  83. 83.
    Malik M, Witkowski G, Ceborska M, Jarosz S (2013) Org Lett 15:6214–6217PubMedGoogle Scholar
  84. 84.
    Behr JB, Kalla A, Harakat D, Plantier-Royon R (2008) J Org Chem 73:3612–3615PubMedGoogle Scholar
  85. 85.
    D’Orazio G, Martorana AM, Filippi G, Polissi A, De Gioia L, La Ferla B (2016) ChemistrySelect 1:2444–2447Google Scholar
  86. 86.
    Hottin A, Scandolera A, Duca L, Wright DW, Davies GJ, Behr JB (2016) Bioorg Med Chem Lett 26:1546–1549PubMedGoogle Scholar
  87. 87.
    Hottin A, Wright DW, Dubar F, Steenackers A, Delannoy P, Biot C, Davies GJ, Behr JB (2013) Chem Eur J 19:9526–9533PubMedGoogle Scholar
  88. 88.
    Hottin A, Dubar F, Steenackers A, Delannoy P, Biot C, Behr JB (2012) Org Biomol Chem 10:5592–5597PubMedGoogle Scholar
  89. 89.
    Garcia-Moreno MI, Diaz-Perez P, Ortiz Mellet C, Garcia Fernandez JM (2002) Chem Commun 8:848–849Google Scholar
  90. 90.
    Zhou Y, Zhao Y, Boyle KMO, Murphy PV (2008) Bioorg Med Chem 18:954–958Google Scholar
  91. 91.
    Chavan SR, Gavale KS, Khan A, Joshi R, Kumbhar N, Chakravarty D, Dhavale DD (2017) ACS Omega 2:7203–7218PubMedPubMedCentralGoogle Scholar
  92. 92.
    Chavan SR, Gavale KS, Kamble KM, Pingale SS, Dhavale DD (2017) Tetrahedron 73:365–372Google Scholar
  93. 93.
    Kui EL, Kanazawa A, Philouze C, Poisson JF, Py S (2017) Eur J Org Chem 2017:363–372Google Scholar
  94. 94.
    Eum H, Choi J, Cho CG, Ha HJ (2015) Asian J Org Chem 4:1399–1409Google Scholar
  95. 95.
    Parihar VS, Pawar NJ, Ghosh S, Chopade B, Kumbhar N, Dhavale DD (2015) RSC Adv 5:52907–52915Google Scholar
  96. 96.
    Kazmierski WM, Furfine E, Spaltenstein A, Wright LL (2002) Bioorg Med Chem Lett 12:3431–3433PubMedGoogle Scholar
  97. 97.
    Duffy RA, Morgan C, Naylor R, Higgins GA, Varty GB, Lachowicz JE, Parker EM (2012) Pharmacol Biochem Behav 102:95–100PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Damien Hazelard
    • 1
  • Raphaël Hensienne
    • 1
  • Jean-Bernard Behr
    • 2
  • Philippe Compain
    • 1
    Email author
  1. 1.Laboratoire d’Innovation Moléculaire et ApplicationsUniv. de Strasbourg, Univ. de Haute-Alsace, CNRS, LIMA (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPMStrasbourgFrance
  2. 2.Institut de Chimie Moléculaire de ReimsUniv. Reims Champagne Ardenne, CNRS (UMR 7312), Méthodologie en Synthèse Organique (MSO)Reims Cedex 2France

Personalised recommendations